MOBILE ENCOUNTERS: PATTERN ANALYSIS AND PROFILE EMBEDDING FOR MOBILE SOCIAL NETWORKING TESTBEDS

By

SUNGWOOK MOON

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2011
To Jin Yun, Dad, Mom, Kaylin Saeyun and my grandparents
ACKNOWLEDGMENTS

I sincerely thank to Dr. Ahmed Helmy for his excellent guidance for my Ph.D. education. He is indeed a great research adviser and educator. I greatly appreciate for his guidance. I also thank my supervisory committee for their valuable and encouraging comments. I am truly grateful to my family. My wife, who shared all the great moments and encouraged me to complete this education. It was a happy journey because I shared this whole process with her. My parents who supported in every way that they can possibly do. Just seeing my dad was a great education and motivation for me to push myself harder. My mom’s countless supporting and caring words were always big encouragement. My grandfather who was a role model and allowed me to dream of becoming a great person. My daughter for making me smile and giving amazing happiness. I appreciate my brother for giving me helps in many of computing techniques and joy of sharing knowledges. NOMADS group members under Dr. Helmy helped and supported me in great way as well. I particularly thank Udayan Kumar and Wei-jen Hsu for sharing great technical and non-technical ideas that helped me to broaden my experience and knowledge in so many things. I thank Yibin Wang on programming help for Bluetooth scanning program and his idea of event based scenarios. I also thank Gautam S. Thakur for many discussions and helps I received for research and defense preparation. I thank Shao-cheng Wang and Sapon Tenachaiwiwat for their advice and encouragement, and Jeeyoung Kim for review comments. It was a great opportunity for me to learn so much from great individuals in NOMADs who not only are intelligent but also have great personalities. I also thank all of my friends in CISE and South Korea. Their support was very encouraging. The last but not the least, I thank God for allowing me to experience such wonderful and valuable moments in my life and to finish the education.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>13</td>
</tr>
<tr>
<td>1.1</td>
<td>Research Framework</td>
<td>13</td>
</tr>
<tr>
<td>1.2</td>
<td>Conceptual Model</td>
<td>14</td>
</tr>
<tr>
<td>1.3</td>
<td>Mobile Networks</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>Problem Statements</td>
<td>16</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Motivation and Challenge</td>
<td>16</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Problem Statements</td>
<td>17</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Approaches</td>
<td>17</td>
</tr>
<tr>
<td>1.5</td>
<td>Research Components</td>
<td>17</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Analysis of Encounter Pattern</td>
<td>18</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Profiles of Mobile Nodes</td>
<td>19</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Profile Based Mobile Social Networking Testbed</td>
<td>19</td>
</tr>
<tr>
<td>1.6</td>
<td>Contribution</td>
<td>20</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Effort Contribution</td>
<td>20</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Intellectual Contribution</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>RELATED WORK</td>
<td>21</td>
</tr>
<tr>
<td>2.1</td>
<td>Analysis of Encounter Pattern in Mobile Networks</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>Mobile Social Networking Protocols</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Mobile Networking Testbeds</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>MOBILITY TRACES DATA</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Basic Definitions</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Network Traces</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Transforming Network Traces to Encounter Traces</td>
<td>27</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Bluetooth Encounter Traces</td>
<td>28</td>
</tr>
<tr>
<td>3.3.2</td>
<td>WLAN Traces</td>
<td>28</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Transformed Encounter Trace</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>UNDERSTANDING ENCOUNTER PATTERNS OF MOBILE NODES</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Related work</td>
<td>32</td>
</tr>
</tbody>
</table>
4.3 Understanding Periodicity and Regularity of Mobile Nodes

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1 Methodology</td>
<td>34</td>
</tr>
<tr>
<td>4.3.2 Periodicities in Nodal Encounters</td>
<td>37</td>
</tr>
<tr>
<td>4.3.2.1 WLAN trace</td>
<td>37</td>
</tr>
<tr>
<td>4.3.2.2 Bluetooth trace</td>
<td>43</td>
</tr>
<tr>
<td>4.3.3 Periodicity of Individual Encounter Pattern</td>
<td>43</td>
</tr>
<tr>
<td>4.3.4 Regular Encounter</td>
<td>47</td>
</tr>
<tr>
<td>4.3.4.1 Top frequency</td>
<td>47</td>
</tr>
<tr>
<td>4.3.4.2 Normalized regular encounter</td>
<td>48</td>
</tr>
</tbody>
</table>

4.4 Temporal Stability of Mobile Encounter

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1 Stability Window of Encounter History</td>
<td>51</td>
</tr>
<tr>
<td>4.4.2 Consistency of Encounter Pattern</td>
<td>52</td>
</tr>
<tr>
<td>4.4.3 Application of Encounter Stability Analysis</td>
<td>55</td>
</tr>
<tr>
<td>4.4.4 Comparing Regular Encounter to Non-regular Encounter</td>
<td>56</td>
</tr>
</tbody>
</table>

4.5 Long-term Bluetooth Trace Analysis

4.6 Conclusions and Future Work

5 CAPTURING AND EMBEDDING PROFILES OF MOBILE NODES

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>61</td>
</tr>
<tr>
<td>5.2 Related Work</td>
<td>62</td>
</tr>
<tr>
<td>5.3 Modeling Encounter Periodicity with Profile</td>
<td>62</td>
</tr>
<tr>
<td>5.4 Discussion of Routing Based on Encounter Profiles</td>
<td>64</td>
</tr>
<tr>
<td>5.5 Community Profiles of Mobile Users</td>
<td>65</td>
</tr>
<tr>
<td>5.5.1 Location Visiting Preference</td>
<td>66</td>
</tr>
<tr>
<td>5.5.2 Encounter Vector</td>
<td>67</td>
</tr>
<tr>
<td>5.6 Conclusions and Future Work</td>
<td>68</td>
</tr>
</tbody>
</table>

6 DESIGN OF A MOBILE SOCIAL NETWORKING TESTBED

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>71</td>
</tr>
<tr>
<td>6.2 Related Work</td>
<td>74</td>
</tr>
<tr>
<td>6.2.1 Analysis of Human Mobility</td>
<td>74</td>
</tr>
<tr>
<td>6.2.2 Mobile Networking Testbeds</td>
<td>75</td>
</tr>
<tr>
<td>6.2.3 Participatory Networks</td>
<td>77</td>
</tr>
<tr>
<td>6.3 Testbed Architecture</td>
<td>78</td>
</tr>
<tr>
<td>6.3.1 Autonomous Mobile Nodes</td>
<td>78</td>
</tr>
<tr>
<td>6.3.2 Network of Autonomous Robots</td>
<td>79</td>
</tr>
<tr>
<td>6.3.3 Participatory Testing</td>
<td>80</td>
</tr>
<tr>
<td>6.3.4 Limitation of Controlled and Uncontrolled Environment</td>
<td>82</td>
</tr>
<tr>
<td>6.4 Contact Rule-Based Decision Criteria</td>
<td>83</td>
</tr>
<tr>
<td>6.4.1 Power-law Distribution</td>
<td>86</td>
</tr>
<tr>
<td>6.4.2 Memory</td>
<td>87</td>
</tr>
<tr>
<td>6.5 Experiment</td>
<td>87</td>
</tr>
<tr>
<td>6.5.1 Simulation Setup</td>
<td>87</td>
</tr>
<tr>
<td>6.5.1.1 Community profile</td>
<td>87</td>
</tr>
</tbody>
</table>
6.5.1.2 On-time scheduler .. 87
6.5.1.3 Environment setup 88
6.5.2 Experiment Modes .. 89
6.5.3 Result Analysis .. 90
 6.5.3.1 Contact ratio with friends to strangers 90
 6.5.3.2 Rank group size 91
 6.5.3.3 Periodic contact pattern 92
6.5.4 Visualization of Encounter and Mobility 93
6.6 Implementation on Autonomous Robots 95
 6.6.1 Controlling iRobot 95
 6.6.2 Lab Environment ... 96
 6.6.3 Evaluation Scenarios for Autonomous Robots 97
6.7 Conclusion and Future Work 101

7 CONCLUSIONS .. 102
 7.1 Conclusions .. 102
 7.2 Future Work ... 103

REFERENCES .. 105

BIOGRAPHICAL SKETCH ... 111
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1 Statistics of encounter traces.</td>
<td>27</td>
</tr>
<tr>
<td>3-2 Format of WLAN traces</td>
<td>29</td>
</tr>
<tr>
<td>3-3 Format of encounter trace</td>
<td>30</td>
</tr>
<tr>
<td>6-1 Properties in each node’s profile</td>
<td>87</td>
</tr>
<tr>
<td>6-2 Scheduler for on-time period</td>
<td>88</td>
</tr>
<tr>
<td>6-3 Scheduler for on-time duration</td>
<td>88</td>
</tr>
<tr>
<td>6-4 Experiment environment</td>
<td>88</td>
</tr>
<tr>
<td>6-5 Experiment modes</td>
<td>89</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1-1</td>
<td>Framework of dissertation</td>
</tr>
<tr>
<td>4-1</td>
<td>Example encounter trace for a mobile user with one of the encountered nodes</td>
</tr>
<tr>
<td>4-2</td>
<td>Average autocorrelation coefficient</td>
</tr>
<tr>
<td>4-3</td>
<td>Daily encounter: normalized frequency magnitude of frequency components for encountered pairs</td>
</tr>
<tr>
<td>4-4</td>
<td>Encounter frequency: normalized frequency magnitude of frequency components for encountered pairs</td>
</tr>
<tr>
<td>4-5</td>
<td>Encounter duration: normalized frequency magnitude of frequency components for encountered pairs</td>
</tr>
<tr>
<td>4-6</td>
<td>Hourly encounter for Bluetooth pairs: frequency magnitude of frequency components for hourly encounter at UF 08 spring/fall Bluetooth trace</td>
</tr>
<tr>
<td>4-7</td>
<td>Daily encounter for individual nodes: normalized frequency magnitude of frequency components for individual nodes’ encounter pattern</td>
</tr>
<tr>
<td>4-8</td>
<td>Encounter frequency for individual nodes: normalized frequency magnitude of frequency components for individual nodes’ encounter pattern</td>
</tr>
<tr>
<td>4-9</td>
<td>Encounter duration for individual nodes: normalized frequency magnitude of frequency components for individual nodes’ encounter pattern</td>
</tr>
<tr>
<td>4-10</td>
<td>Empirical CDF of highest frequency for the encountered pairs at USC 06 spring trace according to daily encounter rate</td>
</tr>
<tr>
<td>4-11</td>
<td>APs accessing preference at USC 06 spring trace</td>
</tr>
<tr>
<td>4-12</td>
<td>Ordered location visiting preference by encountered pairs according to daily encounter rate</td>
</tr>
<tr>
<td>4-13</td>
<td>Window of encounter history</td>
</tr>
<tr>
<td>4-14</td>
<td>Average difference of the daily encounter rate at UF and USC campus according to the change of break point for the first window</td>
</tr>
<tr>
<td>4-15</td>
<td>Average difference of the daily encounter rate at UF and USC campus according to the change of break point for the second window</td>
</tr>
<tr>
<td>4-16</td>
<td>Average difference of the daily encounter rate at USC campus according to the change of size for the first window of encounter history</td>
</tr>
<tr>
<td>4-17</td>
<td>Time series data for the mobile user’s Bluetooth encounter</td>
</tr>
</tbody>
</table>
4-18 Empirical CDF for each encounter metric with encountered nodes in the long
term Bluetooth trace 59
4-19 Spectral analysis of long-term Bluetooth encounter 60
5-1 CDF of top 7 maximum frequencies ... 63
5-2 Overlay networks using periodicity as a link weight 65
5-3 Example of embedding profiles in various interfaces 66
5-4 Location based association matrix for each mobile user (courtesy by Hsu [1]) . 67
5-5 Ranked size of groups for campus traces .. 69
6-1 Bridging the gap between controlled and non-controlled environment 73
6-2 Picture of iRobot, its controlling Nokia N810 PDA and human carrying Nokia
 N810 PDA .. 79
6-3 Communication structure among robots, personality interface, and communication
 protocol .. 81
6-4 State diagram of friend-stranger decision model 84
6-5 Mobility of source node (Me) in each decision 85
6-6 Visualization of simulation ... 90
6-7 Contact ratio of friends to strangers ... 91
6-8 Rank plot for group size in log-log scale in simulation 92
6-9 Spectral analysis for contact with friends over 32 days in simulation 93
6-10 Snapshots of simulation for each mode with visualization on. 94
6-11 Snapshot of a proof of concept video for mobile networking testbed 100
Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

MOBILE ENCOUNTERS: PATTERN ANALYSIS AND PROFILE EMBEDDING FOR MOBILE SOCIAL NETWORKING TESTBEDS

By

Sungwook Moon

December 2011

Chair: Ahmed Helmy
Major: Computer Engineering

Study on human mobility is gaining increasing attention from the research community for use in mobile networks. To better understand the potential of mobile nodes as message relays, our study first investigates the encounter pattern of mobile devices. Specifically, we examine extensive network traces that reflect mobility of communication devices. We analyze the periodicity and consistency of encounter patterns by using power spectral analysis. Our result shows the presence of strong periodicity for rarely encountering mobile nodes and weak periodicity for frequently encountering nodes. In addition, our investigation on the encounter history shows that consistency depends on the encounter rate and length of history. With this understanding of human encounter patterns, we discuss profiling of mobile users based on their periodic properties in encounter pattern. In addition, we group mobile users based on encounter days and discover that the rank group size follows power-law distribution that we use in the assignments of communities for autonomous nodes.

To enhance the mobile networks testing, we utilize our findings to effectively capture and embed personality of mobile users in simulation and testbed environment. We propose an encounter rule-based decision to mimic human encounter pattern, which is an important step toward efficient design of mobile social networking protocols and services. With the additions of group information and scheduler to the rule-based decision, we show that our approaches enable autonomous mobile nodes collectively...
mimic human encounter patterns. We experiment with various types of decision modes and compare the results to random mobility and real-world networking trace. The result shows that our proposed approach provides the range of knobs for adjusting parameters to capture power-law distribution of group sizes, encounter ratio with group members and periodical encounter patterns that are close to real-world networking trace while far outperforming random mobility. Finally, we propose a novel mobile networking testbed that blends the network of autonomous robots and participatory testing via personality profile. We implement a prototype mobile networking testbed with IRobot and PDAs.
CHAPTER 1
INTRODUCTION

Research in this dissertation has three main components. The three main components are: analysis of encounter patterns; capturing and embedding profiles of mobile nodes; and designing of testbed for mobile networks with autonomous mobile nodes. We first study the encounter pattern of mobile nodes to understand their behavior in wireless networking. Specifically, we investigate periodicity and regularity of the encounter patterns for mobile nodes. Then, we study the encounter history of mobile nodes. Based on the results of the analysis, we introduce encounter based profiling of mobile nodes using vectors and its use in encounter pattern modeling. With the analysis and profile implementation of the encounter patterns, we develop mobile testbeds using our proposed profiles for autonomous mobile nodes and discuss the experiment results in simulation. Furthermore, we introduce a prototype implementation of the mobile networking testbed with robots and PDAs. We conclude with our findings and contributions of this dissertation.

1.1 Research Framework

We introduce our research framework in this section. Figure 1-1 shows an overview diagram of our research works. The three square boxes in the top level shows the big picture of each research work. Each research component has its own components. The direction of arrow indicates the flow of the study. Arrow to the top indicates that the small components make the big component. Whereas, down arrow indicates the small components are the branches of the big component. We first introduce the study of encounter pattern for mobile users. We analyze the network trace by periodicity, stability and regularity. Based on our study on the understanding encounter pattern of mobile nodes, the second component work has started. Specifically, we begin the study of profiles in mobile nodes to utilize the result of analysis. We build an encounter vector for each mobile user. We cluster the mobile nodes based on encounter vector and discover
Figure 1-1. Framework of dissertation. There are three main components: analysis of encounter patterns, profiling based on community and embedding profile. The encounter pattern is analyzed with subcomponents of periodicity, regularity and stability. Profiling based on community study is performed by subcomponent of encounter vector and encounter group size is analyzed using the encounter vector for group size subcomponent. Profiles are embedded in the two subcomponents: autonomous mobile nodes and mobile networking testbed. Autonomous mobile nodes are simulated and implemented in its subcomponents of simulation and network of robots. Mobile networking testbed component consists of two subcomponents that are network of robots and participatory testing. Network of robots is a duplicate component as autonomous mobile nodes are used. Encounter vector and participatory testing are mainly used to support other components; thus, filled with a light color.

power-law distribution in the sizes of the groups. Then, we design and develop mobile testbeds based on the profiling research.

