EXAMINING THE “URBAN” NEW URBANISM FOR COMPATIBILITY WITH THE EVOLVING PATTERNS OF THE TRADITIONAL CITY: A CASE STUDY OF THE PARRAMORE HERITAGE DISTRICT IN ORLANDO, FLORIDA

By

JENNIFER LYNN WHEELOCK

A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS IN URBAN AND REGIONAL PLANNING

UNIVERSITY OF FLORIDA

2007
© 2007 Jennifer Lynn Wheelock
To Dad.
ACKNOWLEDGMENTS

First and foremost, I want to thank my chair, Dr. Kristin Larsen, for all of her advice and support throughout this entire process, my cochair, Dr. Ruth Steiner, for always asking the hard questions, pushing me to think about the bigger picture, and giving me a place to work, and committee member Dr. Ilir Bejleri for all his answers to my GIS and methodology questions. Additionally, I want to thank Teresa Russin, for all of the late night laughter and constant moral support – I would be much less sane had she not been there writing with me. Finally, I want to thank Kevin Johns for being there for daily questions about ArcMap and saving my data that time my computer crashed.

No acknowledgement list would be complete without mentioning my family – my parents, my brothers, and my husband. I wouldn’t be writing this today without them. I want to thank my parents for always having high expectations and great advice, my brothers for pretending to be interested in my research, and my husband, Rob, for his love, support, and understanding. Finally, because sometimes I need to be reminded to take a break, I want to thank Taylor Dupree for all the phone calls that helped break up all those nights spent “thesising”.

TABLE OF CONTENTS

ACKNOWLEDGMENTS ...4

LIST OF TABLES ...7

LIST OF FIGURES ...8

LIST OF ABBREVIATIONS ..10

ABSTRACT ...11

CHAPTER

1 EXAMINING THE FOCUS OF THE NEW URBANISM ...13

2 THE NEW URBANISM AND THE HISTORIC CITY ..18

 The Charter for the New Urbanism ...18
 The Roots of the New Urbanism ...20
 Utopian Visions: Turn-of-the-Century New Urbanist Roots ...20
 Urban Renewal, Highway Building, and Suburbanization: The Modernist City21
 Post-modernism, Historic Preservation, and the Birth of the New Urbanism23
 A Return to the City: The Second Generation of New Urbanists ...25
 Infill and New Urbanism: The Region, the Neighborhood, and the Block26
 The Region: Cities Adopt New Urbanist Initiatives ...27
 The Neighborhood: HOPE VI and Large-scale Infill Projects ..29
 The Block: Investment Opportunities for Private Developers ...33
 Reclaiming Urban Form ..35

3 A METHODOLOGY TO MEASURE AND COMPARE URBAN PATTERNS36

 Categorizing the Current Land Use Patterns: The General Urban Transect37
 Layer 1: Enclosure ...38
 Layer 2: Lost Space ...38
 Layer 3: Sidewalks ..39
 Layer 4: Public Space ..39
 Layer 5: Incompatible Streets ...40
 Layer 6: Lot Width ..40
 Layer 7: Proximity ..41
 Layer 8: Land Use Mix ...41
 Composite Layer: Calculating the Final Values ..41
 Using the Composite Layer to Guide Comparisons ...43
 The New Urbanist Perspective: How do Infill Plans Relate? ..43

4 FINDINGS: THE CASE STUDY OF PARRAMORE ..46
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1: Layers for Analyzing Current Land Use Patterns</td>
<td>45</td>
</tr>
<tr>
<td>4-1: Demographic Patterns in the Parramore Heritage District Neighborhoods</td>
<td>67</td>
</tr>
<tr>
<td>4-2: Scores by Percent of Raster Layer</td>
<td>68</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>4-1</td>
<td>Study Area with Neighborhoods</td>
</tr>
<tr>
<td>4-2</td>
<td>Current Land Use in the Parramore Heritage District</td>
</tr>
<tr>
<td>4-3</td>
<td>Layer 1: Enclosure</td>
</tr>
<tr>
<td>4-4</td>
<td>Layer 2: Lost Space</td>
</tr>
<tr>
<td>4-5</td>
<td>Layer 3: Sidewalks</td>
</tr>
<tr>
<td>4-6</td>
<td>Layer 4: Public Space</td>
</tr>
<tr>
<td>4-7</td>
<td>Layer 5: Incompatible Streets</td>
</tr>
<tr>
<td>4-8</td>
<td>Layer 6: Lot Width</td>
</tr>
<tr>
<td>4-9</td>
<td>Layer 7: Proximity to Retail and Public Space</td>
</tr>
<tr>
<td>4-10</td>
<td>Layer 8: Land Use Mix</td>
</tr>
<tr>
<td>4-11</td>
<td>Final Composite Values for Raster Cells (Current Conditions)</td>
</tr>
<tr>
<td>4-12</td>
<td>Raster Cell Values for Composite Score Layer</td>
</tr>
<tr>
<td>4-13</td>
<td>Analysis Zones based on Composite Score</td>
</tr>
<tr>
<td>4-14</td>
<td>Analysis Zones and Dover, Kohl, & Partners’ Master Plan Close-Up Views</td>
</tr>
<tr>
<td>4-15</td>
<td>Raster Cell Values for Analysis Zones A and B</td>
</tr>
<tr>
<td>4-16</td>
<td>Raster Cell Values for Analysis Zones C and D</td>
</tr>
<tr>
<td>4-17</td>
<td>Comparison Maps for Analysis Zone A</td>
</tr>
<tr>
<td>4-18</td>
<td>Comparison Maps for Analysis Zone B</td>
</tr>
<tr>
<td>4-19</td>
<td>Comparison Maps for Analysis Zone C</td>
</tr>
<tr>
<td>4-20</td>
<td>Comparison Maps for Analysis Zone D</td>
</tr>
<tr>
<td>4-21</td>
<td>Dover, Kohl, & Partners’ Master Plan for Parramore: Special Areas</td>
</tr>
<tr>
<td>4-22</td>
<td>Raster Cell Values for Dover, Kohl, & Partners’ Proposed Redevelopment Areas</td>
</tr>
<tr>
<td>4-23</td>
<td>Raster Cell Values for Dover, Kohl, & Partners’ “Design Intervention” Areas</td>
</tr>
</tbody>
</table>
4-24: Comparison of Dover, Kohl, & Partners’ Special Areas to High and Low Scoring Analysis Zones
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
<th>Location/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNE</td>
<td>Chattanooga Neighborhood Enterprise (Chattanooga, Tennessee)</td>
<td></td>
</tr>
<tr>
<td>CNU</td>
<td>Congress for the New Urbanism</td>
<td></td>
</tr>
<tr>
<td>DKP</td>
<td>Dover, Kohl, & Partners</td>
<td></td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information Systems</td>
<td></td>
</tr>
<tr>
<td>HOPE VI</td>
<td>Housing Opportunities for People Everywhere</td>
<td></td>
</tr>
<tr>
<td>HUD</td>
<td>(Department of) Housing and Urban Development</td>
<td></td>
</tr>
<tr>
<td>OOCEA</td>
<td>Orlando-Orange County Expressway Authority</td>
<td></td>
</tr>
<tr>
<td>SUN</td>
<td>Sustainable Urban Neighborhoods (Louisville, Kentucky)</td>
<td></td>
</tr>
<tr>
<td>UDA</td>
<td>Urban Design Associates (Pittsburgh, Pennsylvania)</td>
<td></td>
</tr>
</tbody>
</table>
New Urbanism has been lauded by some as the answer to many, if not all, of the problems urban planners face today – a way for regions to curb sprawl, promote equitable, diverse neighborhoods, support public transportation, foster a sense of community, build social capital, transform public housing projects, and reconnect present development patterns with those found in thriving historic neighborhoods. Although existing urban neighborhoods may retain much of the traditional character advocated by the New Urbanism, they no longer exist as pure “traditional” development. The relationship between the New Urbanism and intact historic neighborhoods is relatively well-documented – this paper explores the relationship between the New Urbanism and neighborhoods that retain some, but not all, of their historic patterns. The case study of the Parramore Heritage District in Orlando, Florida, provides a context to examine the physical relationship between the patterns that the New Urbanism promotes, the historic patterns of the traditional city, and the current patterns left by a legacy of modernist planning.