1.2 Conceptual Model

We are living in a world where wireless LAN (WLAN) access is available in many places, such as school, airport and coffee shop. Proliferation of mobile devices such as smart phones and tablets demands more wireless networking areas. Advent of popular smart phones such as iPhone and Android enables easy access to the internet
from mobile devices that people carry all the time. However, those mobile devices are dependent on the infrastructure networks (i.e. wireless access point (AP) and cell tower). Mobile adhoc networks allow the devices to communicate via wireless communication when there are no such networking infrastructures available. Yet, they can also be limited in the distance of communication where mobile devices are sparsely deployed. Delay Tolerant Network (DTN) \[2\] is a networking concept that allows a delay in communication between nodes. DTN can be many types of forms. For existing networking infrastructure, there can be some links that are off but can be on again after some time. For mobile networks where mobile nodes play a role of routers, the end to end paths may exist when opportunity for communication comes in with mobility of mobile nodes as they become relaying nodes. Consequently, with delays, the range of wireless communication can be wider with the helps of mobile nodes forwarding data or messages to the target nodes. We assume that mobile nodes can be relay nodes by store and forward fashion. They become routers in a sense that they decide a next route for the data packet and forward it to the next node or end node. In this dissertation, we study the mobile networks where such concepts can be applied.

1.3 Mobile Networks

Mobile networks are networks that consist of mobile nodes that may roam around and have wireless connectivity. Direct end-to-end path may not exist in such a network but permission of delay makes the delivery possible as the new paths may become available after certain delay. For instance, the new links can be opened when mobile nodes get close to other nodes. Bluetooth communication (e.g., PDA, smartphone) is an example of such new communication opportunity. Bluetooth communication, however, is limited to direct communication. Unlike single hop networks, we assume a network with multi-hop delivery capability as in existing infrastructure networks, only the difference being a node can be both end node and relay node. This assumption makes robust network against the malfunctions of several nodes and eliminates the
need of infrastructure; therefore, it is particularly useful in a situation like disaster relief or military operation. Another upside of such networks is implicit multicast, which is spreading a message to certain nodes of interest or groups based on their location visiting preference. [3]

One of the main challenges in this network is unpredictable connectivity with an exception of scheduled move, which is not our focus in this work. Our interest lies in an environment where the most of carriers of the mobile devices are human. As human mobility is unpredictable, so can be message delivery to the destination node. To increase the prediction rate of connectivity among nodes in certain situations, significant amount of recent researches have focused on social aspects of user mobility. Many of these studies proposed a routing protocol that uses social characteristics of human groups or mobility models to be used in simulation [3–5]. However, little is known about the encounter pattern of mobile nodes, which is important in predicting next connectivity.

1.4 Problem Statements

We first discuss the motivation of our works along with challenges associated with them. Then, we describe the problem statements. Explanation of our approaches in a big picture are followed.

1.4.1 Motivation and Challenge

Motivations of our work are three folds: 1) understanding mobile users encounter pattern, 2) discovering group encounter pattern of mobile users, and 3) designing a mobile social networking testbed. For the first motivation of understanding mobile users’ encounter pattern, it is crucial identifying specific dimension to explore. In addition, domain knowledge obtained from analysis should be helpful in application of understanding. The second motivation brings the challenges of define an appropriate grouping vector and discovering similarity metric to cluster mobile users. The third motivation has great challenges of designing and implementation of the testbed. To create a realistic mobile testbed using human mobility, it is critical to use autonomous
mobile node that can make independent mobility decision by themselves like human does. Deploying autonomous mobile nodes brings another challenge of emulating human mobility pattern without global knowledge.

1.4.2 Problem Statements

To the motivations and challenges, we define our problem statements in four categories: 1) identify periodic encounter pattern of mobile users; 2) discover encounter patterns of mobile users using encounter based community; 3) design autonomous mobile nodes collectively mimicking mobile users encounter pattern; and 4) propose a novel idea to design a mobile social networking testbed and show a prototype implementation.

1.4.3 Approaches

Our approaches to each problem statements are as follows. 1) Periodic encounter: perform spectral analysis for WLAN and Bluetooth encounter traces that reflect real-world human mobility. 2) Community encounter pattern: cluster mobile users based on the similarities of encounter vector and embed as a community profile. 3) Autonomous mobile nodes: embed encounter rule-based decision to the autonomous mobile nodes along with scheduler and community profile. 4) Design a mobile social networking testbed: implement a proof of concept on the robots and mobile devices and develop a simulation tool for large-scale experiment while showing the mobility of the nodes in graphics and validate the result by comparing to the real-world encounter pattern appear from WLAN traces.

1.5 Research Components

In this section, we describe the main research components in detail. Each component is tightly linked with strong relation to other components. We analyze the encounter patterns first. Then, we propose the methods to capture mobile users’ behavior and create profiles based on them. We propose profile based mobile social
networking testbed utilizing analyzed encounter pattern of mobile users and profiling methods.

1.5.1 Analysis of Encounter Pattern

We investigate the encounter patterns of mobile nodes and analyze their pattern to apply to the human encounter model and message bundle protocol that uses the encounter pattern. We use a lower bound metric to calculate the number of required relay nodes for given success ratio condition. Advantage of this metric is that the source node can determine the number of message copies according to the importance of message without causing overload to the network. Then, we analyze the network traces in various environments and show the presence of strong periodic patterns in nodal encounter (a.k.a. periodic link connection), using spectral analysis. With this analysis, we find the periodic patterns that are repetitive and discuss its application. To achieve this goal of study, we analyze various types of Wireless LAN (WLAN) and Bluetooth encounter traces. First, we generate encounter trace with an adequate assumption from WLAN trace. Bluetooth trace is naturally an encounter trace without any transformation as it recorded the Bluetooth devices identification each device actually encountered. However, the scale of Bluetooth trace is limited; thus, we also use the processed WLAN trace for encounter pattern analysis. In addition, we study the encounter history of mobile nodes. Their encounter patterns can be either consistent or inconsistent depending on the break point of the history. We divide the encounter history by two different windows and analyze the consistency of encounter in both windows. Our analysis result shows that as we have more encounter history data in the first window, the overall consistency of encounter pattern improves. However, more history data did not affect to the consistency of encounter pattern significantly. Further, we investigate the encounter consistency by controlling the size of the second window. The result shows that bigger second window size lowers the overall encounter consistency. With these result of analysis, we design a encounter pattern model of mobile nodes that
reflects the metrics we found. We also provide a snapshot of the overlay networks with
the characteristics our analysis result shows.

1.5.2 Profiles of Mobile Nodes

With the analysis of mobile nodes, we aim to build profiles of mobile nodes by their
encounter pattern. Two types of profiles can be constructed. Firstly, the profile can be
built for aggregate encounter pattern for each node. Secondly, pair wise profiles can
be built for encounter with each node. The latter type of profiles can be heavier in size.
We focus on the second type of profile as it accurately depicts the encounter pattern
for each user. We cluster the mobile users based on the encounter vector we define
and analyze the trend. This encounter vector is the second type of profile that require \(N \)
number of columns, where \(N \) is the number of existing nodes. Based on the analyzed
trace, we reveal the distribution of cluster sizes, which is a basis in assignment of
communities in the mobile social networking testbed we discuss in the following section.

1.5.3 Profile Based Mobile Social Networking Testbed

Some of the mobile networking testbeds have been proposed in previous literatures.
The behaviors of mobile nodes, however, are limited to random mobility. To create
a realistic mobile networking testbed, it is imperative to use a behavioral model that
closely resembles human behavior. In order to achieve this goal, we use a concept of
encounter profile we discuss in the previous section. We embed the created profiles
on the robot to build a testbed that emulates the behavior of human. By implementing
the profiles on the robots, we have freedom of controlling the profiles, yet, we also
have advantage of emulate human mobility on the testbeds. However, scalability of
the networks are still limited to the number of mobile nodes created in the lab. For
instance, using mobile robots costs significantly high if purchased more than hundreds.
For successful deployment of mobile networking, it is essential to have large number of
nodes for networking purpose. We adopt a concept of participatory testing to improve
the scalability. With this approach, voluntary human participants carrying smart phones
become test subjects. This creates a huge testbed as the size of the testbed can be as large as the number of participants. Efficient recruiting strategy is a key in drawing more participants. However, it is out of scope of this dissertation; thus, our focus is on proposing the realistic testbeds, evaluating the testbed via simulation and showing the prototype of the testbeds. Our testbeds provide the controllable profiles that reflect human behavior with scalability by crowd sourcing.

1.6 Contribution

Our contributions include two areas: effort contribution and intellectual contribution.

1.6.1 Effort Contribution

1) We build a trace library and process the traces for the purpose of encounter pattern analysis. 2) We develop a simulation tool to visualize the encounter pattern of mobile nodes and generate encounter statistics for encounter vector and time-series data. 3) We build a prototype mobile testbed for proof of concept, where we embed an emulation profile on robot nodes to mimic human encounter pattern. 4) We evaluate the autonomous mobile nodes for community encounter pattern, group distribution and periodic encounter pattern with various encounter metrics of encounter days, frequency and duration via simulation.

1.6.2 Intellectual Contribution

1) Our finding from periodicity analysis provides insight into the periodical nature of encounter pattern for mobile users. 2) We define encounter vector and discover power-law distribution of mobile encounter clusters. 3) We propose a encounter rule-based decision for autonomous mobile nodes which collectively emulate community encounter pattern found from the networking traces.
CHAPTER 2
RELATED WORK

We discuss related research works in the literature. We first introduce the other research works that uses related definitions, assumptions and network environments. In addition, we discuss the projects and literatures that include the data sets we use. We further discuss the research works that study the mobile networking by describing the relevant studies of analysis of mobile nodes, modeling and protocols in mobile networking. We introduce the related testbeds projects and literatures of mobile networks as well.

2.1 Analysis of Encounter Pattern in Mobile Networks

The advent of Delay Tolerant Networks (DTN) makes the mobile adhoc networks to have broader concept of networks. With its mobility characteristics in mobile adhoc networks, mobile networks become available without existing infrastructure. Allowance of delay encompasses the mobile adhoc networks not only to larger spatial communication space but also to longer temporal communication space. With similar definition of DTN, intermittent connectivity and opportunistic networks also play the same role; thus, these are the basis of the networks environment we study. Pocket Switched Network [6] is a network where communication is performed among only the mobile devices. This is also a similar environment with our focus of study; however, Pocket Switched Networks differs in that it is for only among the mobile devices carried by human. Whereas, the networks of study in this dissertation includes the statistic networks such as network infrastructures.

[7] analyze the network traffic and revealed the presence of combination of periodicity in the case of denial of service attacks on the internet. They apply power spectral analysis that applies ACF to the time series data before transforming to frequency domain. This removes sync terms that might appear for a finite set, therefore, we adapted a similar approach rather than applying DFT to the data sets directly. Kim
et al. study the periodic properties of WLAN users association with access points [8]. They measure the diameter of visited APs for highly mobile users whose maximum diameter within an hour is 100 meter or more from the Dartmouth campus WLAN data. The result shows the strong presence of periodicity of diameter, particularly 24 hour and 1 week, for the selected 360 users. Periodic properties of travel distance for highly mobile users are interesting findings. This is the closest work to our frequency analysis in that it uses DFT (Discrete Fourier Transform) to analyze the periodicity of user mobility. However, we investigate the different aspect of user mobility pattern, namely, their encounter pattern. Further, ACF (Auto Correlation Function) is used before applying DFT to remove sync terms that might appear for a finite set; additionally, we analyze the rich data set, including over 10,000 users per WLAN trace and Bluetooth trace.

2.2 Mobile Social Networking Protocols

Many of the studies in mobile networks were devoted in routing. Specifically, large portion of mobile networks routing study focused on using human mobility for routing messages and data. The main characteristics used in mobile networks routing from social networks are community, mobility and encounter of human. To use such characteristics in routing, deep understanding of human behavior is essential. Gonzalez et al. [9] has shown that individual human tends to follow simple reproducible patterns based on the cell phone user traces. Hsu et al. proposed time-variant community model [10] that reflects the periodic encounters. Community structure of social networks from networking traces are discussed in [11]. Social relationship between mobile nodes for DTN routing is discussed in [4] [5]. Miklas et al. [12] divided human encounters to friends and strangers according to the length of encounter. These works study human encounter pattern; however, we are the first to analyze the periodicity of human encounter extensively by spectral analysis. Prophet [13] is one of the first routing algorithms using encounter history in DTN [2]. It uses encounter frequency to determine a relay node. The chosen node will forward the message bundle to the encountered
node and delegate the responsibility of delivery to the node if the node has higher encounter frequency to the destination node. However, it is unclear how to determine the probability of encounter using frequency. To use encounter frequency for probability, total number of possible encounters should be known, which otherwise could be infinite. Further, it is possible that frequent encounters in short time can mislead prediction of future encounter. Timely-count probability [14] is an idea that regards encounters belonging to the same interval as one encounter; thus, it provides standard procedure to calculate the encounter probability. In our work, we used it for an idea of daily encounter whose interval is a day. Our analysis part of the study in this dissertation can be the basis to improve the performance of protocols in DTN. Profile-cast [3] is a forwarding protocol to the group of nodes, sharing the same interest. It has two ways in message distribution: 1) source node propagates the message to the node with similar profile to the destination group, which may also forward to other nodes that are more similar (gradient ascending); 2) the source node can try to distribute the message to the nodes that have different profiles, such that its different mobility can give more chance to reach the destination group. Both profile-cast and prophet protocols can enhance their stability of delivery by incorporating periodic properties of encounter for consistent predictability. Studies for predictability of human mobility and encounter [15] [16] can also be extended by considering different periodic properties as well as worm propagation pattern via human encounter [17] [18].

Recent studies show the applications of using human mobility and encounter for message propagation [19] [13] [20] [21] [22]. MobiTrade [22] is implemented on Android phones for sharing the data with incentive. Human mobility in theme park is implemented on message delivery in [19]. Popularity of locations is shown to influence routing decision for efficient delivery of message using human mobility [21].
2.3 Mobile Networking Testbeds

There are research projects to design and develop mobile networking testbeds. We explain the testbeds that are related to our works. MiNT \cite{23} is a miniaturized network testbed that solely uses iRobots in a controlled space. A server computer controls the movements and communication amongst iRobots that are equipped with WLAN. Although this testbed can expand with multiple numbers of iRobots and be effective in experiments for small-scale mobile adhoc networks, it still suffers from scalability and a diversity of nodes. Roomba MADNeT \cite{24} showed the capability of using iRobot for DTN. The researchers mounted a wireless router that runs on Linux by connecting through modified serial cable. This process might take advantage of a costumed lightweight programming board to utilize the wireless communication feature specifically for the testing purpose. However, this process can be tedious and cumbersome to many researchers who are not skilled in this area. Our method is simple and uses the existing device. Connection requires a minimum of steps and effort: either Bluetooth pairing or connecting a serial cable directly with a distant or attached computer. In \cite{25}, the authors proposed a DTN testbed. They used enclosures to contain the laptop computers and measure the signal attenuation for implemented DTN protocol. The design is centralized and users can view the wireless nodes moving around from the server computer. Mobility is limited to a controlled environment, as the participants are to follow the given paths and required to be in the experiment range. Mobile Emulab \cite{26} is wireless sensor networks testbed that manages its MiCa2 mote based robot nodes from a central computer with video camera. GUI interface provides location precision of 1cm for moving robot nodes.

In our presentation, nodes can have complete control of their movements, including message propagation decisions. Moreover, measurements are decentralized in our experiment, as each measurement record is kept inside the mobile nodes. SCORPION \cite{27} is a heterogeneous networking testbed, which uses iRobots, Buses, Aircrafts and
humans with briefcase nodes. It provides a testbed to experiment communication between diverse movements; however, mobility of all the mobile nodes are limited to controlled movements; thus, social aspects are not reflected. Our unique contribution comes from the autonomous robots with behavioral profiles and participatory humans that provides uncontrolled, thus, realistic testing environment.
CHAPTER 3
MOBILITY TRACES DATA

It is crucial to have extensive and realistic data sets for the analysis of mobility. We introduce the data sets we used and collected for our analysis along with definitions and assumptions. In addition, we describe the details of transforming the network data sets into the encounter traces for our analysis.

3.1 Basic Definitions

Before we explain the network traces, we first describe the basic terminologies that we use in our work. Mobile node is an entity that can move around with different speeds in different time and space. Mobile node is capable of wireless communication. Mobile nodes can encounter each other when they are close enough to discover each other. Specifically, the term encounter in this work indicates the event that two or more mobile nodes present within the wireless communication range. The terms, encounter and contact, are used interchangeably in literatures \cite{1} \cite{28} and we use the term encounter throughout the paper for consistency. Mobile nodes have on-line and off-line behaviors. In off-line mode, other nodes may not discover the mobile nodes even if they are in the proximity of wireless communication range. These mobile nodes can be the smart phones or PDAs human carry around or wireless communication devices that move around or stay in static locations.

3.2 Network Traces

For accurate analysis of encounter patterns for mobile nodes, it is essential to have large data sets. There are two types of a contact trace. First approach is obtaining a trace by the synthetic trace. The synthetic trace is a artificially made trace based on mobility model. The advantage of using such trace is freedom of manipulating the data to fit the purpose of analysis. However, the synthetic trace is limited in that it is based on the assumptions and observed parameters from previous analysis; thus, its closeness to reality depends on the quality and quantity of samples used in analysis.
Table 3-1. Statistics of encounter traces.

<table>
<thead>
<tr>
<th>Trace source</th>
<th>Trace duration</th>
<th>Analyzed duration</th>
<th>Unique users</th>
<th>Encounter pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>USC</td>
<td>2006 Jan-May</td>
<td>128 days</td>
<td>28,173</td>
<td>25,359,454</td>
</tr>
<tr>
<td></td>
<td>2007 Jan-May</td>
<td></td>
<td>35,274</td>
<td>19,057,089</td>
</tr>
<tr>
<td></td>
<td>2008 Jan-May</td>
<td></td>
<td>42,587</td>
<td>31,289,100</td>
</tr>
<tr>
<td>UF</td>
<td>2007 Aug-Dec</td>
<td>128 days</td>
<td>46,115</td>
<td>12,493,403</td>
</tr>
<tr>
<td></td>
<td>2008 Jan-May</td>
<td></td>
<td>50,549</td>
<td>16,807,427</td>
</tr>
<tr>
<td>Monteral</td>
<td>2004 Aug-Dec</td>
<td>128 days</td>
<td>455</td>
<td>2,512</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>2/25 - 3/7/2008</td>
<td>256 hours</td>
<td>10</td>
<td>1,277</td>
</tr>
<tr>
<td></td>
<td>11/17-27/2008</td>
<td></td>
<td>27</td>
<td>1,655</td>
</tr>
<tr>
<td>Long-term Bluetooth</td>
<td>2010/9-2011/4</td>
<td>180 days</td>
<td>1</td>
<td>27,870</td>
</tr>
</tbody>
</table>

for the model. Second approach is using a real world trace. The real world trace can be divided into the trace by the mobile robots, human mobility and hybrid of both. By using the robots, researchers can control the mobility of each robot for the purpose of their experiments. This is similar to the synthetic trace but it differs in that it can be experimented in real world environment as opposed to artificial environment in synthetic trace. Collecting human contact pattern is limited in size to the participants willing to follow the instructions.

Table 3-1 shows the traces we use in our analysis. Privacy issues of the traces are out of scope of this dissertation. Interested readers regarding the anonymity of traces and privacy issues are encouraged to read [29] [30] [31] [32] [33]. The WLAN traces are publicly available for download at [34] [35]. Bluetooth traces are obtained by class students and obtained with consent by participants for research purpose.

3.3 Transforming Network Traces to Encounter Traces

We use the two types of data sets for nodal encounter: Bluetooth traces and WLAN traces. Bluetooth traces reflect the encounters of users carrying mobile devices with Bluetooth communication capabilities. The limitation of Bluetooth traces is the scalability, because the data set is limited to the number of participants willing to run the Bluetooth discovery program. Whereas, WLAN traces can be very large as the centralized system can continuously collect the data via access points belonging to the particular
organization (e.g., college campus). As discussed earlier, we use an assumption that the users who accessed to the same access points (APs) have encounter events. This assumption may not reflect the exact encounter; however, it is close to real encounter considering the users accessed the same APs were at the close proximity of each other and could have communicated each other through the AP.

3.3.1 Bluetooth Encounter Traces

Scale of Bluetooth encounter data is considerably small, compared to WLAN traces due to the difficulty of finding subjects to participate. Some of the available Bluetooth encounter data include the conference encounter [36] and bus encounter [37] [38]. While these data sets may be useful for particular scenarios, we conducted our own experiment to observe general Bluetooth encounter, which matches to the WLAN trace we also collect. Each of graduate students taking the Computer Networking course in 2008 was assigned a PDA (HP iPAQ or Nokia N800/810) and was strongly encouraged to carry the mobile device as often as possible with the Bluetooth encounter collection program running. This program broadcasts the beacon signal every 60 seconds and logs the Bluetooth device information that acknowledges the beacon signal, including the time stamp. This experiment was performed for two semesters (2008 spring and fall) [35], each with different groups of students. Due to the short length of experiment, we observed hourly encounter instead of daily encounter. As Table 3-1 shows, there are 10 and 27 subjects in spring semester and fall semester respectively. These collected Bluetooth traces contain the information of the encountered nodes, namely their MAC addresses and timestamps for acknowledgements.

3.3.2 WLAN Traces

There are many forms of network traces available in public, which can be obtained from [34], including the city of Montreal trace [34] that we use in this paper. To obtain large scale network traces that cover the entire campus over a length of more than one academic semester, we collected campus-wide WLAN traces at the University of
Table 3-2. Format of WLAN traces

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Access Point</th>
<th>Time Stamp</th>
<th>Duration of Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab-cd-34-4d-23-12</td>
<td>lbw343-win-ap1200-1</td>
<td>1201889300</td>
<td>3400</td>
</tr>
<tr>
<td>3a-3d-4f-fe-ca-b8</td>
<td>lbw343-win-ap1200-1</td>
<td>1201889474</td>
<td>1200</td>
</tr>
</tbody>
</table>

Florida (UF, 2007 fall - 2008 spring semester) [35]. We also used the WLAN traces of the University of Southern California (USC, 2006-2009 spring semesters) [35] as in Fig. 3-1. These WLAN traces have the following information - MAC address, associated AP and timestamp for start and end time of association. Based on the assumption described earlier, the WLAN traces are processed to encounter traces that log the MAC addresses of the encountered WLAN devices, timestamps, durations and locations of encounter. Conversion to the encounter trace is a computation and storage consuming process. Given \(m \) inputs in average for \(n \) number of nodes, the computation needed is \(\frac{n(n-1)}{2} \times m^2 \) as it requires the comparison for each input between two nodes to determine the occurrence of encounter and its duration. Therefore, we obtain \(O(n^2m^2) \) for overall computation time in generating encounter trace and \(O(n^2m) \) for the size of encounter trace data. If the original trace is sorted in time sequence, the computation reduces to \(O(n^2m) \) because the comparison for the inputs of two nodes can be performed in sequence of proceeding time. For the size of very large data, which has at least over 28,000 nodes with the inputs ranging up to several megabytes for a monthly data, it is realistic to break down the entire trace by the certain periods for analysis purpose. We analyze the 128 days of data from each trace for the above reasons and consistency in comparison. Further, this specific time span roughly covers the entire semester for both campuses.

Original format of WLAN trace contains much information. To generate encounter trace we only need to use ID of an user, his association time with access points and the ID of access points. Therefore, we process the trace to simple format that contains only the necessary information as shown in figure 3-2. User ID is identified by the MAC address their mobile devices has. Time stamp is the time a user starts to access the
WLAN access point. Each access point has unique identifier that sometimes change after a semester is over. Thus, we investigate each semester separately. Number of access points also increases over time as well. USC trace contains around 200 APs and UF trace contains over 500 APs. Duration of association is the time a user spends at certain APs.

3.3.3 Transformed Encounter Trace

Table 3-3 shows the transformed encounter trace. This format applies to the Bluetooth trace as well, which does not require transformation. Based on the timestamp and AP that duplicate between two mobile nodes, we build an encounter trace with source MAC and encountered MAC. This transformed trace is the trace we use in this dissertation.

<table>
<thead>
<tr>
<th>Source MAC</th>
<th>Encountered MAC</th>
<th>Time stamp</th>
<th>Encounter duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab-cd-34-4d-23-12</td>
<td>3a-3d-4f-fe-ca-b8</td>
<td>1201889474</td>
<td>1200</td>
</tr>
</tbody>
</table>
CHAPTER 4
UNDERSTANDING ENCOUNTER PATTERNS OF MOBILE NODES

It is essential to understand the encounter patterns of mobile nodes for any of the protocols using mobile nodes as forwarding nodes. We analyze the periodicity of mobile nodes and propose heuristic approaches to find regularly encountering pairs. Furthermore, we study the encounter history of mobile nodes. This analysis is the critical basis for designing an encounter pattern model for mobile networking protocols and services.

4.1 Introduction

Mobility and nodal encounters are utilized to deliver messages in intermittently connected delay tolerant networks (DTNs) [2]. Much of DTN research so far has been devoted to the study of message delivery protocols and the design of mobility models. While these studies are essential for eventual implementation of the mobile adhoc networks using DTN concept, understanding of nodal encounter pattern is a critical basis for the success of protocol deployment as delivery mechanism depends on nodal encounter. In this presentation, we explore the periodicity presences in encounter patterns and analyze them. By the spectral analysis of encounter pattern, we find the periodic patterns that are repetitive and discuss their applications later. To achieve this goal of study, we analyzed various types of the Wireless LAN (WLAN) and Bluetooth encounter traces. First, we generate the encounter traces with a reasonable assumption from WLAN traces. Bluetooth traces are naturally encounter traces without the need of any transformation as they log the identification of the Bluetooth device that the subject Bluetooth devices have discovered. However, the scale of Bluetooth traces are limited to the number of subjects carrying the devices with the discover program on. Hence, we use the WLAN traces for scalable analysis of encounter pattern. In order to use the WLAN trace as encounter trace, we use common assumption that had been used by other publications [1] [39], which defines the encounter occurrence in the WLAN
environment as the nodes that are associated with the same access points (APs) in the same period of time. After transformation to the encounter trace, the next step is generating a time series data for the number of metrics, namely, daily/hourly encounter, encounter frequency and encounter duration. We apply the Auto Correlation Function (ACF) to identify the repetitive patterns and perform power spectral analysis to find the distinct periodicities in encounter patterns for each metric. Fast Fourier Transform (FFT) was performed in conversion to frequency domain for computation efficiency and analyzes the frequency magnitude in the spectrum. We highlight the important periodicities by different groups and discuss the utilization of the result in the mobile networks. After analyzing the periodicity, we show some of approaches to extract the periodically encountering node pairs and conclude with the summary and applications.

In the following section, we introduce the methodology to analyze the periodicity along with the encounter traces in section II. Analysis of periodicity for the encountered pairs and individual encounter patterns in WLAN and Bluetooth traces follow in section III. Then, section IV describes the approaches to extract regularly encountering node pairs and discuss the results. We explain about related works in section V, and wrap up with conclusions and summary in section VI.

4.2 Related work

Many of studies on DTN/opportunistic/intermittent connectivity routing were devoted in using the social aspects of networks, such as community, mobility and encounter. Gonzalez et al. [9] has shown that individual human tends to follow simple reproducible patterns based on the cell phone user traces. Hsu et al. proposed time-variant community model [10] that reflects the periodic encounters. Social relationship between mobile nodes were discussed for DTN routing in [4] [5]. Miklas et al. [12] divided human encounters to friends and strangers according to the length of encounter. These works study human encounter pattern; however, we are the first to analyze the periodicity of human encounter extensively by spectral analysis. Prophet [13] is one of the first
routing algorithms using encounter history in DTN [2]. It uses encounter frequency to determine a relay node. The chosen node will forward the message bundle to the encountered node and delegate the responsibility of delivery to the node if the node has higher encounter frequency to the destination node. However, it is unclear how to determine the probability of encounter using frequency. To use encounter frequency for probability, total number of possible encounters should be known, which otherwise could be infinite. Further, it is possible that frequent encounters in short time can mislead prediction of future encounter. Timely-count probability [14] is an idea that regards encounters belonging to the same interval as one encounter; thus, it provides standard procedure to calculate the encounter probability. In our work, we used it for an idea of daily encounter whose interval is a day. Our periodicity and regularity analysis can be the basis to improve the performance of protocols in DTN. Profile-cast [3] is a forwarding protocol to the group of nodes, sharing the same interest. Both profile-cast and prophet protocols can enhance their stability of delivery by incorporating periodic properties of encounter for consistent predictability. Studies for predictability of human mobility and encounter [15] [16] can also be extended by considering different periodic properties as well as worm propagation pattern via human encounter [17] [18]. [8] studied the periodic properties of WLAN users association with access points. They measured the diameter of visited APs for highly mobile users whose maximum diameter within an hour is 100 meters or more from the Dartmouth campus WLAN data. The result showed strong presence of periodicity of diameter, particularly 24 hours for the selected 360 users. This is the closest work to our frequency analysis in that it uses DFT on the time series data to analyze the periodicity of user mobility. [7] analyzed the network traffic and revealed the presence of combination of periodicity in the case of denial of service attacks on the internet. They applied power spectral analysis that applies ACF to the time series data before transforming to frequency domain. This removes sync terms that might appear
for a finite set, therefore, we adapted a similar approach rather than applying DFT to the
data sets directly.

4.3 Understanding Periodicity and Regularity of Mobile Nodes

We discuss the methodology and analysis results in this section.

4.3.1 Methodology

For spectral analysis of the encounter traces, multiple steps are required. In our
work, raw network traces are processed to the encounter traces in the form of time
series data. We apply the autocorrelation function (ACF), and then transform them
to the frequency domain by performing the discrete-time Fourier transform (DFT). To
capture the multiple aspects of encounter behavior, we look into the following variables:
encounter frequency $F_d(i,j)$, daily encounter $E_d(i,j)$, hourly encounter $E_h(i,j)$ and
duration of encounter $L_d(i,j)$, where given n number of nodes, (i,j) is the encountered
node i and $j (0 \leq i < n, 0 \leq j < n, i \neq j)$ and d is a day $(0 \leq d < T)$, where T
is a total length of trace in days. Daily Encounter is a binary process. For each
encounter pair of nodes i and j on day d, $E_d(i,j) = 1$ if at least one encounter event
occurs in day d; otherwise, $E_d(i,j) = 0$. Hourly encounter is the same process as the
daily encounter except the time unit is an hour. Daily and hourly encounter are interval
counting with an interval being a day and an hour respectively. We adapt this idea of
timely-counting [14]. Encounter Frequency is number of encounters a day and denoted
by $F_d(i,j) = \mu$, where μ is the total number of encounter events occurred in day d and
$0 \leq F_d(i,j) < 24 \times 60 \times 60$. Encounter duration is another metric used and denoted by
$L_d(i,j) = \xi$, where ξ is the total duration of encounter event occurred in seconds in day i
and $0 \leq T_d(i,j) < 24 \times 60 \times 60$. The result periodicity patterns for the encounter frequency
and duration appear very similar to the patterns in daily encounter; thus, analysis and
observances for these two metrics are identical.