Located within downtown Orlando, the historic Parramore neighborhood reflects the negative effects of past planning efforts – including segregationist policies, unfavorable zoning,
public housing projects, highway building, and urban renewal. Additionally, a Master Design Plan drafted by Dover, Kohl, and Partners in 1994 provides a theoretical tool for analyzing how New Urbanist principles could be applied to the redevelopment of the area. A methodology adopted from Emily Talen is used to rate the existing urban form on how well it represents the urban form advocated for by the New Urbanists.

In general, the current patterns that scored the highest had changed the least from 1925 to the present. The current patterns that scored the lowest displayed a higher degree of change from the 1925 patterns. However, the areas scoring the highest tended to be residential areas while the low-scoring areas contained more industrial uses and large public buildings. These findings may indicate a bias in the methodology to favor residential areas over large-scale industrial and public use, or it may speak to a larger preference of the New Urbanism for certain types of traditional patterns that do not include industrial uses close to residential uses.

While the New Urbanism’s design principles are arguably a useful and powerful redevelopment strategy for existing urban neighborhoods, the amount of physical change a neighborhood has experienced in the 20th century may affect the ease with which comprehensive New Urbanist redevelopment is accomplished. The strength of the New Urbanism to be flexible and to respect not only local character and architecture, but to also incorporate existing uses creatively into redevelopment plans is essential for the success of the New Urbanism in existing urban areas. Dover, Kohl, and Partner’s Master Plan for Parramore attempts to accomplish this through making strategic recommendations based on things that can realistically be changed – such as infill projects on vacant lots and the redevelopment of parking areas – without completely eliminating the industrial and large-scale public uses that are a fact of life in the neighborhood.
CHAPTER 1
EXAMINING THE FOCUS OF THE NEW URBANISM

The planning movement known as the New Urbanism seeks to reverse the trend of suburban, auto-centric development by returning to a more traditional type of development that is walkable, transit-oriented, human-scaled, and mixed-use (Fulton, 1996, p.1). The New Urbanism finds much of its design inspiration in historic districts like “Miami’s Coral Gables, Chicago’s Oak Park and Evanston, Cincinnati’s Mariemont, New York’s Forest Hill Gardens, Baltimore’s Roland Park, Kansas City’s Country Club District, Camden’s Yorkship Village, Los Angeles’s Palos Verdes, Ladd’s Addition in Portland, Oregon, and others” (Phillip Langdon quoted in Hamer, 2000, pp. 114-5). These historic districts exist as the best examples of traditional urban form – in part because of the special protection and reinvestment they have received because of their designation as historic districts (Hamer, 2000, p. 115). Struggling urban neighborhoods in many of America’s cities have not experienced the same levels of reinvestment and success. Although existing urban neighborhoods may retain much of the traditional character advocated by the New Urbanism, they no longer exist as pure “traditional” development. The relationship between the New Urbanism and intact historic neighborhoods is relatively well-documented – this paper explores the relationship between the New Urbanism and neighborhoods that retain some, but not all, of their historic patterns.

The New Urbanism is conceptualized at three levels: the regional level, the neighborhood level, and the block level (CNU, 2001, n.p.). At the regional level, infill development should be a priority, open space on the urban fringe should be preserved, historical patterns should be respected, and regional transit systems should be supported (CNU, 2001, n.p.). At the neighborhood level, development should be mixed-use, pedestrian-friendly, have an interconnected street network, incorporate parks and green space, and allow daily activities to be
accomplished within walking distance of the home (CNU, 2001, n.p.). Neighborhoods should include a mix of housing types and income levels, and their densities should support the regional transportation system (CNU, 2001, n.p.). At the block level, architectural design should reflect the unique history of that place, accommodate automobiles while maintaining the pedestrian-oriented character, promote safe and secure places, and provide “inhabitants with a clear sense of location, weather, and time” (CNU, 2001, n.p.). Historic structures should be preserved, and civic buildings should be designed to stand out as special places that anchor the neighborhood (CNU, 2001, n.p.).

New Urbanism has been lauded by some as the answer to many, if not all, of the problems urban planners face today – a way for regions to curb sprawl, promote equitable, diverse neighborhoods, support public transportation, foster a sense of community, build social capital, transform public housing projects, and reconnect present development patterns with those found in thriving historic neighborhoods (Bohl, 2000; CNU, 2001; CNU & HUD, 2000; Ellis, 2002; Leyden, 2003; Poticha, 2000; Talen & Ellis, 2002). However, the New Urbanism has also received criticism over the disparities between the lofty ideals that *The Charter for the New Urbanism* espouses and the actual developments being labeled as “New Urbanist” communities. Critics dismiss the New Urbanism as simply another form of upper-middle-class suburban development, a naive attempt to solve social problems through design, a movement based in nostalgia for a past that never existed, or a contrived imitation of thriving historic neighborhoods lacking any real elements of chaos or urbanity (Ellis, 2002; Hamer, 2000; Marshall, 2000; Upton, 2000).

The Charter for the New Urbanism reads like a manifesto, projecting lofty goals and idealist visions about what good urban form should be and how it can help to solve problems of
“disinvestment in central cities, the spread of placeless sprawl, increasing separation by race and income, environmental deterioration, loss of agricultural lands and wilderness, and the erosion of society’s built heritage” (CNU, 2001, n.p.). The Charter sees the decline of the central city and the occurrence of sprawl development as part of “one inter-related community-building challenge” (CNU, 2001, n.p.). Many of its central goals involve redevelopment and reinvestment in urbanized areas (CNU, 2001, n.p.). Yet, some critics fault the New Urbanism for catering to upper-income, large scale suburban projects rather than focusing on the redevelopment of struggling neighborhoods in the urban core (Pyatok, 2000; Upton, 2000; Marshall, 2000).

A new generation of New Urbanists, however, are beginning to shift the focus of New Urbanism to where it arguably belongs: in the central city and inner-ring suburbs. Dover, Kohl and Partners (DKP), a design firm based in Coral Gables, Florida, focuses on ending the suburbanization of cities, retrofitting existing suburbs to be more like traditional towns and neighborhoods, and revitalizing places that have maintained their traditional qualities (Dover, 1993). While DKP designs new neighborhoods on greenfield tracts, they also emphasize the application of New Urbanist design principles to already developed places like main streets, downtowns, older in-town neighborhoods, suburbia, and strip malls in order to revitalize and increase livability of these areas (DKP homepage, 2007).

While already urbanized areas do not offer the clean slate and freedom that greenfield projects can, urbanized areas have assets not found in greenfield settings:

Cities are the places that have the greatest opportunity to make a difference in urban settlement patterns. Cities have tremendous assets that are too often overlooked. They are the home of great medical centers, colleges and universities, cultural facilities, government buildings, employment centers and the basic infrastructure of streets, utilities and public transportation…these resources are struggling against the forces that draw people and investment away from the core. The result has been a tremendous flight of middle Americans chasing the “American Dream”…If the goal of the New Urbanism is to rekindle the “American Dream” (admittedly an ephemeral and spiritual goal) by building
settlements that encourage community, livability, convenience, decent housing and preservation of the environment, then a significant thrust of this movement must focus on the existing core city. (Gantt, 1998, n.p.)

The urban applications of the New Urbanism may provide planners with opportunities to build upon the assets found in existing urban places. The New Urbanism’s social goals become relevant in the context of the urban core because “the greatest social problems of the country are those found in the inner cities” (Teitz, 1997, p. 575). Since the New Urbanism supports infill development, equitable social goals, and a return to past ways of designing cities, historic areas of the city that have experienced disinvestment and decline in the past century will prove a vital landscape for the New Urbanists to understand. Understanding the physical way in which the New Urbanist design principles relate to and can be applied within the patterns of the historic city will allow planners to make better decisions about redevelopment options in troubled neighborhoods.