In both of the encounter traces, the timestamps log in seconds. To better observe
the daily and hourly encounter characteristics, we process the trace data in days and in
Figure 4-1. Example encounter trace for a mobile user with one of the encountered nodes

hours, respectively. As noted earlier, 128 days are the time spans for each of the trace in this analysis. This time spans are also beneficial to the use of Fast Fourier Transform (FFT) in frequency analysis because it requires the length of data to be the power of two. Applying FFT for each semester data enables fast processing of massive encounter data and helps observing distinct characteristics in a finer granularity by preventing the seasonal effect (repeated behavior by each semester) from affecting the result.

Figure 4-1 shows an example encounter trace of a mobile user and its encounter history with one of the encountered nodes for daily encounter metric, $E_d(i,j)$. In the figure, boxed period is the days the two nodes encountered each other, thus, setting a value of one for $E_d(i,j)$. Each user has a number of such traces depending on the number of encountered nodes.

ACF is a measure of correlation between observations at different lags (distances) apart [40], thus providing insight into the stream of data. We use ACF to find the repetitive periodical patterns from the processed time-domain representation of encounter traces. When lag $k = 0$, it compares the data stream to itself, and autocorrelation is maximum, which results in Variance(δ). Given the mean λ of a pair (i,j), we calculate autocorrelation coefficients (autocoefficients) for the pair, $r_k(i,j)$ for each lag $k (1 \leq k < T)$, by computing the series of autocoefficients as in the following:

$$r_k(i,j) = \frac{\sum_{d=0}^{T-k} (E_d - \lambda)(E_{d+k} - \lambda)}{\sum_{d=0}^{T-1} (E_d - \lambda)^2} \quad (4-1)$$
After producing the autocorrelation coefficients, we obtain a result showing periodic trends for certain lags as in Figure 4-2. Yet, several distinct periodicities are hidden and require a further processing. Applying DFT is the necessary process in order to transform the autocoefficients of the time series data to the frequency domain. It produces the power spectrum y_c of the pair (i,j) for each frequency component.
\[c(1 \leq c < T): \]
\[y_c(i, j) = \sum_{k=1}^{T-1} r_k(i, j)e^{-\frac{2\pi i k c}{T}} \quad (4-2) \]

In resulted graphs, each bin in axis-X indicates the number of replicas over the observed period of time in frequency domain, while Y-axis is the frequency magnitude of corresponding frequency component for given trace length of \(N \). In this representation, the sampling rate is \(1/day \) for daily encounter and \(1/hour \) for hourly encounter, naturally the Nyquist frequency becomes \(0.5/day \) and \(0.5/hour \) respectively.

4.3.2 Periodicities in Nodal Encounters

To observe the periodicities of encountered pairs, we compare the average autocoefficient of each lag, which are transformed to the frequency domain.

4.3.2.1 WLAN trace

Given the fact that the majority of the pairs encounter for few number of times, analyzing the encountered pairs without proper grouping could obscure the other significant periodic trends in frequently encountering pairs. To obtain unbiased data, we analyzed the pairs separately according to their encounter rate, more specifically, their daily encounter rate. Result graphs are divided into the two category: rarely encountering pairs and frequently encountering pairs by their daily encounter rate. Let \(D_{rate}(i,j) \) to be a daily encounter rate for a pair \((i, j)\), such that
\[D_{rate}(i, j) = \frac{\sum_{d=1}^{T} E_d(i, j)}{T} \quad (4-3) \]

This daily encounter rate indicates how many days the pair has encountered over the period of \(T \). In the city of Montreal trace, there were no pairs that are \(0.1 \leq D_{rate}(i, j) \) due to its scarcely deployed collection devices (APs) in a relatively large city.

From the Figure 4-3, the large frequency magnitude in Y-axis indicates the strong periodical encounter pattern at the corresponding frequency cycle. It is noticeable that the highest spikes appear at the frequency component of 18, which corresponds to 7 day cycle \(\left(\frac{128}{18} \approx 7.1 \right) \) in most of the cases in the Figure 4-3A with an exception of...
Figure 4-3. Daily encounter: normalized frequency magnitude of frequency components for encountered pairs \((i,j)\) \((0 \leq i < n, 0 \leq j < n, i \neq j)\). Rare encounter:
\[0.1 \leq D_{\text{rate}} < 0.2\]
Frequent encounter:
\[0.5 \leq D_{\text{rate}} < 0.6\] (Montreal trace:
\[0 < D_{\text{rate}} < 0.1\]
Figure 4-4. Encounter frequency: normalized frequency magnitude of frequency components for encountered pairs \((i,j)\) \((0 \leq i < n, 0 \leq j < n, i \neq j)\). Rare encounter: \(0.1 \leq D_{rate} < 0.2\) Frequent encounter: \(0.5 \leq D_{rate} < 0.6\) (Montreal trace: \(0 < D_{rate} < 0.1\))
Figure 4-5. Encounter duration: normalized frequency magnitude of frequency components for encountered pairs \((i,j)(0 \leq i < n, 0 \leq j < n, i \neq j)\). Rare encounter: \(0.1 \leq D_{rate} < 0.2\) Frequent encounter: \(0.5 \leq D_{rate} < 0.6\) (Montreal trace: \(0 < D_{rate} < 0.1\))
Montreal trace. Figure 4-3B shows that the highest spike appears at the frequency component of 2 for the frequently encountering pairs. This implies that the encounter events may have two big waves but it still shows the presence of 7 day cycle. The presence of strong weekly pattern in encountered pairs is an interesting result as [8] showed weekly mobility pattern was not among the dominant trends of mobile users’ mobility diameter. Consider the logarithmic nature of encounter rate that the large number of pairs encountered less than 20 percent of days over 128 days. Existence of weekly pattern for the pairs with low encounter rate is particularly important in message delivery. Choosing a relay node is a hard decision in a case where majority of nearby nodes encountered infrequently with the delivery target. However, the nodes that show the consistent encounter pattern such as weekly encounter with the target of interest, would likely provide more accurate estimation for delivery probability. With the lower error margin, the source node or intermediate node can further calculate the required number of relay nodes to satisfy the given delivery success rate. Moreover, this implies that the threshold criteria can measured according to the importance of message. Although many other message forwarding schemes can be developed based on the periodic encounter pattern, our focus is on the analysis that can provide more basis for such applications. In Montreal trace, outstanding spikes are hardly shown except in the first frequency, which could suggest the burst encounter pattern but the main reason is the very few number of pairs have encountered repeatedly. Note that there were no pairs, $0.1 < D_{rate}$ in Montreal trace. Sparse citywide deployments of the trace collection devices can relate to the low encounter rate among pairs. Besides, low activities and bias in location choices (restaurant, coffee shops) along with spread populations unlike campus environment are thought to be contributing factors. This leads to the question for real world implementation of DTN in large area and it could be an interesting topic to study.
Figure 4-6. Hourly encounter for Bluetooth pairs: frequency magnitude of frequency components for hourly encounter at UF 08 spring/fall Bluetooth trace.
4.3.2.2 Bluetooth trace

We study the hourly encounter for Bluetooth experiment due to the short length of the Bluetooth experiment. The difference from observing daily encounter is granularity of observation is finer. In this experiment, we look at the 256 hours, which is approximately 10 days. Figure 4-6A shows the hourly encounter patterns of encountered pairs with $0.2 \leq D_{rate} < 0.3$. In the Figure, X-axis indicates the frequency of cycles for the experiment period in hours. Given D_{rate} was selected because $0.1 \leq D_{rate} < 0.2$ was unavailable due to experiment length limitation. According to the figure, 24-hour periodicity is strongest in both of the Bluetooth encounter traces. Hourly encounter frequency in Fig 4-6B displays stronger periodic pattern but it is still similar to hourly encounter. The graphs indicate periodic encounter occurs around every 24 hour in average; thus, suggest that most of the encounter events may occur during the similar time span of the day. This 24 hour periodicity in encounter pattern corresponds to the result in mobility diameter study in [8].

4.3.3 Periodicity of Individual Encounter Pattern

The periodicity in the encounter pattern of individual node is even stronger than in the encounter pattern of pairs. Let $D_{rate}(i)$ be a daily encounter rate for a node i, such that $D_{rate}(i) = \frac{\sum_{d=1}^{N} E_d(i)}{N}$, where $E_d(i)$ is 1 if at least one encounter event occurred on the day i and 0 otherwise. Note that peak for weekly encounter in encounter pattern of each node in Figure 4-7A is more distinct than the peak in each encounter pair in Figure 4-7B. This implies that aggregate encounter behavior of each node is more periodical than the encounter behavior of pairs; thus, consistently more predictable. However, for the purpose of message delivery, understanding the encounter behavior of pairs is more useful than studying the encounter behavior of individual node. This is because the source node will make a decision of selecting a relay node based on the information about encounter behavior of the candidate node to the destination node rather than its overall encounter behavior with all nodes. In the figure, periodic encounter pattern is
Figure 4-7. Daily encounter for individual nodes: normalized frequency magnitude of frequency components for individual nodes’ encounter pattern. Rare encounter: $0.1 \leq D_{rate} < 0.2$ Frequent encounter: $0.5 \leq D_{rate} < 0.6$ (Frequent encounter of Montreal trace: $0.2 \leq D_{rate}$)
Figure 4-8. Encounter frequency for individual nodes: normalized frequency magnitude of frequency components for individual nodes’ encounter pattern. Rare encounter: $0.1 \leq D_{rate} < 0.2$ Frequent encounter: $0.5 \leq D_{rate} < 0.6$ (Frequent encounter of Montreal trace: $0.2 \leq D_{rate}$)
Figure 4-9. Encounter duration for individual nodes: normalized frequency magnitude of frequency components for individual nodes’ encounter pattern. Rare encounter: $0.1 \leq D_{rate} < 0.2$ Frequent encounter: $0.5 \leq D_{rate} < 0.6$
(Frequent encounter of Montreal trace: $0.2 \leq D_{rate}$)
most prevalent and consistent in the sequence of daily encounter, encounter frequency and encounter duration at both encounter patterns in the pairs and individual nodes. We also observed periodic encounter occurrence at every 24 hour from hourly encounter pattern in both of the WLAN and Bluetooth traces for individual encounter. Naturally, we can infer that the nodes are penchant to encounter in similar hours of the day each day. Note that in the figure, as the shape of the concave is wider, periodic nature is less accurate or has wider margin of error. The narrower and higher the bell shape of power is, the stronger the periodic property is.

4.3.4 Regular Encounter

To utilize the periodic properties of encounter pairs, it is essential to develop a scheme to discover such pairs in success of forming a network among those nodes. With the transformed data in frequency domain, it is simple to extract the pairs that encounter consistently in a periodic fashion, which we define as regularly encountering pairs. The challenge in regularity is that it can have multiple variables in it. Several trends can be hidden and noise may interfere from observing some of the periodicities. We discuss the several approaches that extract regularity from the traces and present the result for USC’06 trace.

4.3.4.1 Top frequency

The large frequency magnitude at the left most frequency in axis-X suggests that the encounter events are likely occurring at a concentrated time, forming one big wave. Conversely, the large frequency magnitudes at high frequencies in X-axis indicate the more waves existed in the time domain representation, closer to uniform distribution. Therefore, the pairs with strong trend in high frequencies are search of interests - regularly encountering pairs. Although the notable weekly pattern was showing in average, periodicity appears differently by each pair. Figure 4-10 shows cdf of the highest frequency of the encountered pairs in order of frequency magnitude. Right knee in the upper right side of the graph indicates that periodic behavior is stronger for
some of the pairs, suggesting regular encounter activity. Based on this observation, we grouped the pairs that encounter regularly by taking the pairs whose top frequencies are over the knee point (top 20 percent). We plot the APs where the regularly encountering pairs have accessed and overall pairs have accessed in Figure 4-11. It is clear that the location visiting patterns at the time of encounters are notably different in many of the locations. Note that the lowest frequency was not considered in grouping the regularly encountering nodes for the reason that it does not indicate the regular encounter, rather burst encounter.

4.3.4.2 Normalized regular encounter

Taking only the top frequency magnitude may not capture the regularly encountering pairs accurately, because the number of spikes in the frequency graph can be of two or more. This is normal for regular pattern as some of the trend can consist of several minors including artifacts of frequency analysis. For example, cycles at every 8 time unit can cause to have cycles at every 16 time unit. To better capture the regularly encountering pattern while considering the possible noise factors, we observed normalized top frequencies for each pair. To achieve the normalization, the
Figure 4-11. APs accessing preference at USC 06 spring trace for \(40 \leq D_{\text{rate}} < 60\)

Figure 4-12. Ordered location visiting preference by encountered pairs according to daily encounter rate

Summation of several top frequency magnitudes was compared to the summation of all the frequency magnitudes in each pair. We observed that the top 3 frequencies were taking up more than one third of all for the most of the pairs consistently across the different daily encounter rate. Hence, we use the top three frequencies as criteria to extract the regularly encountering pairs. After applying this rule, it appears that the ratio of regularly encountering pairs to the overall pairs differ by the daily encounter rate with
the range being from 0.15 to 0.4. Rare encounter can hardly yield regularity due to its small number of samples. For the opposite reason, frequent encounter often leads to the uniform distribution of encounter, thus, any patterns are hardly noticeable especially in daily encounter.

We first discuss the general trend of location visiting pattern at the time of encounter events. Then, we compare the result to the regularly encountering pairs. In Figure 4-12, the data is sorted according to the number of encounter events in the location. It is clear from the figure that encounter events are skewed to a few locations, thus, the graph showing exponential curve toward highly visited locations. Another observation is that frequently encountering pairs are exhibiting different location visiting patterns from less frequent pairs at the time of encounter events. This implies that the locations with rare encounter events are disadvantaged in message delivery. Now we turn our attention to the trend for the regularly encountering pairs. In the Figure 4-11, the regularly encountering pairs are showing different visiting preference. This different location visiting pattern supports the strong value of using regular encounter pattern. Delivery attempt to the nodes that mainly appear in the location of scarce encounter events may suffer from finding the forwarding nodes that have history of encounter event. Therefore, overload on the network can be expected due to too many number of message copies. In such a situation, 1) using the regularly encountering nodes if the encounter rate is similar, would make more accurate estimation for the number of relay nodes to reach the delivery probability goal and/or 2) the source node has a more chance to discover the nodes that regularly encounter with the target node in some locations. More applications can be developed that use such characteristics; thus, our analysis opens up for more applications and is one of our contributions.

4.4 Temporal Stability of Mobile Encounter

In this section, we investigate the encounter history of mobile nodes and its changes over the period of time from WLAN traces. More specifically, we conduct a
preliminary, yet systematic evaluation of history-based anticipation, by varying the size of the two windows of encounter history - one former and one latter. Practically, we compare encounter patterns in the first part of trace to the later part of trace; and observe how well encounter anticipation works as the size of the encounter history changes. Our findings indicate that encounter patterns of rarely meeting nodes are surprisingly quite consistent in general, whereas frequently encountering nodes tend to be inconsistent. Further, more encounter history appears to help to obtain better consistency in encounter anticipation. Based on daily encounter patterns, the encounter rate difference is generally less than 20% between two windows. Encounter rate difference is even smaller (less than 10%) for regularly encountering pairs.