This study examines the physical relationship between the patterns that the New Urbanism promotes, the historic patterns of the traditional city, and the current patterns left by a legacy of modernist planning in existing urban areas. A methodology developed by Emily Talen will be used to assess the current patterns found in the historic neighborhood of Parramore in downtown Orlando, Florida. The methodology emphasizes a New Urbanist definition of good urban form and is designed to be applied in existing urban neighborhoods. Four characteristics are analyzed: (1) spatial enclosure, (2) the public realm, (3) spatial suitability, and (4) spatial diversity or mix versus homogeneity (Talen, 2005, p. 210). Then, based on the results of the analysis of the existing conditions, specific areas are compared to the historic patterns that once existed and the proposed infill development found in the New Urbanist master plan drafted by DKP for the neighborhood in 1994. Through these comparisons, the author seeks to provide insight into the priorities and practice of the New Urbanism in existing neighborhoods.
The Parramore neighborhood exists as an ideal place to examine and the suitability of historic neighborhoods for infill New Urbanism. Located within downtown Orlando, the area is rich in history and has been negatively affected by past planning efforts – including segregationist policies, unfavorable zoning, public housing projects, highway building, and urban renewal. Orlando is a city that has shown commitment to New Urbanist principles, and has adopted an urban design element and a downtown master plan that incorporate New Urbanism. Orlando has also shown a commitment to redevelopment and revitalization of the Parramore neighborhood over the past few decades. DKP was hired by the city to create a master plan for the area in 1992 (published in 1994). Almost thirteen years of redevelopment projects and general investment in the neighborhood provide an interesting context to evaluate how the New Urbanism works “on the ground.” Modernist planning and design efforts in the community have resulted in “suburban” infill that is disconnected socially, economically, and spatially from the historic community of Parramore. However, the historic fabric has not yet been lost entirely.

This document consists of five chapters. Chapter One introduces the research and provides justification for the research. Chapter Two discusses the history behind both the New Urbanist movement and the shift from modernist to post-modernist planning, the ideas and claims of the Charter for the New Urbanism, and examples of infill New Urbanist projects on various scales. Chapter Three describes the methodology used in this study. Chapter Four presents the research findings. Chapter Five evaluates and analyzes the results and makes suggestions for further research.
CHAPTER 2
THE NEW URBANISM AND THE HISTORIC CITY

This chapter provides a review of the literature pertaining to the New Urbanism movement. The focus will be primarily on the infill applications of New Urbanism in existing historic neighborhoods. The literature review will begin with an examination of the Charter for the New Urbanism, and its support of infill development. Then, the planning movements of the past century are discussed to provide the reader with a context of the theories that led both to the New Urbanism and to the patterns of development the New Urbanism claims to be reacting against. The chapter will conclude with examples of how infill projects have incorporated New Urbanism on three levels – the region, the neighborhood, and the block.

The Charter for the New Urbanism

The Charter of the New Urbanism states that the New Urbanism supports four major goals:

- The restoration of existing urban centers and towns within coherent metropolitan regions;
- The reconfiguration of sprawling suburbs into communities of real neighborhoods and diverse districts;
- The conservation of natural environments; and
- The preservation of our built legacy (CNU, 2001, n.p., formatting added)

To accomplish these goals, the Congress for the New Urbanism advocates changes in public policy and development practice that will support mixed use, diverse populations, pedestrian- and transit- friendly design, defined public spaces and community buildings, and locally relevant and historically compatible architecture and landscaping. The Charter contains the caveat that “we recognize that physical solutions by themselves will not solve social and economic problems” (CNU, 2001, n.p.). However, it goes on to state that physical design represents one essential aspect in an approach to solve modern problems (CNU, 2001).
The Charter lists 27 individual principles to “guide public policy, development practice, urban planning, and design” (CNU, 2001, n.p.). The principles are divided into three scales for application: the region, neighborhood, and block. At the regional scale, the Charter promotes metropolitan regions that have a clearly delineated center and edge, and attests that farmland should be preserved on the outskirts of the region and infill is a desirable and preferred alternative to building on the urban fringe. Historical patterns should be respected and preserved, and affordable housing should be equitably distributed throughout the region.

At the neighborhood level (which is defined to include neighborhoods, districts, and/or corridors), mixed-uses, mixed-incomes, and mixed housing types are all encouraged, along with a pedestrian friendly environment, inter-connected street network, and access to transit. The neighborhood level is also where the Charter suggests design codes be enacted to “serve as predictable guides for change” (CNU, 2001, n.p.).

At the block level (including the building and the street), the Charter emphasizes that public spaces must be designed to indicate they are for shared use – this includes the accommodation of automobiles and pedestrians. Public buildings should stand out as special spaces, and all buildings should “provide their inhabitants with a clear sense of location, weather, and time” (CNU, 2001, n.p.). Reinforcing this idea is the principle that safety and security are essential to revitalization, and building design should support safe environments without compromising accessibility or openness. At the block level individual buildings must be “seamlessly linked to their surroundings” and historic buildings should be preserved or renewed rather than be demolished in the name of progress (CNU, 2001, n.p.).
The Roots of the New Urbanism

In 1996, New York Times architectural critic Herbert Muschamp referred to the New Urbanist movement as the “most important phenomenon to emerge in American architecture in the post-Cold War era” (Herbert Muschamp quoted in Bohl, 2000, p. 761). Although the term New Urbanism was not commonly used until the formation of the CNU in the early nineties, the ideas associated with the movement have been gaining recognition and support since the 1970s. While at its core the New Urbanism is a post-modern reaction against Modernism, Euclidean Zoning,¹ and post-World War II suburban design, many of the planning concepts that New Urbanists support have their roots in late nineteenth and early twentieth century utopian planning movements (Fulton, 1996).

Utopian Visions: Turn-of-the-Century New Urbanist Roots

At the turn of last century, architects and urban designers began to envision various utopian alternatives to the often dirty, overcrowded life of the industrial city. These alternatives sought to recreate an idea of human-scale, community-based “village life” that had been lost in the big city (Fulton, 1996, p. 7). New Urbanists have borrowed and recycled some of the concepts and ideas that gained popularity during this time, such as the importance of parks and public spaces of the City Beautiful Movement (Fulton, 1996). The designs of the streetcar suburbs built between 1890 and 1920, while not a formal movement, often reflected City Beautiful ideas and utilized gridded street patterns oriented towards transit stops – another design concept the New Urbanists support (Fulton, 1996).

¹ Euclidean Zoning refers to zoning that calls for a geographic separation of land uses, usually specifically allowing only one type of use in a given area (for example, single family residential). The term comes from the 1926 Supreme Court case Village of Euclid, Ohio v. Ambler Realty Co., which established the constitutionality of this type of zoning.
In the 1920’s, urban designers like John Nolen attempted to use a prescribed set of design standards to create neighborhoods that functioned on a human scale – their aim was to create an updated, contemporary vision of “village life” in a modern urban setting. John Nolen’s designs have been cited as the prototype for the designs of today’s New Urbanist communities, echoed in the work of notable designer Andres Duany (Fulton, 1996, p. 8). Clarence Perry developed his concept of the neighborhood unit during this decade as well. Perry’s neighborhood unit called for some of the elements supported by the New Urbanists – each unit should have residential uses, neighborhood schools, commercial uses, and recreational space (Keating & Krumholz, 2000).

Another movement of this time period was known as the Garden City movement and was supported by the Regional Planning Association of America. The Garden City movement aimed to create new towns as an alternative to the crowded industrial cities. The movement claimed this goal could be realized through features such as green space, curvilinear streets, and the separation of the automobile from pedestrian traffic. Leading American designers Clarence Stein and Henry Wright wanted to create “a village atmosphere, accommodate the automobile, and incorporate farmland and natural areas into their designs” which appears to echo the desires, if not the methods, of the New Urbanists (Fulton, 1996, p. 8). However, the Garden City concept of “new towns” located on the urban fringe and surrounded by zones of green space manifested itself in America as auto-dominated suburbs – the dominant form of suburban development beginning in the 1920s (Fulton, 1996, p. 9).