4.4.1 Stability Window of Encounter History

Knowledge about the past encounter pattern between two mobile nodes can be beneficial in Encounter prediction can be beneficial in message bundle delivery especially in a situation where mobility is not random. Proper use of encounter history can be helpful in prediction of encounter in case the future encounter may base on the past encounter. For this reason, there are multiple literatures proposing routing protocols using encounter history (or contact history as similar terminology) [4, 5, 13, 14]. In-depth analysis on encounter pattern can help the routing protocols to operate more efficiently by sophisticatedly selecting the relay nodes. To help in routing, we investigate the encounter stability, which shows the temporal change of encounter pattern. We believe understanding of encounter stability and its relationship to encounter prediction is a key in developing an appropriate contact pattern modeling of mobile nodes and routing scheme that uses the mobile nodes as forwarding nodes. To analyze the encounter stability in large scale, we investigate wireless LAN usage of 10,000 sample mobile nodes from the University of Florida (1 Jan 2008 - 3 Mar 2008) and University of Southern California (9 Jan 2006 - 11 Mar 2006). These sample nodes were chosen randomly among around 20,000 nodes at USC and 50,000 nodes at UF.
Figure 4-13. Window of encounter history

To observe the difference between the first part of the encounter history and the latter part of the encounter history, we divide the encounter history of each pair to W_1 and W_2 from the original encounter history window as in Figure 4-13, where both parameters indicate the size of the window in each of first and second period respectively. We compare the difference of daily encounter rate for encounter pair (i,j) between two periods W_1 and W_2, by providing $Diff(i,j) = |D_{rate1}(i,j) - D_{rate2}(i,j)|$, where $0 \leq D_{rate1}(i,j) < 1$, $0 \leq D_{rate2}(i,j) < 1$. To see the various trends by the encounter rate, we first categorize the encounter pairs to five groups according to their daily encounter rate and look into their average $Diff(i,j)$, where $0 \leq i \leq n$, $0 \leq j \leq n$ and $i \neq j$ for each group.

4.4.2 Consistency of Encounter Pattern

Figure 4-14 shows the average difference of the daily encounter rate in each of UF and USC trace according to the different dates of the break point, t_d, for the first window. Each graph shows the change of $Diff$ according to the length of encounter history, W_1. Specifically, the X-axis indicates the size of the first window W_1 in days, while the Y-axis is the average difference of encounter rate between the two windows W_1 and W_2. The size of the second window W_2 was set to 21 days to compare the encounter rate of three weeks period. Bigger size of the second window W_2 was discouraged as it overlaps with the spring break period, which by the observation affects the result meaningfully. Thus, we observed the results before the spring break time for both of the UF and USC campus to observe the trend without the interference of significant social context. The figures show that $Diff$ becomes smaller as we have more encounter history. This indicates that more history in the first window would yield the better
Figure 4-14. Average difference of the daily encounter rate at UF and USC campus according to the change of break point for the first window.
consistency in encounter pattern. We can infer from this result that more knowledge on the encounter history in general leads to higher consistency in anticipating the encounter rate in the second window. Another interesting trend is \(\text{Diff} \) is greater for the groups with more daily encounter rate. In Figure 4-14, different lines refer to different daily encounter rates. For both UF and USC trace, it shows that the encounter rate of the frequently encountering pairs are likely inconsistent in terms of daily encounter rate. Note also that \(\text{Diff} \) was smallest in general when \(t_d = 28 \) for the same size of encounter history \(W_1 \) at both of the UF and USC traces. This implies that consistency of the encounter rate can change depending on the break point of the two windows.

Now we move on to controlling the size of the second window. Figure 4-15 shows the average difference of the daily encounter rate according to the change in the size of the second window. In all of the figures, the size of the first window corresponds to the \(t_d \). For instance, \(W_1 = 14 \) when \(t_d = 14 \) as we observe the encounter history from the first day of the trace. Each graph shows the consistency of encounter rate between two windows according to the change of the size in the second window for given size of the first window. We can see from the figures that encounter consistency drops slightly, particularly for the groups of pairs with higher encounter rate. This trend is stronger with more history in the first window where \(t_d = 21 \) than less history where \(t_d = 14 \). In case of UF trace with \(t_d = 14 \), it appears that consistency of encounter pattern becomes better as the size of the second window grows. It is an interesting trend as in general the consistency is expected to drop due to short length of previous history to compare. We think the starting date of the trace may play a role in this unique trend as the starting date of the UF trace (Jan 1) does not match to the starting date of the class date. It is uncertain at this point, what plays a role in generating such a different trend from other traces. We learn from this study about the varying size of the second window that with short encounter history in the first window, the consistency in encounter pattern can be
unpredictable. With larger encounter history and proper break point ($t_d = 21$), encounter consistency decreases as the size of the second window grows.

4.4.3 Application of Encounter Stability Analysis

Knowledge on consistency of encounter behavior can be beneficial for developing an intelligent message bundle delivery system, particularly where encounter patterns amongst mobile nodes are not random. Proper use of encounter history can be helpful in measuring consistency of encounter pattern. For this reason, there are multiple
Average difference of the daily encounter rate at USC campus according to the change of size for the first window of encounter history

Literatures proposing routing protocols using encounter history; however, in-depth analysis on the encounter patterns according to the differences in encounter history has been in need to devise a sophisticated protocol that reflects the real encounter pattern. Our analysis provides a basis for developing protocols that utilize encounter history for determining relay nodes as well as efficient buffering and caching in the forwarding mobile nodes.

4.4.4 Comparing Regular Encounter to Non-regular Encounter

We shall investigate the encountered pairs regarding their consistency of encounter pattern. We use the approaches we propose in above section to find the regularly encountering pairs from the first part of the encounter history. We also use a new approach that divides the first window of encounter history to several pieces to see the consistency in them. In this new approach, encounter consistency is compared within the first window and we select the regularly encountering pairs from the pairs showing more consistency in the first window.
We compare the regularly encountered pairs with the non-regularly encountering pairs. By definition, regularly encountering pairs are much more likely to maintain consistent encounter each other than irregular pairs on a regular basis. We used the new approach of selecting the regularly encountering pairs by the evaluation of consistency for the two divided windows in the first window. Encountered pairs with less than 0.5 of difference in these divided windows were chosen for regularly encountering pairs. The rest of the encounter pairs were considered irregularly encountering pairs. In Figure 4-16, we observe the overall consistency between two windows and compare between regularly encountering pairs and non-regularly encountering pairs. We look at the pairs with at least one encounter event for both of the regular and non-regular cases. It shows that the regularly encountering pairs have significantly better consistency over the irregularly encountering pairs. Regularly encountering pairs show the average difference of encounter rate between the two windows is around 0.1, which is surprisingly consistent. Whereas, the non-regularly encountering pairs show relatively large inconsistency with an average of 0.3 at the different of encounter rate between two windows. This implies that the regularly encountering pairs in the first period of the trace tend to maintain similar encounter rate in the second period. Note that the pairs with very low encounter rate can skew this overall trend. Further analysis in the future to this result is observing the encounter consistency by the groups of different encounter rate.

4.5 Long-term Bluetooth Trace Analysis

In this section, we analyze the long-term Bluetooth contact trace of a mobile user. An anonymous mobile user carried our Bluetooth contact-measuring device over 6 months period and we analyze the individual encounter data. Note that this data includes the Bluetooth contacts occurred during the mobile user’s travel. Therefore, while this data does not reflect the accurate description of user’s contact behavior in one location, it captures overall contact pattern regardless of location.
Figure 4-17 shows the time series data for the mobile user's Bluetooth encounter. All the metrics (encounter days, frequency and duration) show similar trend in peaks.

Figure 4-18 shows the CDF for the size of encounter days, frequency and duration. It shows around half of encounter events belong to very low magnitude. About 5% of the encountered nodes throughout all the metrics show high degree of encounters.

In the figure 4-19, spectral analysis shows that periodical pattern is not as strong as shown in WLAN trace analysis and short-term Bluetooth analysis. Particularly, encounter duration shows very weak periodical pattern. Possible reasons could be a break period such as vacation, summer break and international travel. We learn from
this analysis that periodicity may change over time and may yield different result than short-term analysis.

4.6 Conclusions and Future Work

We investigate a WLAN trace and Bluetooth trace to discover periodicity of mobile encounter pattern. Our analysis shows that spectral analysis can apply to analyze the periodicity and the result shows that weekly encounter pattern is strong over most of the traces. We also show the stability of encounter pattern over a semester period and show the difference of encounter pattern over time. Encounter rate difference between the first period and second period increases as the size of the window increases. In our long-term Bluetooth contact analysis, we analyzed over 180 days of trace for a single mobile user. It appears that periodicity is weaker than WLAN trace and short-term Bluetooth trace. This shows that an observation for a short period can differ from a
Figure 4-19. Spectral analysis of long-term Bluetooth encounter for each metric

long-term period. Future work includes the application of using these periodic properties in mobility prediction [41] [42] [43]. Overlay networks amongst the periodically contacting pairs is one direction to study as an application. Another application is anticipating the user’s contact with certain nodes based on regularity and stability of encounter pattern for the pair.
CHAPTER 5
CAPTURING AND EMBEDDING PROFILES OF MOBILE NODES

In the previous chapter, we have analyzed the encounter patterns of mobile nodes. Result of such analysis informs of group behavior analysis of encounter patterns. We discuss the idea of capturing periodic properties from mobile users’ contact pattern. We then discuss the encounter community profiles of mobile nodes and their community pattern. Our goal of encounter profile creation for mobile nodes is to emulate human behavior in terms of community based encounter pattern.

5.1 Introduction

Mobility profile of the mobile nodes can be an useful in message delivery for deciding targets of the message when there are multiple recipients in profile based protocols such as profile-cast [3], bubble-rap [5] and social aware networking [4]. Those protocols use the profiles of similarity in location visiting preference and community property constructed based on the similarities in location visiting preference. Our work focuses on capturing periodic human encounter pattern and their community distribution. Location-based profiling has been studied but encounter based profiling has rarely been studied, particularly focusing on periodic properties. Encounter pattern is important information for encounter pattern modeling and message propagation system, where location information is non-existent. For instance, Bluetooth encounter history does not have location information without the help of GPS or WLAN access record with APs. Both of GPS and WLAN quickly consume the battery of mobile devices; thus, having the Bluetooth or short-range communication device for this specific communication will have an advantage in battery consumption. Besides, there are frequent occasions or many places where location information is unavailable (i.e. inside a building where GPS does not work and APs are not installed). Moreover, message delivery or actual encounter between mobile nodes should occur when they are in proximity of wireless communication. Encounter event may not occur even if two nodes are accessing the
same location unless they are in close proximity. Therefore, study on the encounter pattern excluding location information has several advantages over location-based analysis.

5.2 Related Work

Profiling of mobile users was studied in many literatures based on user mobility [44] [45]; however, little effort has been made for profiling based periodicity of contacts. We use spectral analysis [46] to reveal the periodicity and group mobile users based on periodical contact pattern. With an understanding of human contact pattern and their periodic properties, we capture most important characteristics and show that it can replicate the real-world contact pattern in terms of periodicity. Community structure in mobile users has been critical subject of study [47] [48] [49]; yet little is known. Revealing and capturing community structure are important works as community information can be used in interest-based message forwarding [3] [50] [51] or finding critical nodes for data propagation [5] [52]. Researchers showed that mobile users’ mobility could be grouped into communities. The distribution of group sizes by hierarchical clustering appeared following a power-law distribution in [1]. We define encounter vector and analyze encounter trace to find communities in encounter pattern. We also apply the hierarchical clustering to the mobile users’ contact pattern and discover the existence of power-law distribution.

5.3 Modeling Encounter Periodicity with Profile

With the properties of encounter pattern discussed above, we propose the encounter model for mobile nodes. TVC model provides the input of periodicity among mobile nodes. However, TVC model does not generate the periodicity of encounter pattern that emulates the observed encounter pattern. Instead, it takes the community structures found from the mobility traces. With a basis on the understanding of individual encounter periodicities, synthetic trace that emulates the real-world human encounter pattern can be constructed (i.e. reflecting the notable weekly encounter pattern). There
Figure 5-1. CDF of top 7 maximum frequencies from the 2000 sample pairs with daily encounter rate between 0.2 and 0.4 for 128 days of UF 07 trace

are two types of implementation of periodicity generator: 1) Periodicity of individual encounter pattern that reflects overall statistics of individual encounter 2) Periodicity of encountered pairs. There is a trade-off in each type of trace generator. The first type generates a trace data with overall individual encounter pattern. This reflects the periodicity of encounter; yet, it is limited to individual encounter pattern. The second type generates the periodicity for each encountered pair, which emulates the closely real-world encounter events. However, implementing periodicity for each encounter pair incurs cumbersome implementation.

Figure 5-1 shows the CDF of top 7 maximum frequency from the 2000 sample encounter pairs for 128 days. In the figure, the knee also appears for 9% of all frequencies which indicates roughly 7 frequencies out of 63 are dominating trend. This implies that top 7 frequencies can be used as a signature frequency for periodicity vector. This saves the size of vector from 63 to 7. As top 5 locations were chosen in mining based on location visiting preference work [1], periodicity vector can be built
accordingly to represent the periodicity of pairs. We leave the actual construction of vectors to future work.

5.4 Discussion of Routing Based on Encounter Profiles

In this section, we discuss the future application of periodic properties. Actual implementation using periodic properties is out of scope. We describe the details of how implementation can be done only. Encounter consistency may differ by the encountered pairs. Our results show that the encountered pairs with consistent encounter rate in the first window are likely to keep the similar encounter rate in the subsequent window. Assuming the encounter history in the first window is the past events and the break point is the current time where routing decision is made, the second window of the encounter history is translated into the future encounter. In this scenario, consistent encounter pattern in encounter history infers that the future encounter pattern is also likely consistent to the encounter history. With this idea, routing decision of selecting forwarding node can be made by looking at the encounter history and its consistency for finding consistent encounter pattern. In addition to the consistency of encounter pattern, encounter probability is calculated based on the encounter history. Prophet uses the encounter count for next encounter probability based on encounter history for finding relay nodes of a message bundle. However, how to calculate the probability of encounter is unclear. For instance, encounter count can have burst pattern that yields biased results in probability. We overcome this problem by using binary time unit. We divide the time series data according to the defined time units depending on the scenarios. For instance, hourly encounter is a time series data with time unit of an hour with a value of 1 in the presence of encounter event within an hour. Different time units can be appropriate depending on the scenarios. Selecting the regularly encountering nodes is a critical decision in this routing scheme. The irregularly encountering pairs may not be appropriate for probability calculation because their encounter history is inconsistent; thus, their future encounter is unpredictable. Furthermore, the randomly
encountering pairs are also not good candidates for message forwarding as their behavior can not be estimated. Therefore, interest of calculating probability based on the encounter history lies in the regularly encountering nodes. How much of non-regularly encountering pairs should be factored in decision differs by scenarios.

Figure 5-2 shows an example scenario of a network with links weight decided by the strength of regularity. Application of this network can be periodical news, information or electronic coupon to the subscribers via the regularity based overlay networks. Using MobiTrade [22], the data can be shared with incentives for sharing more data via this overlay networks. This overlay networks can also be used in establishing the level of encounter based trust such as PROTECT [29] [30] [31] by augmenting the encounter based trust metric with the addition of periodicity metric.

5.5 Community Profiles of Mobile Users

In this section, we discuss the clustered behavior of mobile nodes from real-world traces. Profiling mobile users based on location-visiting preference was introduced in [1]. Our analysis is performed for contact behavior of mobile users. We first describe the previous finding from the location based profile work, and explain the approach to
discover contact based profile. Then, we compare the results to reveal the power-law distribution in group (community) sizes from both types of profiles. These profiles can be embedded on autonomous nodes. Examples are shown in Fig. 5-3. In our implementation for autonomous mobile nodes, power-law distribution that we discover from both types of profiles is used to assign community IDs. Note that only the analyzed result (i.e. power-law distribution) is used in this work instead of embedding either type of profiles directly though they can be embedded in our testbed. Complicated community structures such as overlapping community model is studied in [53] [54], however, community modeling is not out of scope in this dissertation.

5.5.1 Location Visiting Preference

[1] shows that mobile users can be clustered by their location-visiting pattern. Behavioral signature of location-visiting preference for a mobile user can be built by an association matrix as in Fig. 5-4 (courtesy of Hsu [1]). For each day \(i \), each row saves the duration of time at each location \(j \). Percentage of time spent in each location \(j \) is put in each column of the matrix. Each matrix is condensed to a vector representation.
Each row represents the percentage of time spent at each location for a day.

An entry represents the percentage of online time during time day i at location j.

Each column corresponds to a location.