Urban Renewal, Highway Building, and Suburbanization: The Modernist City

In theory, the federal urban renewal program (established by the Housing Act of 1949) provided funding for the removal of slums and the development of decent housing for low-income residents (Frieden & Sagalyn, 1992). In practice, the urban renewal program enabled cities to remove low-income and minority residents from desirable land in and near central
business districts – which could be redeveloped for more profitable uses – and relocate the low-income residents to large, often isolated public housing complexes (Frieden & Sagalyn, 1992). The program gave cities the power to consolidate large tracts of land relatively easily, resulting in large downtown projects spanning several city blocks (Frieden & Sagalyn, 1992). The freedom to design new projects in large spaces enabled “project planners [to make] a deliberate break with the conventional city layout, which they considered obsolete. Instead of siting the new buildings along established streets, they set them far apart from one another in open, parklike settings” (Frieden & Sagalyn, 1992, p. 41). The high-rise modernist architecture and designed isolation from surrounding neighborhoods proved disastrous for the families who inhabited the new public housing projects (Hall, 2002).

As supported in the federal Urban Renewal program, the broader modernist emphasis on open space, tall buildings, and expressways for automobile traffic carried with it “the assumption that preexisting development ought to make way for the new, and that the same kind of urbanism is appropriate in both city and county” (Barnett, 2003, p. 28). In the suburbs, modernists had a blank canvas in which to develop separate functional areas for office space, commercial buildings, and residences – facilitating and necessitating the use of the private automobile (Barnett, 2003). However, in already urbanized areas, demolition was necessary to accommodate the towering buildings and open space prescribed by modernist designs (Barnett, 2003). Emphasis and belief in modernist design and planning principles combined with heavy government subsidies for highway building under the Eisenhower administration led to

... America’s interconnected system for urban renewal/removal and suburban growth/sprawl, both resulting in a wasteful consumption of resources and negative consequences for families, whole communities, and the environment. Both efforts primarily served the interests of citizens who appeared to pay their own way, although major government subsidies heavily assisted both enterprises. Both efforts created less than admirable consequences for the poor and working poor. (Pyatok, 2000, p. 805)
Though the slums cleared through Urban Renewal could be so neglected or poorly constructed that the buildings were not worth saving, “the idea that within the boundaries of a given district there was nothing worth saving, and that preserving an older building would interfere with the best new design for the area” resulted in a placeless sterility that was the subject of much criticism (Barnett, 2003, p. 34). The critics of Urban Renewal and modernist planning and design principles would lay the groundwork for the New Urbanism movement.

The Modernist movement has left a legacy on planning and design that can be seen today in the Euclidean zoning practices that continue to be used not only in the suburbs, but in the central cities as well. Urban Renewal’s ability to erase traditional block patterns through demolition and redevelopment combined with the adoption of zoning codes that mandated separation of land uses and allowed for large areas of open space resulted in a break from historic land uses and site design in the central city (Barnett, 2003). These types of zoning codes make the traditional development patterns advocated by the New Urbanists illegal even in the historic city where they were once the standard; Euclidean zoning codes are still the standard used by most cities and towns today (Barnett, 2003; Ellis, 2002).

Post-modernism, Historic Preservation, and the Birth of the New Urbanism

In 1961, Jane Jacobs published the groundbreaking book *The Death and Life of Great American Cities*. In it Jacobs asserted that life in mixed-use, bustling neighborhoods and streets of the city – which modernists saw as disorganized and chaotic – was actually superior to the sprawling suburbs and to the useless open spaces of Urban Renewal projects. Jacobs claimed that the street, dominated by pedestrians rather than by automobiles, served as a meeting place and activity center for the residents and helped to create a sense of community (Fulton, 1996).

The destruction of older, urban neighborhoods and communities by Urban Renewal and highway building led to the recognition that something was needed to “maintain and strengthen
the physical fabric of neighbourhoods” (Hamer, 2000, p. 111). In 1960, Kevin Lynch published *The Image of the City* to address this concern by calling for the recognition of distinctive districts – emphasizing nodes, landmarks, edges, and paths – that had “homogeneous character, recognized by clues which are continuous throughout the district and discontinuous elsewhere” (Lynch quoted in Hamer, 2000, p. 111). Lynch’s writings on how to define an urban district were influential in the recognition and nomination of distinct urban districts to the National Register of Historic Places (Hamer, 2000). The ideas about historic preservation and the definition of distinct historic districts would influence the way the New Urbanists thought about the ideal characteristics of a neighborhood (Hamer, 2000).

From an urban design standpoint, the post-modern movement emerged during the 1970s, focusing on adapting historic forms to modern use. Combined with the growth of the historic preservation movement and Jacob’s criticisms in the previous decade, the atmosphere was ripe for discussion about a new way to develop that returned to past traditions rather than sprawling suburbs and modernist convictions (Fulton, 1996). In 1979 Alexander Cooper and Stan Eckstut revealed their plan for a Manhattan infill project named Battery Park City. The plan for Battery Park City included a grid street pattern and design guidelines aimed at recreating the traditional neighborhoods that existed in other parts of the city (Fulton, 1996). The design guidelines were incorporated in the purchase agreement for individual properties, so that owners were required to adhere to the design guidelines rather than a zoning code (Barnett, 2003). Although the design standards were largely successful within Battery Park City, the project still lacked features to connect it to the rest of Manhattan (Fulton, 1996). While not distinctly identified as a New Urbanist project, the ideas present in Cooper and Eckstut’s plan represent a fledging beginning for the movement.
In 1981 and 1982 Andres Duany and Elizabeth Plater-Zyberk designed the town of Seaside, Florida to utilize and test the fledgling ideas behind the New Urbanism. In 1989, two west coast thinkers (architect Peter Calthorpe and designer Doug Kelbaugh) published *The Pedestrian Pocket Book*, a small booklet describing a “new” kind of suburban development – one that was mixed-use, pedestrian-friendly, and linked to regional transit (Fulton, 1996, p. 9). Terms such as neotraditional planning, neotraditional development, traditional neighborhood development, transit-oriented development, and pedestrian pockets all describe the concepts behind this “new” urbanism. The term “New Urbanism” became part of the planning lexicon with the formation of the Congress for the New Urbanism (CNU) in 1993 (Fulton, 2006, p. 10). In 1996, the CNU adopted an official Charter of the New Urbanism that expanded the ideas of traditional neighborhood design to the regional level and gave the movement a standard set of goals, ideals, and claims (Fulton, 1996, p. 10).

A Return to the City: The Second Generation of New Urbanists

Described as “urban” New Urbanism by some, infill New Urbanist projects receive less attention than “suburban” New Urbanist projects as they are often smaller in size and not advertised or reported on by the media (Day, 2003, p. 83). However, many second generation New Urbanists are focusing on existing urban areas rather than greenfield sites. DKP is one example of a New Urbanist design firm committed to applying the New Urbanism to existing urban places – the federal department of Housing and Urban Development (HUD) is another entity supporting urban applications of the New Urbanism.

HUD’s Housing Opportunities for People Everywhere (HOPE) VI program explicitly requires the use of New Urbanist design principles in the redevelopment of its public housing stock to support a mix of incomes and tenures and reconnect the sites to the surrounding neighborhoods (Bohl, 2000). Major goals of the HOPE VI program include the reduction of
concentrated poverty by providing mixed-use, mixed-income public housing projects and the improvement of the overall design of public housing – often this entails a reduction in density and a retreat from the high-rise modern public housing projects of the past (Bohl, 2000, p. 765). Through the HOPE VI program “New Urbanism is undergoing an extensive inner-city ‘road test’” (Bohl, 2000, p. 767).

Infill and New Urbanism: The Region, the Neighborhood, and the Block

New Urbanism faces great challenges for infill development. Public policies such as urban renewal, highway building, and high-rise public housing projects have created pockets of poverty, further concentrated by the abandonment of urban cores by the middle class and an overall disinvestment in the central city. Private practices such as red-lining, blockbusting, and neglect have also contributed to the problems of the central city (Ellis, 2002, p. 271).

The New Urbanism can and has been applied to infill revitalization projects. These projects include public housing sites, brownfield sites, transit-oriented development projects, and both small and large private infill endeavors (Bohl, 2000). The highest profile New Urbanist urban projects are those of the HOPE VI public housing revitalization program (Day, 2003).

While some expensive inner-city neighborhoods have already experienced reinvestment making gentrification the major concern, many more inner-city areas struggle with disinvestment, concentrated poverty, and abandoned buildings (Bohl, 2000). Arguably, these places represent opportunities to create more desirable, better quality housing without fear of large-scale displacement of residents given the tendency of these areas to be “undercrowded” (Bohl, 2000, p. 772). However, New Urbanism may not be suitable for all infill settings, particularly those with an existing culturally diverse population with varying ideas about what constitutes a livable neighborhood (Day, 2003).
The challenges and opportunities for New Urbanism in urban places will differ from suburban applications and from each other (Day, 2003, p. 83). The challenges of creating a community of diverse income levels in an inner-city application differs greatly from a greenfield project:

In suburban “greenfield” settings, “supporting diversity” involves accommodating lower middle- or working-class residents in what are essentially middle- or upper-middle-class neighborhoods. Recommended housing options include single-family homes, town homes, “grannie flats,” and accessory apartments….In contrast, in HOPE VI public housing renovations, supporting diversity involves attracting middle-income professionals to stigmatized and marginalized poor communities. (Day, 2003, p. 84)

Additionally, urban infill projects that aim to support economic development through a mixture of housing types and price ranges often run the risk of gentrification (Larsen, 2005). New Urbanist projects that result in gentrification run contrary to the goals of such projects to promote equity and diversity in neighborhoods.

Research in Pittsburgh has identified three fairly distinct applications of New Urbanism in central cities: community, neighborhood, and scattered site (Bohl, 2000, p. 772). These types align with the three scales specified in the Charter of the New Urbanism (region, neighborhood, and block). While the Charter’s regional scale focuses more on the importance of maintaining the boundaries of the metropolitan area, when looking at strictly urban applications, the region can be equated to a comprehensive vision for redevelopment across individual central city neighborhoods. As applied to infill sites, the neighborhood level and the block level equate more directly to the broad principles outlined in the Charter.

The Region: Cities Adopt New Urbanist Initiatives

Across the country, cities have been adopting New Urbanist guidelines to support revitalization efforts in their distressed neighborhoods. New Urbanism makes sense for inner-city neighborhoods in places like Winter Park, Florida because “the bones are there: We have an
urban neighborhood, 50-foot wide lots, walkable blocks, short door yards, odd-shaped lots and sizes” (Merrill Ladika, Director of Winter Park Redevelopment Agency, quoted in Bohl, 2000, p. 776). Unlike urban renewal efforts of the past that allowed lots to be combined to accommodate more characteristically “suburban” projects, New Urbanism allows cities to protect and enhance the historic qualities that support place-making and urban character. Additionally, New Urbanism allows densities that may help support the transit that often already exists in the city (Bohl, 2000). Unlike greenfield applications, in which private developers often initiate new development (Larsen, 2005), revitalization efforts often reflect the plans and desires of local governments.

Louisville, Kentucky’s “Sustainable Urban Neighborhoods” (SUN) initiative includes New Urbanism as part of a comprehensive approach towards neighborhood revitalization. The plan supports five goals: human development, economic development, housing, crime prevention, and planning and communications, although New Urbanism is most easily applicable to the last three (Bohl, 2000). SUN views New Urbanism as compatible with the character and quality of the existing history of the neighborhoods (Bohl, 2000). Design charrettes have been used to promote the planning and communication goals of the SUN initiative in an attempt to promote a bottom-up community-based planning process even though the SUN initiative calls for the application of the New Urbanism (Bohl, 2000).

In Chattanooga, Tennessee, the Chattanooga Neighborhood Enterprise (CNE) has hired private developers to create mixed-use, mixed income plans for declining areas around its central business district. CNE aims to attract private developers to fully implement their redevelopment plan by financing successful demonstration projects (Bohl, 2000). The CNE favors New Urbanism for these projects as it can be adopted to the historic scale of the city (many of the...
targeted neighborhoods already have grid patterns and existing lots) while still increasing density that may help support transit and attract more retail to the city (Bohl, 2000).

Orlando, Florida has adopted an Urban Design Element as a part of their state-mandated comprehensive plan that reflects New Urbanist design principles. The Urban Design Element identifies the sections of Orlando that existed prior to World War II as the “traditional city” and prescribes design standards that require new development within those areas to be consistent with the existing pattern (Larsen, 2005). These standards help encourage infill development on small lots by allowing them to be developed in a manner consistent with their character rather than in a suburban manner that requires larger lots. The entire district of Parramore falls within the boundaries of the “traditional city” of Orlando and will be discussed in detail in Chapters Four and Five.

While New Urbanism supports the goals and visions many cities have for revitalization projects, some critics have concerns and reservations about the effects of these projects on lower income residents. As the Chattanooga plan indicates, revitalization efforts often aim to attract private investment to certain target areas of the city. Greater investment in distressed areas can lead to positive outcomes for the city such as increased tax revenues, greater economic diversity, improved roads and public facilities, and new commercial and cultural resources, but it can also result in the gentrification of areas formerly inhabited by lower income residents (Larsen, 2005). Without proactive planning to retain or provide affordable housing, equity goals of the New Urbanism may not be realized in revitalization efforts (Larsen, 2005).

The Neighborhood: HOPE VI and Large-scale Infill Projects

New Urbanism supports a mix of housing types that can be adapted to serve mixed-income neighborhoods. The HOPE VI program explicitly requires the use of New Urbanist principles in the redevelopment of its public housing stock partly for this reason (Bohl, 2000). Major goals of
the HOPE VI program include the reduction of concentrated poverty by providing mixed-use, mixed-income public housing projects and the improvement of the overall design of public housing – often this entails a reduction in density and a retreat from the high-rise public housing projects of the past (Bohl, 2000).

Many HOPE VI redevelopment projects aim to demolish the worst of public housing (often barracks-style and “tower-in-the-park” high rises) including infamous projects like Cabrini-Green, Robert Taylor Homes, and Henry Horner Homes. The physical deterioration and social failure of these types of housing projects have come “to symbolize the failure of housing and welfare policies” in America (Bohl, 2000, p. 767). Since the failure of these projects often is blamed on the physical plans and designs (Bohl, 2000), the New Urbanism seems a fitting if not ironic solution given its emphasis on physical design.

In the mid 1990s, the CNU worked with HUD to tailor New Urbanist principles to specifically apply to the inner-city, benefiting from the publicity and funding associated with the HOPE VI program. By 1999, close to 300 grants in 124 communities equaling $3.5 billion dollars and involving roughly 53,000 public housing units had been approved (Bohl, 2000, pp. 765, 767). While funding has been cut in recent years, the program continues to provide funding for the redevelopment of distressed public housing using the principles of the New Urbanism.

Just as opportunities for infill and redevelopment in the private sector vary greatly, so do the public housing projects that have been targeted for HOPE VI redevelopment. The projects vary in the number of units, physical design, vacancy rates, and condition, and these variations shape what form the redevelopment will take. Approaches range from the complete demolition of existing projects to “the rehabilitation and retrofitting of existing buildings and infrastructure, the preservation of historic buildings, and the addition of new sections to existing
neighborhoods” (Bohl, 2000, p. 770). Some projects even use a combination of approaches, such as the Fourth Ward Revitalization Plan in Houston (Bohl, 2000).

Lafayette Courts and Lexington Terrace, two 1950s high-rise public housing complexes in Baltimore, Maryland, typify the problems often associated with public housing projects. Out of synch with their surroundings (the two high-rise buildings towered above the typical row houses of the city), they stood out as public housing to anyone passing by (Bohl, 2000). Built on “super blocks,” they were also isolated from the surrounding city. They each displayed a typical pattern of decline, largely abandoned by the time they were slated for demolition in 1994 through the HOPE VI program. The redeveloped projects included “ground related” town homes and row houses, mixed-uses in the form of day care centers, recreation centers, community centers, and a range of housing tenures. While Lafayette Courts (now called Pleasant View Gardens) stayed primarily rental with only a few units targeted for home ownership, the Baltimore Housing Authority designated 100 of the 303 reconstructed units in Lexington Terrace for home ownership (Bohl, 2000, p. 768). Lexington Terrace also incorporated more mixed-use than Lafayette Courts with 30,000 square feet of office and retail space (Bohl, 2000, p. 769).