Figure 5-4. Location based association matrix for each mobile user (courtesy by Hsu [1]) of most significant behaviors by performing Singular Vector Decomposition (SVD).

Similarity score is produced for the encountered nodes. Each node can make a decision based on this similarity score whether the encountered nodes show similar behavior to a target group. Profile-cast [3] uses this location signature for delivering messages to target group of nodes. If implemented on robots, they can build the same association matrix by collecting its own location-visiting information. Profile-cast was implemented on Nokia PDA; therefore, it is directly usable in our testbed without further modification.

5.5.2 Encounter Vector

To analyze encounter pattern of mobile users, we define an encounter vector. An encounter vector, V_i, for user i, represents an encounter behavior of the mobile user i with all other nodes. Specifically, each element in a encounter vector indicates a ratio of encounter in days with a mobile user. Note that different metrics such as encounter rate or duration can be used but we use encounter days [46] in this work. For mobile user, i, total days of encounter, T_i is calculated as in the following (5–1), where M is a number of total nodes, N is a number of total observed days in trace and $E_d(i,j)$ indicates a binary process of encounter between a node i and j in a day d.
Using the sum of total encounter, Encounter vector, V_i, is formed in the following way to reflect the ratio of encounter with each node:

$$V_i = \left\{ \sum_{d=0}^{N-1} \frac{E_d(i, 0)}{T_i}, \ldots, \sum_{d=0}^{N-1} \frac{E_d(i, M)}{T_i} \right\}$$ \hspace{1cm} (5–2)

Now we analyze the real-world trace using this vector representation of encounter. USC 06 and UF 07 traces [35] are used for analysis.

In [1], the mobile users show power-law distribution in size of groups with hierarchical clustering according to their location visiting vector as shown at log-log scale representation in Fig. 5-5. We also apply the same hierarchical clustering to mobile users’ contact pattern based on proposed encounter vector. The result shows the size of ranked groups for contact pattern also follows power-law distribution as shown in Fig. 5-5. Specifically, slope of -1.48 reflects the distribution of contact based group sizes. In the following section, we explain how to implement self-decision making mobile nodes while following this community distribution pattern. With this understanding of community distribution, we introduce the process of embedding community information according to power-law distribution.

5.6 Conclusions and Future Work

We discuss the profiling process of mobile users based on periodicity of contact. We describe the process of generating a contact periodicity that matches to real-world statistics. In addition, we define encounter vector and show that real-world contact pattern in groups follows power-law distribution in terms of rank group size, which is the pattern observed from grouping by location visiting preference. Future work includes exploring more properties of community exist in social contact pattern such as communities based on contact duration or frequency. Selected groups (i.e. highly
Figure 5-5. Ranked size of groups after grouping by hierarchical clustering for campus traces. Both graphs fit a power-law pattern for the size of groups.
active users) can be grouped separately. Studying community groups based on location visiting preference and encounter pattern to see the similarity and difference will provide valuable knowledge in understanding community structure of mobile users’ society.
CHAPTER 6
DESIGN OF A MOBILE SOCIAL NETWORKING TESTBED

6.1 Introduction

Recent advances in mobile networks brought marriage of social and mobile networking, which is going to constitute the future frontier with the proliferation of smartphones. Growth of mobile social environments requires appropriate networking protocols and services using human social pattern. To evaluate such protocols and services, it is essential to have a large-scale and realistic testing environment, including simulations and testbeds, which incorporate various aspects of mobile user behavior.

Toward tackling these challenges, we introduce a novel mobile networking testbed, where autonomous mobile nodes collectively mimic human community contact pattern. Specifically, we discover power-law distribution in group sizes from contact pattern and use it for contact profiles. Furthermore, we develop several contact rule-based decision criteria for autonomous mobile nodes. Our simulation for 1000 mobile nodes shows that mobile nodes can match human community contact pattern. In addition, we implement a prototype testbed by embedding the same decision criteria on mobile robots. To the best of our knowledge, our work is the first to embed community information from real-world data analysis on autonomous mobile nodes, in either simulation or testbed.

Our findings provide opportunities for building realistic testbeds with autonomous mobile nodes for various types of mobile social networks and services. With proliferation of mobile devices and social network services, it is important to have an environment to test new networking protocols and services using mobile users’ mobility. Realistic mobile networking testbed is important for such a mobile networking environment as breakdown of links due to mobility creates challenging issues both for Mobile Adhoc Networks and wireless sensor networks [55]. Towards realistic testbed for mobile networks, we address the following three key challenges: 1) Testing environment should support realistic movements of mobile nodes based on real-world mobility data. Particularly,
we intend to capture mobile users’ community-based contact pattern. 2) Autonomous mobile nodes make their own decisions while emulating human mobility. Existing testbeds are limited to random mobility and predefined paths. Other simulation and mobility models can capture realistic human mobility; yet, they require having global knowledge, including location of other nodes. This knowledge may not be available to every node in a real mobile networking environment. Hence, mobile nodes need to be able to decide their own movements based on available information in real time. 3) Both of simulation and prototype implementation on real mobile nodes should be available. Simulation provides easy adjustments for experiment parameters and profiles of mobile nodes along with visualization. On the other hand, prototype implementation shows the feasibility of deployment. Note that we interchangeably user the term, contact, encounter and meeting, all in the same context of physical closeness that is sufficient for direct wireless communication (i.e. Bluetooth discovery) as in [46] [16] [56] [57].

Existing mobile networking testbeds use robots, emulation or mobility modeling to deploy mobile nodes’ mobility [24] [23] [26] [27]. Robots are deployed in random mobility or predefined paths. Emulation of robot movements follows the same criteria and requires to have location information. Modeling needs global knowledge of node location to generate mobility and contact statistics. To deploy on the autonomous mobile nodes that collectively mimic mobile encounters in real world, it is essential to have a mobility profiles and self-decision making criteria for each node. This approach enables to embed the algorithm both on simulated mobile nodes for large-scale experiment and on physical mobile nodes (i.e. robots).

In order to achieve this goal, we develop contact rule-based decision criteria that are embedded on each mobile node to make a mobility decision for themselves upon contacting other mobile nodes. Furthermore, we investigate real-world network trace to reveal the community distribution based on contact pattern. We discover power-law distribution for the size of groups from community contact pattern, and
Figure 6-1. Bridging the gap between the emulated controlled environment (network of robots) and the non-controlled chaotic real mobile world (participator networks). Both environments are connected via mobile devices that enable communication between these environments. Robots move with mimicked human mobility, thus, emulating real chaotic world without needing to recruit human participants.

assign community information to the mobile nodes accordingly. In addition, we embed a scheduler to emulate periodical contact with community members. Finally, we evaluate with multiple metrics including contact days, frequency and duration compared to real-world contact pattern that is processed from campus network trace.

Another part of our work is a proposal of novel idea for a realistic mobile networking testbed that can blend a network of robots and participatory networks. The concept of bridging two different environment of controlled and uncontrolled was discussed in our earlier work [58] and shown in Fig. 6-1: 1) A network of robots is a swarm of robots that roam around with wireless communication devices for opportunistic communication. 2) Participatory network is a network space where participants in the experiment carry the mobile devices as human cohorts.
Both of these environments have limitations: In a network of robots, robot mobility is often limited to the lab environment space. Moreover, current testbeds support random mobility and predefined mobility paths, which are unrealistic to emulate human mobility. Participatory network is an ideal form of testing environment if sufficient size of target population is willing to cooperate in the experiment. However, it brings issues of recruiting appropriate participants and control of human cohorts, particularly if the sample size is big. To bridge the gap between these two types of the testbeds and take the strengths of both, we propose to embed a personality profile on the robots. Specifically, it can contain the rule-based decision criteria and community profile information on the robot mobile nodes. We provide implementation details of this bridging effort using iRobot Create and Nokia PDA, which is a prototype of mobile social networking testbed.

Our main contributions in this work are 1) designing a contact rule-based decision criteria for autonomous mobile nodes in both of simulation and robots; 2) applying a real-world community data on the mobile nodes that emulate collective group behaviors; 3) proposing a novel architecture of realistic mobile networking testbed that bridges the gap between controlled testbed (networks of robots with fixed mobility) and uncontrolled testbed (participatory testing); and 4) implementing a prototype for the network of autonomous robots.

6.2 Related Work

There are three parts of related works: 1) analysis of human behavior, 2) participatory networks, and 3) mobile networking testbeds.

6.2.1 Analysis of Human Mobility

Related subject of human behavior research in relation to networking is social behavior of human mobility. Several networking protocols using communities and social behavior have been proposed including Profile-cast [3], SimBet [4], BubbleRap [5], PRO [50], SIMPS [59] and SANE [60]. The results in these works were evaluated via
random mobility simulation and real-world trace. Experiments on simulation or testbed using autonomous mobile nodes can provide extended testing environment for such protocols. To create such an environment, it is critical to understand human mobility and their social interaction pattern. Using real-world networking traces, many studies focused on finding inter-contact time and location visiting pattern of mobile users to use in modeling human mobility and its social interaction pattern [28] [9] [16] [12] [15] [61]. Research findings from these studies are foundations of creating a testbed that takes human-like interaction between mobile nodes. Yet, it is unclear how to adapt the mobility models on the autonomous mobile nodes, which do not have knowledge of location of other nodes. Our profile-based approach and self-decision approach is unique in that it can be implemented in a distributed fashion without global knowledge. This enables implementation of the algorithm on mobile robot nodes without significant modification.

The other pattern we apply in our work is periodical pattern. Periodical pattern was observed at aggregate location access pattern for WLAN access points and captured for modeling in various works [47] [8]. It was studied that individual and pair-wise contact pattern shows strong periodical trend via WLAN and Bluetooth trace analysis [46]. Following this trend, we use a scheduler that assigns on-time of mobile nodes based on this periodical contact pattern.

6.2.2 Mobile Networking Testbeds

Our implementation part of network of robots lies within the area of mobile networking testbed. Profile based approach can be implemented and augmented to the existing mobile testbed by embedding the mobility profiles. iRobot is programmable robot for research purpose that is originated from Roomba vacuum robot. It has been used in several other testbeds and we also use this robot in the implementation of the testbed as a mobile node. Several mobile networking testbeds use robots as mobile nodes. MiNT [23] is a miniaturized network test-bed solely using iRobots in a controlled space. A server computer controls the movements and communication amongst iRobots.
that are equipped with WLAN. Although this test-bed can expand with multiple numbers of iRobots and be effective in experiment for small-scale mobile adhoc networks, it still suffers from scalability and diversity of nodes. Roomba MADNeT [24] showed capability of using iRobot for DTN. They mounted a wireless router that runs on Linux by connecting via modified serial cable. This process may take advantage of costumed lightweight programming board to utilize wireless communication feature, specifically for the testing purpose. However, this process can be tedious and cumbersome to many of researchers who are not skilled in this area. Our method is simple and uses the existing device. Connection requires the minimum step and effort: either Bluetooth pairing or connecting a serial cable directly with a distant or attached computer. MeshTest Wireless Testbed [25] is another DTN test-bed. They use enclosures to contain the laptop computers and measure the signal attenuation for implemented DTN protocol. The design is centralized and users can view the wireless nodes moving around from the server computer. Mobility is limited to controlled environment, as the participants are to follow the given paths and required to be in the experiment range. In our presentation, nodes can have complete control of their movements including message propagation decisions. Moreover, measurements are decentralized in our experiment, as each measurement record is kept inside the mobile nodes. SCORPION [27] incorporates various mobile devices. They use 20 iRobots along with a toy airplane and several vehicles to test various types of mobility. They carry the specifically designed DTN devices test the communication protocols via WLAN and Bluetooth. Random mobility is applied for robots and toys. Other carriers move in a designed direction. Thus, it can test the performance of DTN protocols with controlled mobility. Our design philosophy can also be incorporated to this testbeds. SCORPION differs from our testbeds in that we use common devices that are carried by normal human for communication and controlling robots. The other unique feature of our testbeds is that we use profiles to emulate real human mobility with freedoms of profile modification. In addition, our
participatory testing environment allows anonymous human subjects to participate in the testing. Our community contact rule-based decision criteria for mobile nodes to make mobility decision was influenced by Plausible mobility [62], which infers mobility trace from encounter trace. Pursuit-evasion game in robotics [63] has two groups of mobile nodes - pursuers and evaders. Our rule-based decision criteria also have two group of mobile nodes - friends and strangers.

6.2.3 Participatory Networks

We define participatory Networks as a network where voluntary human participants who use mobile devices communicate via mobile devices. Original concept is inspired by the participatory sensing project [64]. Participatory sensing has been widely deployed, including CenceMe [65], Micro-Blog [66] and PEIR [67]. We use a similar idea in our Bluetooth discovery program as it collects the information for encountered devices as a sensor. Similar experiments were performed in [38] [68]. If conducting an experiment with participants, it is an ideal participatory testing environment for the protocols and services that use human mobility for message propagation. Participatory testing was partially investigated via our own Bluetooth trace collection program as well as CrowdLab [69]. In CrowdLab, virtual machines run guest processes developed by researchers on the volunteer’s phone. This enables an idea of participatory testing to some extent. Other attempt along the same line is PhoneLab [70] where authors attempt to build an environment with a thousand phones to provide usable space for testing kernel level communication protocols.

The main strengths of profile based mobile testbed as compared to other mobile testbeds are autonomy of participating subjects and replication of personality. Critical feature of our testbed is that human mobile nodes can be emulated by embedding human mobility profiles onto a network of robots; hence, we provide a controllable environment in our testbed. This is particularly useful when researchers want to experiment for certain target human profiles. Further, profiles and mobility decision
criteria is interchangeable between simulation and implementation. Hence, large-scale experiment that is difficult to perform with mobile devices can be simulated. Additional advantage of our testbed is that it can operate on top of the other testbeds; thus, researchers can take advantage of existing testbeds while enhancing its performance with the functionality of our testbeds.

6.3 Testbed Architecture

We aim to build a mobile networking testbed that can integrate controllable experimental environment with uncontrollable crowd sourcing environment. In this section, we discuss the design of prototype testbed using robots. We first describe autonomous mobile nodes that are used for both in simulation and prototype implementation. Then, we discuss the implementation details.

6.3.1 Autonomous Mobile Nodes

Autonomous mobile nodes are mobile nodes that make mobility decisions independently upon contact events. The mobile nodes do not have global knowledge of other nodes. They scan nearby area via wireless signal. Upon discovering other nearby nodes, the mobile node either makes another mobility decision or establishes communication with encountered nodes. To collectively mimic human contact patterns, it is critical to understand group contact behavior of human. We extract contact patterns from real-world network trace and analyze the group (community) behaviors by clustering mobile nodes based on contact pattern. Community distribution pattern is applied to mobile nodes as their profiles, namely, community identity information. Mobile nodes, upon encountering other nodes, look up the community information and make a decision based on pre-configured rules. This resembles human mobility and its decision making of mobility. We describe this investigation of real-world community contact pattern and rule-based decision criteria in the later section in detail. Note that this rule-based decision criteria and community information are embedded for both of the robots and mobile nodes in simulation.
Figure 6-2. Picture of iRobot, its controlling Nokia N810 PDA and human carrying Nokia N810 PDA

6.3.2 Network of Autonomous Robots

In the network of autonomous robots, robots freely move around while emulating the movement of humans. Its mobility is decided by embedded rule-based decision criteria and community information (ID) of contacted nodes. This rules and community ID are programmed into the mobile devices, which we call as a personality interface that makes the decision and controls the mobility of robots. We choose iRobot Create for implementation. The controlling mobile device in this implementation is Nokia N810 PDA but any other devices with Bluetooth can be used (i.e. Android, Windows Mobile). The personality interface in the mobile device can send commands to iRobot via Bluetooth. We mount the controlling devices on top of the robots by simply putting on the iRobot. In this setting, we take advantage of massively produced and popular mobile devices that are cost effective for their capabilities compared to specifically designed hardware for research purposes. Moreover, because both of the robots and
humans carry the same type of mobile devices (i.e. Nokia PDA), it is feasible to use the same communication protocols between them. Our prototype implementation is shown in Fig. 6-2. Demonstration video is available online at [35] to show the mobility according to contact rule-based decision. Note that although we implement a prototype of a network of autonomous robots, our focus is on a novel idea of realistic mobile networking testbed. This includes understanding and grouping of human contact pattern and a heuristic rule-based decision algorithm that collectively emulates community behavior without location information of other nodes. We discuss more implementation details on robots in Section 7.