In Washington, DC, one HOPE VI project (Ellen Wilson Homes) has focused largely on respecting the historic character of the nearby Capitol Hill district. The design incorporates L’Enfant’s plan for that part of the city, and preserves four historic town homes on the property (Bohl, 2000). The redevelopment utilized “a diverse mix of nearly 30 different facades on five building types that mimic Capitol Hill’s historic housing styles while adding modern amenities and creating Americans with Disabilities Act-accessible units” (Bohl, 2000, p. 769). The 5.3-acre

2 Pierre-Charles L'Enfant designed a master plan for Washington DC in the 1790s that is considered to be one of the greatest examples of a master plan for a city in the United States.
Another example of a demolition project can be found in Louisville, Kentucky in the Park DuValle (formally known as Cotter and Lang) project. This single project demolished 1,100 public housing units on 130 acres and replaced them with 1,200 units representing more than 600 apartments, 450 units for homeownership, independent-living for seniors, a school, a health center, and a 25,000 square foot town center with “plans for big box and smaller-scale retail and office uses and apartments on the second floor” (Bohl, 2000, pp. 769-70). Park DuValle exists as a good example of a truly mixed-use public housing redevelopment – its large scale and promotion of mixed use make it stand out among other HOPE VI projects (Bohl, 2000).

Demolition and complete reconstruction is not required for a HOPE VI project. A notable example of a HOPE VI project aimed at rehabilitation rather than demolition can be found in Diggs Town (Norfolk, Virginia). The changes made through the HOPE VI program to Diggs Town focused on improving the defensible space and “territorial definition” in the neighborhood through landscaping and exterior changes to the barracks-style buildings (Bohl, 2000, p. 770). Landscaping efforts included the creation of front and back yards out of previously “anonymous outdoor public space” and the introduction of through streets for increased accessibility and visibility (Bohl, 2000, pp. 770-1). Architectural changes to the exterior of the buildings included front porches, windows, fences, patios, and storage sheds aimed at changing the project’s easily identifiable “public housing” façade – the porches and picket fences, “although reduced to a

3 Section 8 housing choice vouchers are a part of a federal program for very low-income families, the elderly, and the disabled to afford housing in the private market.
cliché by New Urbanism’s critics…were requested by the residents themselves for the express purpose of improving opportunities for social contact” (Bohl, 2000, p. 771).

Despite the seemingly positive improvements made to the public housing projects described above, the HOPE VI redevelopments have not been without setbacks and unintended consequences. Despite the changes made to Diggs Town, its isolated location made it impossible to fully integrate the project into the city. It remains physically separated due to its location on the opposite side of the Elizabeth River. Additionally, the through streets that were intended to make the interior of the project safer and more accessible “created a problem with a drive-through drug trade that [had to be] countered by stationing a community police officer within the neighborhood” (Bohl, 2000, p. 771). Diggs Town represents an instance where physical improvements could not reverse the social or economic problems of the neighborhood on their own (Bohl, 2000).

HOPE VI projects are not the only large-scale infill New Urbanist projects happening in cities. In Pittsburgh, the City Urban Redevelopment Authority hired Urban Design Associates (UDA) of Pittsburgh to redevelop a 20.5-acre site that had been cleared for urban renewal in the late 1950s and early 1960s, displacing approximately 8,000 African-American residents. In 1991 UDA of Pittsburgh began a visioning process to develop a resident-sanctioned plan for a redevelopment project, Crawford Square. Crawford Square follows New Urbanist principles, includes both rental and owner-occupied housing (50 percent of the units are subsidized), and incorporates amenities like a swimming pool, fitness center, parks, and playgrounds (Bohl, 2000).

The Block: Investment Opportunities for Private Developers

Small-scale applications of New Urbanism receive less attention than their large-scale cousins in part because “the CNU…wants larger projects to achieve real impact and to provide
demonstrations it thinks are worth emulating. So the CNU, with only a few exceptions, gravitates toward larger-scale sponsors” (Pyatok, 2000, p. 806). While large sponsors such as HUD, private suburban developers, and redevelopment agencies tend to garner the most attention from the CNU, some small-scale efforts by non-profit development corporations have also embraced the New Urbanism (Pyatok, 2000).

Ideally, all New Urbanist projects should be planned so that multiple architects design buildings, promoting variety while following the strict architectural code and design guidelines the CNU promotes. The resulting developments theoretically reflect the same piecemeal qualities of older neighborhoods that developed slowly due to many different builders filling in one or two lots (Ellis, 2002). Small-scale New Urbanist projects may realize this goal without the need for multiple architects, as they will include only a few buildings in the area and will not need to manufacture a diverse streetscape.

Daniel Solomon, a founding member of the CNU, has concentrated his own work on small-scale infill projects in cities like San Francisco and Los Angeles (Bohl, 2000, pp. 774-5). Since he works on small lots (some are less than one acre), he often uses higher densities to make the most of the space and layers of subsidy programs to make the units affordable to a range of incomes. While the projects are not mixed-use, some (like Vermont Village in Los Angeles) are located near commercial developments. Many of Solomon’s projects use leftover lots that were cleared through urban renewal programs but never redeveloped (Bohl, 2000).

Another California example of a smaller scale project involves the redevelopment of an out-dated strip mall near a new commuter transit station by Calthorpe Associates. The new development was mixed-use and mixed-income, and included single-family homes, town homes,
row houses, and apartments (Bohl, 2000). The location provides shopping and transit within walking distance – something greenfield sites rarely can provide outside the actual development.

For over 30 years, Dan Camp has been working in Starkville, Mississippi, to revitalize the historic Cotton District. His work may represent “New Urbanism’s practicality in the long-term, incremental transition of inner-city neighborhoods” (Bohl, 2000, p. 775). Using a combination of approaches, Camp has rehabilitated and redeveloped properties representing various sizes, prices, and tenures. While Camp’s “de facto” New Urbanist approach may have been accomplished on a small-scale, site-by-site basis, its long-term larger scale success makes it a prominent case to argue for New Urbanism’s ability to “leverage the enduring value and flexibility of traditional urban neighborhoods and buildings” (Bohl, 2000, pp. 775-6).

Reclaiming Urban Form

New Urbanism redevelopment of neighborhoods and districts has the potential to allow cities to reclaim traditional block patterns that may have been lost through urban renewal, highway building, public housing developments built on super blocks, and the general suburbanization of the central city. Especially for public housing developments and troubled neighborhoods, the New Urbanism may allow the targeted areas to be connected to the surrounding city rather than exist in isolation. However, as evidenced by Digg’s Town, this element does not guarantee positive outcomes. The Norfolk Redevelopment and Housing Authority did not try to integrate a mixture of incomes into the Diggs Town neighborhood but rather aimed to use design to lessen the stigma attached to public housing. This resulted in a continued concentration of poverty isolated from social and economic opportunities (Bohl, 2000, p. 771). The next chapter introduces the methodology that will be used to explore the relationship between the evolving physical patterns of the Parramore District in Orlando, Florida, and the design standards of the New Urbanism.
CHAPTER 3
A METHODOLOGY TO MEASURE AND COMPARE URBAN PATTERNS

This chapter describes the methodology that will be used to analyze and evaluate the case study area. Three different patterns are examined in the case study neighborhood: (1) the existing patterns (the major sources of data being aerial photography and tax assessor parcel data), (2) the historic patterns before the introduction of zoning (the major source of data being Sanborn maps from 1925), and (3) the proposed New Urbanist redevelopment patterns, as described in DKP’s Master Plan for Parramore (1994). Because of variations in the form and availability of data associated with each set of development patterns, it was not possible to apply the same intensity of analysis for all three scenarios.

The current patterns are categorized according to how well they meet the standards for good urban design in a “general urban” transect¹ as described by Talen (2005). General urban transects have the following characteristics:

- Generalized, but primarily residential, habitat of a community.
- Buildings consist of single-family, detached houses and rowhouses on small and medium-sized lots.
- Limited office buildings and lodging are permitted.
- Retail is confined to designated lots, typically at corners.
- Buildings are a maximum of three stories.
- Open space consists of greens and squares. (Duany & Talen, 2002, p. 255)

¹ Transect planning is an adaptation of the New Urbanism that divides environments into six transects based on physical characteristics (Rural Preserve, Rural Reserve, Suburban, General Urban, Urban Center, and Urban Core). The idea is that while good urban design is always walkable and human scaled, the elements necessary to achieve good place-making vary from transect to transect, so varying guidelines for urban form are established in each transect (Duany and Talen 2002).
While the study area may not directly meet all of the above characteristics of general urban transects, the area fits the description of general urban transect better than other types of transects.