The only difference of mobile device at between robots and humans is that robot-controlling device runs an personality interface process in background. Bluetooth discovery program runs on mobile devices to search for other nearby Bluetooth devices and find out their community IDs. The communication structure between mobile devices on robots and human is illustrated in the Fig. 6-3.

6.3.3 Participatory Testing

The other part of the design is participatory testing. Network of Robots is limited in scalability at both the number of nodes and size of the space because of costs and difficulty of deployment in the large space. Therefore, robots may show limited and unrealistic mobility. By using crowd sourcing, we can enhance the testing environment significantly at both of the criteria. Participatory testing is a novel idea that uses human society as testbed. Human cohorts who are voluntary participants in experiment of networking protocols are crowd source in this testbed. Participants can download and install the networking protocols to their devices and carry them around. With proliferation of smartphones these days (e.g., iPhone, Android), it is easier to seek for human cohorts.

We conduct an experiment with small set of human subjects and seek to explore the potential of participatory testing in mobile networks. Specifically, we recruited graduate
students taking a computer networking course in computer science over two semesters. Each human subject carried either HP iPAQ (fall semester) or Nokia N800/810 (spring and fall semesters) on campus. Bluetooth discovery program ran in each of mobile device and recorded Bluetooth encounter every 90 seconds. Even though more human participates in fall semester, more records are collected in spring semester because of longer length of experiment. Whereas, more unique number of devices are encountered in fall semester. It is worth noting that a few participants (less than three in total) fail to record properly due to misuse of devices or their schedule to go out of town. We
learned from our experience that even small-scale experiment requires extensive effort to educate the participants and we may still expect a few exceptions.

Encounter measurements have been performed by multiple research projects such as MIT’s Reality Mining [61] and Haggle projects [38]. Yet, the total numbers of participants was limited to less than a hundred. Researchers used WLAN trace as an indirect way of measuring encounters [1, 39] because of its large sample size. We overcome this scalability issue by publicly recruiting human subjects. Specifically, we create a public community for the testbed so users can download the programs to participate in the test. These participants form a large testbed. To achieve this goal, it is essential to develop a programmable interface to make the testing easier. We implemented communication programs on the Windows Mobile-based (HP iPAQ) and Linux-based MAEMO (Nokia N810) smart phones.

Many scenarios and protocols can be tested through this participatory testing, including the DTN routing protocols based on social models. The Profile-cast [3] is one of such protocols that provide communication based on the behavioral profiles of humans via social sensing. A message is routed based on user profiles as a function of the users mobility preferences. The Profile-cast was tested with students in computer networking class in 2010 spring. However, the system has yet to be tested in a public forum, which is not our focus of this demonstration.

6.3.4 Limitation of Controlled and Uncontrolled Environment

Participatory sensing is a crowd sourcing of sensor data from voluntary participants [64] [67]. Participatory testing is similar to participatory sensing in that it leans on human participants; however, the task is even harder as participants should be engaged actively in testing over certain duration of time. This involves sensing mobile contacts and running networking protocols or services. It becomes particularly difficult when there are too many human participants to manage. For instance, participants may not follow the experiment instruction. Further, malicious participants may damage or
mislead the experiment results. Therefore, participatory testing is a chaotic environment where considerable effort to control the testing is required, yet, may still have difficulty in gathering correct experiment data. Hence, there is much demand for a testing environment where realistic subjects can be used in an experiment while controllability is supported.

Testing environment with autonomous mobile nodes provide flexibility in control while simulating human mobility. Capturing community behavior of human mobile users and embedding the community information as their profiles can be a step forward. In the following section, we provide details of profiling mobile users based on real-world data analysis and use of results in creation of rule-based decision criteria for individual mobile nodes. We show from simulation of autonomous mobile nodes that proposed approaches can create a realistic testing environment while collectively matching real-world contact patterns.

6.4 Contact Rule-Based Decision Criteria

It is a challenging task to replicate the contact pattern in a distributed implementation without location information. Heuristic mobility decision is a critical factor in this problem as available information for mobility is limited. Plausible mobility [62] infers mobility trace from encounter trace using draw, repulsion and attraction properties. Attraction is an intention to move towards other nodes; repulsion is a force to move away from particular nodes; drag is a property to stay and not to be affected by other nodes. It requires global knowledge of all nodes’ encounter information and location information. Implementation of draw and repulsion are viable by allowing nodes to stay away from each other when they are supposed to encounter infrequently and making them stop when they are supposed to encounter frequently, however, attraction property cannot be implemented as each node does not have information of other nodes. Hence, it is not appropriate to implement on autonomous mobile nodes that work in a distributed fashion. Adopting
the similar idea, however, a decision mechanism based on community information of encountered nodes can achieve the goal.

One assumption in forming a community is that group members are decided based on their contact duration and periodicity; thus, the objective of group member is to find their own group members and maintain periodical contact with them. To this goal, we use the similar ideas in plausible mobility for making decisions of next movement. Repulsion is implemented in a way of getting away from other group members upon encounter. Draw is triggered when encountering multiple group members. Attraction is implemented by slowing down search speed of group members and thoroughly searching the nearby area until finding more group members. This algorithm does neither perfectly find all of the group members nor prevent contacts with other group members. However, as small world in wireless networks analysis [57] shows, a few more added links can bridge most of the disconnected networks; hence, unavoidable contacts with other group members are still realistic.

Friend-Stranger is a decision criteria used when encountering group/non-group members. A decision is made according to a community identity (friend or stranger) of
Figure 6-5. Mobility of source node (Me) in each decision

encountered nodes. A friend is a node belonging to the same community (i.e. group members) and all other nodes are considered as strangers (i.e. non-group members). As discussed in the previous section, a node meets friends for more than certain time duration, while meets strangers for a short time.

The state diagram in Figure 6-4 shows four states that are included in the decision criteria. Me is the node that is making a decision in this case; however, note that other encountered nodes also make their own decisions as Me node does. Four scenarios are introduced: 1) When there are no nodes nearby, Me is in a search mode, which makes the Me node to move with fast speed in square shape direction. 2) Upon encountering a friend, Me goes into a slow search mode where it assumes there might be other friend nodes around and slows down the speed of search. Further, the node moves in octagon shape direction to search the area thoroughly. 3) When Me discovers multiple
friend nodes, Me stops and holds the position because this indicates that Me probably is located inside a friend community. 4) When there is far more number of strangers than friends, Me escapes from the current position by going into a run-away mode. It moves backward to move out of the area full of strangers. Additionally, friend nodes that contacted more than duration threshold are considered as having a full contact. This means there is no need of maintaining contacts with the same node; thus, they are considered as strangers though their community information still indicates that they belong to the same community. This ensures the nodes to move around without being stuck in one place to contact the same nodes repeatedly. In this presentation, the threshold for duration is 240 minutes per day. Mobility of source node in each decision is described in Figure 6-5. Proposed decision model, however, has limitation as staying in a community can lead to missing out opportunities to contact with other community members. We proposed this model in our poster presentation [71] with uniform distribution. The model was able to mimic contact duration and periodicity, however, did not capture the contact days and frequency. We introduce several methods to improve in this area so that the group contact behaviors show closer contact pattern to real-world trace in multiple metrics.

6.4.1 Power-law Distribution

Our new discovery of power-law distribution for the sizes of the communities can lead to a different result than previous implementation of uniform distribution. Unlike equal number of community members for each community, community IDs can be assigned to follow the power-law distribution. Specifically, distribution of community sizes can follow the slope of -1.48 in log-log scale that matches group sizes from contact pattern. Another improvement to generate close results to real-world contact pattern comes from modified rule-based algorithm. Instead of staying in one location upon encountering multiple community members, a node can choose to explore the area to move toward a location where more members can be found. The same logic applies
Table 6-1. Properties in each node’s profile

<table>
<thead>
<tr>
<th>Profile Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact frequency</td>
<td>For contacted nodes</td>
</tr>
<tr>
<td>Contact duration</td>
<td>For contacted nodes</td>
</tr>
<tr>
<td>on-off Day</td>
<td>in days of a week</td>
</tr>
<tr>
<td>on-off Time</td>
<td>in a day</td>
</tr>
</tbody>
</table>

to a slow search mode, where it can support of movement to a location where more
community members are found after thorough search instead of stopping immediately
upon discovering multiple nodes. This improvement brings more contacts with
community members that the node is already contacting as well as the opportunities
to contact with other nearby members.

6.4.2 Memory

Adding a memory to remember the location where a node has contacted the most
number of nodes recently can help the node to avoid unnecessary contacts with other
strangers. Thus, having a Memory to remember allow mobile nodes to show more
contacts with friends compared to contacts with strangers.

6.5 Experiment

In his section, we report the experiment results of simulation compared with
real-world contact trace (UF trace) [35].

6.5.1 Simulation Setup

Parameters for simulation is made close to a real world mobile network trace.

6.5.1.1 Community profile

Each mobile node maintains its own contact profile. Table 6-1 shows the properties
in a profile. Each node records contact days, frequency and duration with other nodes
in its profile, which is used to determine a full contact. in addition, on-time information is
carried by each mobile node, which we explain in the following section.

6.5.1.2 On-time scheduler

Study shows that contact pairs exhibit periodical encounter from analysis of WLAN
users and Bluetooth contacts by mobile users [46]. To emulate this behavior, we adopt
a scheduler to each mobile node. As shown in Table 6-2, a node has on-off day in a week and on-off time in a day. Each node is assigned random on-off time in a day and week. In addition, to reflect a realistic schedule, different weights are put for starting time of a day, on-time duration of a day and between weekdays and weekends. Parameters for on-time with a weight in daily schedule is shown in Table 6-2. For weekdays, a node is given 99% chance to be active for each day and 1% chance to be active during weekends. Scheduler for on-time duration shows in Table 6-3.

Nodes appear between 0-8 hours with probability of 0.7, 8-16 hours with 0.2 and 16-24 with 0.1. These values are from human observation and not obtained from the traces; thus, they do not accurately reflect the trend in the network traces.

6.5.1.3 Environment setup

Table 6-4 shows the environment set up for simulation and UF trace. Number of communities is set to the total number of nodes 20 = 50. Speed of slow search is 10 meters/min and 40 meters/min for fast search and run away mode. Each mobile node scans 40 meters of radius to discover other nodes. In UF trace, nodes that showed for

<table>
<thead>
<tr>
<th>Daily schedule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day time (9am-5pm)</td>
<td>0.98</td>
</tr>
<tr>
<td>Evening time (5pm-1am)</td>
<td>0.017</td>
</tr>
<tr>
<td>Dawn time (1am-9am)</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Table 6-3. Scheduler for on-time duration

<table>
<thead>
<tr>
<th>On-time duration</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-8 hours</td>
<td>0.7</td>
</tr>
<tr>
<td>8-16 hours</td>
<td>0.2</td>
</tr>
<tr>
<td>16-24 hours</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 6-4. Experiment environment (UF data is an approximate value.)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Simulation</th>
<th>UF trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>1000 meters</td>
<td>5000 meters</td>
</tr>
<tr>
<td>Nodes</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Period</td>
<td>64 days</td>
<td>64 days</td>
</tr>
<tr>
<td>Communities</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Granularity</td>
<td>10 seconds</td>
<td>1 second</td>
</tr>
</tbody>
</table>
Table 6-5. Experiment modes

<table>
<thead>
<tr>
<th>Name</th>
<th>Mobility</th>
<th>Community</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random mobility</td>
<td>random walk</td>
<td>uniform</td>
</tr>
<tr>
<td>Uniform distribution</td>
<td>contact rule-based decision</td>
<td>uniform</td>
</tr>
<tr>
<td>Powerlaw distribution</td>
<td>contact rule-based decision + scheduler</td>
<td>power-law</td>
</tr>
<tr>
<td>Memory</td>
<td>contact rule-based decision + memory + scheduler</td>
<td>power-law</td>
</tr>
<tr>
<td>No Schedule</td>
<td>contact rule-based decision + memory</td>
<td>power-law</td>
</tr>
<tr>
<td>UF trace</td>
<td>real WLAN users</td>
<td>power-law</td>
</tr>
</tbody>
</table>

at least 20% of the days were selected. Both of simulation and UF trace are examined for 64 days for contact ratio and group rank size experiments, and 32 days for periodicity (spectral) analysis.

6.5.2 Experiment Modes

We describe the experiment modes used for comparisons and metrics. 1) Random mobility: This is mobility mode that is currently embedded in the most of the existing testbeds. This model does not embed rule-based decision criteria. 2) Uniform distribution: This mode applies basic rule-based decision criteria with four rules in addition to the scheduler. Communities are assigned uniformly. 3) Power-law distribution: To the Uniform distribution mode, communities are assigned in a power-law distribution fashion. Additional mobility in stay and search mode is also applied. 4) Memory: To the Power-law distribution, location memory where the node contacted most number of friends is added. 5) No scheduler: To the Memory, the scheduler is removed. 6) UF trace: This is a processed contact trace \[46\]. Contact statistics is analyzed from the UF WLAN trace with a common assumption that WLAN users accessing the same access points are within signal range of wireless contact \[46\] \[1\]. Summary of the modes are shown in 6-5. The experiments are performed for contact days, frequency and duration. The metric, contact days, indicates the number of days a contact event occurred with another node. Contact frequency is counting the number contacts between nodes. Contact duration is duration of time in minutes between contacted nodes.
Figure 6-6. Simulation tool shows the mobility and encounter of autonomous mobile nodes. Each circle indicates a signal range to detect other nearby mobile nodes. Each community is identified by different colors. Extra empty inner circle is for the nodes in slow search mode. Nodes that are holding in the current positions are displayed with extra inner circles that are filled with a color.

6.5.3 Result Analysis

Our simulation tool we developed visualizes the mobility of autonomous nodes as well as their signal range to show if encountered as in Fig. 6-6. We turn off the visualization feature when generating statistics to produce results quickly. This simulation tool, code and video of mobile nodes are available on-line in [35].

6.5.3.1 Contact ratio with friends to strangers

Figure 6-7 shows contact ratio of friends to strangers. Higher ratio indicates greater degree of contact with friends than strangers. Results shown in this figure indicate that different methods can capture different metrics. Contact duration and frequency are captured by most of the methods. Contact days are captured in Memory method as in UF trace. Random mobility is the only method that does not show community contact behavior in any of metrics. This shows our proposed methods work for capturing community contact pattern for different types of scenarios.
6.5.3.2 Rank group size

Figure 6-8 shows the rank plots in log-log scale for the size of groups. Hierarchical clustering was applied after encounter vector information was generated. The plots show that different modes follow power-law distribution more closely for different metrics. Random mobility and uniform distribution do not exhibit any closeness to the power-law distribution for any metrics. This shows the importance of capturing communities by understanding the real-world pattern first. The result also shows that our proposed rule-based modes can show the close pattern to real-world community distribution depending on the metrics.
Figure 6-8. Rank plot in log-log scale according to the size of groups after hierarchical clustering. Random mobility shows least close to power-law distribution of group sizes. Different modes show different closeness to power-law distribution.

6.5.3.3 Periodic contact pattern

Periodic contact pattern with friends is analyzed in Fig. 6-9. The figure shows spectral analysis of contact pattern in frequency domain. Interested reader in this analysis is encouraged to read [46]. In the figure, X-axis indicates the frequency of the repetitive pattern over the period of 32 days, while Y-axis indicates the magnitude for the frequency of repetitive patterns. From the graph, weekly encounter pattern (peak at
Figure 6-9. Spectral analysis for contact with friends nodes over 32 days. Peak at 4 and 5 indicates strong weekly pattern. Random mobility and no scheduler are the only modes that do not have scheduler, thus, displaying no periodic pattern.

Frequency 4 and 5) appears particularly strong for most of the modes with the scheduler. This weekly pattern was also observed from various real-world traces [46]. Random mobility and No scheduler exhibit no distinct repetitive pattern.

6.5.4 Visualization of Encounter and Mobility

Visualization helps to discover certain patterns that are not well observed in statistical analysis. It also gives a rough idea of where to start analysis. Our simulation tool can show the current rule-based decision status of all nodes. In graphical representation of mobile encounters, mobile nodes show similar trend to statistical results. Snapshots of visuals are shown in Figure 6-10. Animation video and executable files of each mode is available on-line at [35]. Random mode barely
Figure 6-10. Snapshots of simulation for each mode with visualization on. Random modes show the least number of community convergence. Random mode and no schedule mode shows significantly more number of nodes because the scheduler does not exist for both of the modes. Note that this snapshot only shows the status of certain time; thus, the status can differ over time. However, this snapshot shows the common status throughout the simulation.

shows the community encounters as filled inner circles are rarely observed. Power-law mode shows more community convergence. It also shows less number of nodes than random mode because a schedule controls the number of nodes that appears during each period. Community convergence is observed more in memory mode. Finally, no schedule mode shows more number of nodes along with random modes as all of the nodes appear at the same time. Compared to random mode, however, no schedule mode shows significantly more convergence of community. Note that this snapshot only
shows the status of certain time; thus, the status can differ over time. However, this snapshot shows the common status throughout the simulation.

6.6 Implementation on Autonomous Robots

In this testbed implementation, community information is preconfigured for each mobile device. There are three concurrent processes running in a iRobot controller: 1) Bluetooth connection setup with an iRobot; 2) Bluetooth scanning; and 3) Personality interface. Bluetooth setup is necessary after pairing of Bluetooth between the controlling mobile device and the iRobot. It creates a virtual tunnel to send data from mobile devices to the iRobots. Another process is Bluetooth scanning program, which probes the nearby Bluetooth devices by sending beacon signal for every few seconds. It logs the MAC address and timestamp in a file. The other process is personality interface that makes mobility decision. It reads the log file and find the encountered mobile nodes’ identities from their MAC address and compare with community information it has. Next behavior of the iRobot is decided by rule-based decision criteria. Personality interface sends commands to the iRobot after making a movement decision. We demonstrated this prototype testbed with two iRobots and their controllers to go with 12 other Nokia PDAs in the conferences [72] [73] [74] [75]. 12 Nokia PDAs were tagged with blue and red color to indicate their community IDs. Random attendants of the conferences participated in the demonstration by carrying the PDAs and emulating the appearance/disappearance of themselves by turning on/off the visibility of Bluetooth. Program codes and videos of the testbed are available in [35].

6.6.1 Controlling iRobot

For easy programming and wide deployments of the device, we choose the iRobot to form the networks of robots. The connection between a mobile device (e.g., HP iPAQ) and the iRobot is performed via Bluetooth communication. In this way, the iRobot can be controlled remotely. The personality interface can send commands and receive sensor readings to/from iRobot. For compatibility and portability, we use mobile devices
instead of laptops. As iRobot does not control itself but is rather controlled by the personality in a separate computer (mobile device), it is the personality interface that decides the next behavior of the iRobot upon receiving signal readings from the iRobot or a communication on the mobile devices. The proposed structure can incorporate any communication methods/protocols by using the mounted iRobot controller as a communication device. The controller can communicate via Bluetooth or WLAN for message delivery and profile exchange. In the Profile-cast implementation, we use WLAN for collecting location information to create profiles and Bluetooth for message exchanges.

We create a personality on the iRobot by setting up a few behavioral rules. Various personality profiles can be created as mentioned above depending on the scenarios, protocols, and experimental environments. Viable examples are 1) a behavioral signature of location visiting preferences; 2) regular/irregular/random contact patterns with other mobile nodes; 3) attraction to friendly community and repulsion to unfriendly community. Their movements are achieved by the three rules mentioned earlier: attraction, repulsion and draw. Upon encountering the desired target, iRobot recognizes it and stops. If the target node moves away, the personality interface triggers the attraction so that it can get closer to the target node. Repulsion is triggered to get away from the currently encountering node when the iRobot has spent enough time according to the given personality profile.

6.6.2 Lab Environment

Our mobile testbed does not require to have any unusual facility or environment for experiments. Space to deploy iRobot is necessary but not required as the robots can move between attendees. iRobot and PDAs may require battery charge; therefore, outlet power strips will be needed. Poster board to explain the design and a desk to put the devices are also necessary. By the demonstration, not only we present a novel testbed design but also showcase our research results such as analysis of periodicity in
encounter and profile-case protocol. In addition, this demo can leverage new research ideas concerning participatory testing and promote potential collaboration on the large-scale deployment of the experiments. We create an environment where the iRobot move around with given set of instructions to reflect the behavioral profile. For communication protocol, we implement Profile-cast that show two types of delivery modes: 1) to deliver message bundles to target nodes with matching behavioral profiles, or 2) to disseminate messages to the interested nodes when such profiles are unavailable. Demonstrating a protocol such a Profile-cast on a large-scale is our goal for the testbed; however, it requires a behavioral profile collection step, which associates the nodes with location-visiting preferences. We therefore modify the Profile-cast protocol to fit in the conference environment, yet still reveal the full concept of Profile-cast. Our demonstration scenario in the lab environment is as follows: 1) Selected users carry the mobile devices. These devices collect the encounter trace for the mobile carrier. 2) Based on the collected traces, we plant a personality profile to the iRobots mimicking each user. 3) Mobile devices contain Profile-cast implementation, and message exchange is tested. 4) Evaluate the results after the experiment is over.

6.6.3 Evaluation Scenarios for Autonomous Robots

There are several factors need to be considered in presenting these testbeds. First, the scenario should be able to start and end in a given time while showing the full aspects of the main components in the testbeds. Another important factor is the time limit. To present a demonstration of the testbeds in a relatively small space, it is imperative to limit the scope of the testbeds. However, it still needs to show the core idea of the design and strengths of the implementation. The other factor to consider is effectively showing the main underlying concepts of the testbeds. In a conference environment, not only the presentation time and space of the testbeds is limited, but also time and basic knowledge for lecture is limited. Yet, it is a valuable opportunity to other researchers seeking for the idea of testbeds to test their developed concepts and
results. In order to effectively deliver the idea and design of the testbeds, it is non-trivial to have concise scenarios. We present three demonstration scenarios in the conference environment, which we have implemented and showed in the conference [72, 74]. These scenarios start from the basic scenario that is the basis of the subsequent scenarios. Scenarios are incremental in the difficulty of understanding and displaying the implementation details.

1) Basic scenario The first scenario we introduce is the most basic scenario that shows the concept of friendship and its incorporation into the testbeds. In this scenario, a single robot is used. This robot with an attachment of Nokia N810 as its brain moves forward and backward until it finds a friend. It discovers a friend by searching a Bluetooth device whose signature (MAC address) belongs to a group of its friends. Upon discovering, the robot stops the movement to show that it is currently staying with friends; thus, there is no need of movement any longer as friends are nearby. This shows the basic scenario of community based encounter. This friendship information is stored in the memory space of the mobile device (i.e. Nokia N810) controlling the robot. The friendship information is based on similarity of the location visiting preference; therefore, it is easy to use profile-cast in case of message propagation. As profile-cast is already implemented in the mobile device, there is no need of further development of the profile-cast implementation or porting issue. The same program for controlling the robot and communication protocol can be implemented in any of Linux based system (i.e. laptop running on top of Linux). Note that friend devices can be multiple devices or single device. To show the appearance of friend mobile device(s), either the friend mobile device come closer to the Bluetooth signal range of the device controlling the robot or we can emulate appearance/disappearance of friend behavior by turning on/off the Bluetooth device of the friend mobile device.

2) Friend vs enemy With similar implementation, more complex scenarios, yet, describing the capability of the testbeds is possible. The second scenario, thus,
introduces additional element to friend concept - enemy. We later explain the various applications of the friends-enemies concept in mobility modeling and communication protocol. To achieve this goal of showing community based behaviors, we set up a behavioral rule and add a speed element to show the behavioral rule. We use a single robot and multiple Bluetooth-enabled mobile devices (i.e. smart phone with Bluetooth) in this scenario. The design goal of this scenario is to show the community property of our testbeds. To achieve this goal, we define a group of friends and a group of enemies. These groups are obtained by running the similarity based community model. Hence, the objective of the robot is to stay together with a friend community and to stay away from an enemy community. This scenario has different behaviors according to the identity of the discovered nodes - 1) No friends and enemies, 2) One friend, 3) Multiple friends and 4) Number of enemies > number of friends. The robot reacts to the respective circumstance by 1) Fast search, 2) Slow search, 3) Stop and 4) Panic. Specifically, when there are no friends and enemies, the robot will search fast for its friends. We implement this by showing the behavior of movement in a square direction. Specifically, the robot will go forward fast, then turn by 90 degree and repeat the same behaviors. This is a search phrase and we emulate the intense search of friends by the robot. When it discovers a friend, it attempts to get closer to the friend, yet, it still tries to find the other friends with an assumption that friends tend to flock together. Thus, it slows down its search speed and moves forward slowly for getting close to the friend community. When it finally discovers multiple friends, it concludes that it reaches to the core of the friend community and stops the movement. However, when it discovers an enemy, the robot acts based on the behavioral rule. According to the behavioral rule, the robot goes into a panic mode when the number of enemies nearby is greater than the number of friends nearby. Regardless of previous states, the robot tries to move away from the enemy group while searching for its friends group in panic mode. This
panicking situation is emulated by moving back and forth fast. This behavior simulates a behavior of getting away from enemies.

3) Team scenario Last scenario, we demonstrate is team-based behavior. Further extending friends and enemy community, we label each team as red and blue team. This time, we use two or more robots and each team has at least one robot. The basic behavioral rule is the same as the second scenario. Robots try to stay with their own teams while searching for its team members, staying with the team when there are multiple members discovered, and getting away from the other team members when outnumbered. This behavior simulates the team-based strategy. Multiple mobile devices are assigned to each team arbitrarily.

Figure 6-11 is a snapshot of a proof of concept video for mobile networking testbed. The video is available at [35] and it shows the team scenario.
6.7 Conclusion and Future Work

We propose a novel testbed concept of blending a network of robots and participatory testing. We also show how to embed a community profile and propose a community contact rule-based decision criteria along with a few modifications to operate on autonomous mobile nodes. The simulation results match human-like contact pattern in terms of contact days, frequency and duration along with periodic contact pattern with proposed approaches. Our proposed approaches make the autonomous mobile node to form communities that show power-law distribution for the size of the groups as it shows in real-world data. This is a step forward to an implementation of realistic testbed as each node with personality profile can replicate human contact pattern without neither of a global knowledge nor location information of any other nodes. Finally, we provide implementation of personality profiles on robots that reacts based on their contact information. Our work is the first to investigate this direction and opens opportunities towards building realistic mobile testbed using personality profiles to evaluate mobile social networks.

Future work includes development of rules and mobility routes of autonomous nodes to emulate different scenarios. Target profiles to mimic can be mixed among nodes to show different mobility patterns. Implementation of mobile social networking protocols or embedding profiles on different physical nodes (i.e. lego robots) is another future works. Visualization of mobile nodes can also be extended by displaying on Google Earth. Using the framework we developed in our previous works [76] [77] [78], decision status of each mobile node can be visualized on Google Earth.
CHAPTER 7
CONCLUSIONS

We discuss the conclusions and future work of this dissertation.

7.1 Conclusions

In order to understand human encounter behavior, we analyze the periodicity in encountered pairs and individual nodes under various conditions [46, 79, 80]. We categorize them according to their daily encounter rate and showed the periodicity with the following metrics: daily and hourly encounter, encounter frequency and encounter duration. For the majority of the encountered pairs, a weekly encounter pattern is prevalent, which mobility diameter pattern study did not observe. We also observe that periodicity appeared stronger for the rarely encountering pairs than the frequently encountering pairs. In case of rare encounter events, the regular encounter pattern is particularly useful as it can provide the estimation for the number of required relay nodes to satisfy the given delivery probability. We also propose viable approaches to discover the regularly encountering pairs. Our analysis shows the utility of spectral analysis for characterizing encounter regularity, which is vital for future mobile networks. Additionally, we showed that regularly encountering pairs may have different location visiting patterns, which further reinforces the importance of regular encounter pattern. We analyze the real-world encounter data sets (Bluetooth encounter) and the WLAN traces with adequate assumption for large-scale encounter data, where periodicity in various set-up was commonly observed at both types of traces. To sum up, our analysis shows the utility of spectral analysis for characterizing encounter regularity, which is vital for the study of future mobile networks. Our periodicity analysis is unique in that we 1) investigate the periodicity and regularity of nodal encounter pattern by using power spectral analysis, 2) propose new approaches to discover the regular pattern and analyze the regularly encountering pairs, and 3) analyze a rich set of real world data for long periods of time, including up to 50,000 users per semester.
period over three years and Bluetooth traces in two semesters. In addition we study the consistency of encounter pattern for mobile users according to the changes in size of past window. The results obtained so far, indicates that more knowledge is likely leading to better prediction. This trend is more apparent with frequently encountered nodes. Furthermore, we show that regularly encountering pairs are significantly more consistent than irregularly encountering pairs. Our profiling study of mobile users showed that grouping based on encounter days results in power-law distribution of sizes in groups. We compared the distribution to location based grouping and observed similar distribution. Based on this understanding, we apply the grouping in assigning communities on autonomous mobile nodes. Hence, community contact profile embedded on each mobile node is built to follow this power-law distribution of community. We propose a novel mobile social networking testbed. First, we blend a network of robots and participatory testbed by embedding a personality profile on autonomous mobile nodes. By emulating human mobility, focusing on community contact pattern, we take the strengths of both testbed components, thus, becomes a bridge between them. To emulate human contact pattern, we embed community contact rule-based decision criteria on autonomous mobile nodes along with a scheduler and a memory. Simulation results show that different modes can emulate different metrics of contact pattern, including contact days, frequency and duration. Group size, encounter ratio with friends and spectral analysis are provided for experiments with these metrics. Furthermore, we provide a prototype implementation of the testbed using iRobot Create and Nokia PDAs, which we demonstrated in many conferences and available on-line at [35].

7.2 Future Work

Future Work includes the mobile networking protocols and services using the obtained understanding of human contact pattern. Our contact profile embedding on autonomous mobile nodes shows promising direction of creating a testbed with
various scenarios. Actual testing of mobile social networking protocols on the testbed is another direction of research. Our understanding on periodicity of contact pattern can also be implemented for mobile applications that use human contact pattern such as advertisement and interest-based message propagation.
REFERENCES

105

BIOGRAPHICAL SKETCH

Sungwook Moon was born in Seoul, South Korea in 1978. His interests in technology and science grew naturally by looking up to his father, Youngkey Moon, who studied applied physics in college. Sungwook graduated from Sangmoon High School in Seoul and then attended Sogang University, Seoul in 1997. He served mandatory military service from Oct 1999 to Dec 2001, where he was attached to the U.S. 8th Army and received ARCOM and AAM medals for his leadership. After coming back to college, He received B.S. in Computer Science from Sogang University and M.S. in Computer Engineering at the University of Florida in 2004 and 2006 respectively. Sungwook married his wife, Jin Yun in 2004 and their daughter Kaylin Saeyun Moon was born in 2009. He began his doctoral study in 2006 and received his Ph.D. from the University of Florida in the fall of 2011. His research interest lies in the field of mobile and social networking, profiling of mobile users and networking testbed.

Aside from research, Sungwook was influenced by his mother, Seungja Bae, who studied classical music composition in college. Sungwook loves music and had several chances to perform in front of thousands of audience, including chorus performance with Sogang Chorus as a bass in a prestigious art center in Seoul. He was also a member of classical guitar team and performed in two official regular performances in marry hall at Sogang University. During his time at University of Florida, he enjoyed watching and talking about Gators football and basketball with fellow Gators. More than anything, he loves his family the most.