The next step in the methodology involves a comparison of the current patterns to what historically existed in the study area and to what the new urbanism master plan proposed for future development in the neighborhood. The methodology described here is intended for small-scale application in neighborhoods that existed prior to World War II and meet the description of a general urban transect. The concepts could potentially be modified and expanded to apply to other transects or larger areas of land, but those applications are beyond the scope of this study.

Categorizing the Current Land Use Patterns: The General Urban Transect

The methodology used to classify the current development patterns in the study area is largely adapted from Talen’s (2005) approach of using a geographic information system (GIS) to measure good urban form through variables derived from two-dimensional data. The methodology uses GIS layers to represent various aspects that good urban form (as described in the Charter for the New Urbanism) should display. Four categories are considered: (1) “spatial enclosure and definition,” (2) “the public realm,” (3) “spatial suitability,” and (4) “spatial diversity” (Talen, 2005, p. 210). Each of the four categories has two layers associated with it, resulting in eight variables or layers for analysis. The variables measure aspects of the pedestrian experience of the city, consistent with the Charter for the New Urbanism’s focus. These eight layers and the process by which they were created are described in detail below and summarized in Table 3-1. A final step converts the eight layers into raster layers and combines them into a
single layer representing high, medium, and low scoring sections of the study area. All of the data processing is done using ESRI’s ArcGIS Version 9.2.²

Layer 1: Enclosure

Talen (2005) defines enclosure as “the degree to which buildings or landscape elements define the public environment” (214). Using roadway centerlines and tax assessor parcel data, an enclosure area is defined as the 45 feet around each block. The enclosure area does not extend into the street, but rather includes the first 45 feet of each property parcel. While 45 feet is an admittedly permissive measure of enclosure for the traditionally small residential parcels in Parramore, the prevalence of vacant lots and the practice of combining parcels into larger lots presents a situation where a permissive definition still returns many parcels that do not provide definition to the pedestrian environment. Using aerial photographs, each parcel is classified as either contributing to enclosure (when structures or trees occupied the first 45 feet of the lot) or non-contributing to enclosure (when open space or parking lots occupied the first 45 feet of the lot). For larger parcels or parcels on corners, the parcel is classified as contributing to enclosure if the majority of the enclosure area is occupied by structures or trees.

Layer 2: Lost Space

“Lost space” describes space in an urban environment that does not contribute to the pedestrian experience. Related to enclosure, lost space does not contribute to the volumetric quality of urban spaces. Parking lots, open areas without landscaping or trees, and vacant lots are examples of spaces that are “lost” from a pedestrian perspective. While some overlap exists between the lost space layer and the enclosure layer, the two layers measure separate variables. For example, while trees surrounding parking lots or on vacant lots may contribute to the...

² ArcGIS 9.2 is a collection of GIS software products designed to integrate data organization, manipulation, visualization, and creation. The software enables users to visualize data stored in attribute tables.
enclosure of the street as defined in this methodology, parking lots and vacant lots do not contribute to the volumetric quality of the space. To create the lost space layer, all of the tax assessor parcels with a land use description of “Vacant” (commercial, industrial, institutional, or residential) are selected and classified as “lost.” Then, the aerial photography for all non-vacant parcels is examined. For residential uses, the only areas classified as lost are parking lots located in front of buildings, excluding driveways for single-family homes. For non-residential uses, any part of the parcel not covered by a building or structure is considered lost space, except when located behind the building and bordered on all sides by buildings or structures on adjacent parcels. Parking garages are not classified as lost space, since they are structures.

Layer 3: Sidewalks

Sidewalks are an important part of the pedestrian experience, and the hierarchy of sidewalks is reflected here. The most desirable sidewalks will offer the pedestrian protection from the automobile activity on the street through a buffer such as planting strips, shade trees, or on-street parking. However, even non-buffered sidewalks still offer the pedestrian safety from the street traffic and are considered more desirable than no sidewalks at all. This layer uses aerial photography to classify each parcel into one of three groups: parcels with sidewalks buffered from the street, parcels with sidewalks, and parcels with no sidewalks. For any parcels with more than one side adjacent to a street, the conditions of the longest side are used to assign a classification.

Layer 4: Public Space

This layer represents the defined public spaces of the study area. While large open tracts of land may be desirable and valuable in a rural transect, this analysis does not consider them

3 For the composite layer, only two groups are considered; parcels with sidewalks and parcels without sidewalks (both buffered and non-buffered sidewalks receive the same value).
appropriate for an urban setting (Talen, 2005, p. 216). Defined public space includes all public buildings and the landscaped areas that surround them. Parking garages are considered defined space, but parking lots and unlandscaped open spaces are not. Lakes surrounded by landscaping and paths are considered defined public places – but lakes in their natural state are not.

First, all the property assessor tax parcels that have a classification indicating public ownership are selected (other counties, other municipal, other federal, orphanages, and public schools). Then, aerial photography is examined for each of the parcels. Parcels that are vacant are classified as entirely undefined. For parcels with both defined areas (buildings and landscaping) and undefined areas (parking lots and open space), the parcel is split into new polygons for classification.

Layer 5: Incompatible Streets

This layer looks at the type of streets residential parcels are located on. First, all residential parcels are selected and exported to create a new layer. Then, residential parcels bordered on any side by a major road are selected and classified as incompatible. Roads classified by the Florida Geographic Data Library as highways, collectors, or arterials are considered to be incompatible for residential uses. While the actual design speed or roadway width may provide a more accurate measure of incompatible streets, that data was not available for the study area at the time of this writing.

Layer 6: Lot Width

The desirable lot width in a “general urban” transect has been defined as 36 to 72 feet (Talen, 2005, p. 218). The width of the parcel is measured at the edge of the lot line adjacent to the street. For parcels that transverse an entire block – and therefore have lot lines adjacent to more than one street – the smallest width is used. For parcels located on block corners, the orientation of the building is used to determine which street to measure the width along.
However, in cases where the orientation of the building could not be determined using the aerial photography, the smallest width is used.

Layer 7: Proximity

This variable uses a raster layer\(^4\) to measure proximity of residential parcels to public space and retail. First, a raster layer for residential parcels is created. Then, Spatial Analyst is used to generate a raster layer representing proximity of residential parcels to public space and retail. For public space, only the defined public spaces from layer 4 are considered. For retail, the distance to the actual structures (not the lost space of the parking lot) is used.

Layer 8: Land Use Mix

This layer represents the level of land use mix in the study area. First, the parcel layer is converted into a raster layer based on the land use classifications. Some land use classifications are excluded from the analysis because they do not contribute to a desirable level of land-use mix (centrally assessed land, rights-of-way, utilities, mineral processing, industrial storage, and parking lots are given no value). Using Spatial Analyst, neighborhood statistics are generated that give each cell a value that is a “function of the value of that location plus the values of surrounding locations” (Talen, 2005, p. 221). Higher values represent a higher level of land-use mix and lower values represent a more homogeneous land use distribution.

Composite Layer: Calculating the Final Values

After the eight separate layers are created, they are combined into a single composite layer. This composite layer is used to identify which sections of the study area most represent a New Urbanist definition of good urban form – and which areas do not. To create the composite layer, the first step is to convert all of the eight layers described above into raster layers. For layers 7

\(^4\) Raster layers use a grid of uniform cells (similar to pixels) that each have a single value. In this case, the value of each cell is the distance the cell is away from defined public space and retail.
and 8, this step is not necessary as they are already raster layers. All the layers are then reclassified into a common scale. For this research, all layers are considered equally important and therefore are not weighted. A binary coincidence scoring is used, where positive traits in each layer receive a value of “1” and negative traits receive a value of “0” (see Table 3-1). The benefit to using the binary coincidence scoring is that all the layers are scored using the same scale, and the final value represents the number of elements present at any given cell – a score of one indicates one element is present, a score of two indicates two elements are present, and so on. However, for variables that are not dichotomous (for example, proximity to public space and retail), this method of scoring removes the ability of the assigned value to be sensitive to the varying degrees of positive traits present in each cell.

The final value for each cell is established by adding the values of individual cells in the eight raster layers together. An analysis mask is used when creating the composite layer to normalize the results. Space in the study area occupied by right-of-ways and water bodies are scored differently depending on each layer, so cells located in these areas are given null values in the analysis mask. Additionally, all cells located outside the enclosure area from Layer 1 are given null values in the analysis mask. This simplifies the resulting composite layer – the values of the remaining cells represent those that most contribute to the pedestrian experience of the space.

Natural breaks are used to divide the cells into three categories: low-scoring, mid-scoring, and high-scoring. The lowest scoring cells represent areas of land that are the least likely to represent good urban form, as defined by the New Urbanists. The mid-scoring cells represent areas of land that are neutral in terms of good urban form. Finally, the highest scoring cells represent areas of land that best conform to the standards for good urban design in a “general
urban” transect. Because natural breaks are used to classify the values rather than equal intervals, high-scoring cells represent cells that score high compared to the other cells in the study area. Depending on the overall values for the study area, cells classified as high-scoring may not necessarily be meeting all eight elements of good urban form.

Using the Composite Layer to Guide Comparisons

The classifications described above (low-scoring, mid-scoring, and high-scoring) are used to identify portions of the study area as “analysis zones” for comparison with historic patterns and New Urbanist design proposals. Other considerations also influence the choice of analysis zones. Most importantly, appropriate data sources must be available for the analysis zones. Sanborn insurance maps are used to represent the historic patterns of the study area because they show parcel outlines, building footprints, and the location of roads. However, Sanborn insurance maps are not always available for all places and dates. The analysis zones must also be easily related to DKP’s New Urbanist proposals for the study area. Therefore, analysis zones are delineated based on three considerations: (1) the uniformity of the cell values (either mostly low-scoring or mostly high-scoring), (2) the availability of Sanborn maps, and (3) the relationship of the boundaries to those used in DKP’s proposed New Urbanist design plan for the area. Analysis zones representing both high- and low- scoring areas are used so that comparisons can be drawn between analysis zones as well as between historic, current, and proposed patterns.

The New Urbanist Perspective: How do Infill Plans Relate?

The last element the methodology explores is the relationship between areas specifically targeted for redevelopment or “design intervention” in the master design plan and the scores for those areas based on the above rating system. Using the drawings in the master plan, a GIS layer is created that corresponds to the general areas targeted. The scores from the composite layer are then calculated for the specific areas, and compared to the area as a whole.
The methodology described above represents a way to quantify and rank urban patterns, but the comparisons made between past, present, and proposed plans is largely qualitative. The methods used in this study are intended to guide the discussion of the evolution of urban form in the case study and how that evolution affects the ability of New Urbanist infill development to fit into the neighborhood’s current development patterns. In order for the results generated by the processes described above to be meaningful, an understanding of the history of the area is necessary. Chapter Four provides the reader with the historical context for the current urban form found in the case study before applying the methodology described in this chapter to the case study.
<table>
<thead>
<tr>
<th>Description</th>
<th>Binary Coincidence Scoring for Raster Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enclosure</td>
<td></td>
</tr>
<tr>
<td>0. No enclosure</td>
<td>1. Structures or trees located in the enclosure area</td>
</tr>
<tr>
<td>1. Parcels are scored based on the presence of trees or structures in the enclosure area (the first 45 feet of each parcel).</td>
<td></td>
</tr>
<tr>
<td>2. Lost Space</td>
<td></td>
</tr>
<tr>
<td>0. Polygons of Lost Space</td>
<td>1. All other areas</td>
</tr>
<tr>
<td>1. All vacant parcels or areas of parcels that are not dedicated to a structure or landscaped area, excluding areas located behind buildings.</td>
<td></td>
</tr>
<tr>
<td>3. Sidewalks</td>
<td></td>
</tr>
<tr>
<td>0. No sidewalk</td>
<td>1. Sidewalk</td>
</tr>
<tr>
<td>1. Parcels are scored based on the existence and type of sidewalk adjacent to the parcel. Sidewalks that are buffered from the street score higher than sidewalks that are not buffered from the street.</td>
<td></td>
</tr>
<tr>
<td>4. Public Space</td>
<td></td>
</tr>
<tr>
<td>0. All other parcels</td>
<td>1. Defined public space</td>
</tr>
<tr>
<td>1. Public space is defined as all parcels with a land use description that implies public ownership. Defined public space (structures or landscaped areas) is scored higher than undefined public space (open land or parking lots).</td>
<td></td>
</tr>
<tr>
<td>5. Incompatible Streets</td>
<td></td>
</tr>
<tr>
<td>0. Residential parcels adjacent to major roads</td>
<td>1. All other residential parcels</td>
</tr>
<tr>
<td>1. Parcels located adjacent to major roads are selected and scored negatively for compatibility with streets.</td>
<td></td>
</tr>
<tr>
<td>6. Lot Width</td>
<td></td>
</tr>
<tr>
<td>0. All parcels narrower than 72 feet</td>
<td>1. All parcels wider than 72 feet</td>
</tr>
<tr>
<td>1. Any parcel wider than 72 feet is selected and scored negatively for lot width.</td>
<td></td>
</tr>
<tr>
<td>7. Proximity</td>
<td></td>
</tr>
<tr>
<td>0. All other areas</td>
<td>1. Residential areas within 1/8 mile</td>
</tr>
<tr>
<td>1. Residential Parcels are scored based on their proximity (using a straight-line distance) to both defined public spaces (from layer 4) and retail uses (excluding lost space from layer 2).</td>
<td></td>
</tr>
<tr>
<td>8. Land Use Mix</td>
<td></td>
</tr>
<tr>
<td>0. All other cells</td>
<td>1. Cells having a high land use mix</td>
</tr>
<tr>
<td>1. Using Neighborhood Statistics, all parcels except for heavy industrial uses are scored based on how different they are from the parcels surrounding them.</td>
<td></td>
</tr>
</tbody>
</table>

Source: Adopted from Talen, 2005, p. 213

*Created as Raster Layer
CHAPTER 4
FINDINGS: THE CASE STUDY OF PARRAMORE

In this chapter, the methodology described in Chapter Three will be applied to the Parramore Heritage District in Orlando, Florida. The chapter begins by giving a geographic, demographic, and historic context for the study area. Second, the current development patterns are discussed. Third, comparisons are made between the development patterns in the area in 1925, the current patterns, and the proposed patterns found in DKP’s Master Plan for Parramore. Finally, this chapter discusses briefly the areas highlighted for redevelopment or “design intervention” in the Master Plan. The results presented in this chapter will be discussed in Chapter Five.

An Introduction to Parramore

For the purposes of this research, the study area1 will be the one DKP uses in their Master Plan for the Parramore Heritage District. The area is located west of the core of Orlando’s downtown, is a part of the “Traditional City” of Orlando, and is comprised of three neighborhoods – Lake Dot, Callahan, and Holden-Parramore (see Figure 4-1). Generally bound by Gore Street on the south, Interstate-4 on the west, West Colonial Drive (State Road 50) on the north, and South Orange Blossom Trail (U.S. 441) on the east, the area is approximately 1.3 square miles and represents a historically African-American community of Orlando.

Although the proximity of the area to Orlando’s downtown gives it potential for economic success, the neighborhoods that comprise the Parramore Heritage District have become “neighborhoods of last resort…[those] with a choice choose elsewhere, or get out as soon as they can” (DKP 1994: 3-1). The majority of Parramore residents are African American (see Table 4-

1 Throughout this paper, the terms Parramore and Parramore Heritage District will be used to reference the study area included in DKP’s Master Plan. This area is sometimes defined with slightly different boundaries.
While historically several African American neighborhoods existed within the Parramore Heritage District, some have argued that segregationist policies and practices resulted in the demographic patterns evident in the area today (see Larsen 2002). Close to half of the residents live below the poverty line, and many do not have a high school diploma or GED (see Table 4-1). The majority of the housing units are renter occupied (see Table 4-1). Many residents do not own cars, and two-car households are rare (see Table 4-1). In general, the neighborhoods get poorer and less diverse the further south in the study area they are located. Industrial uses are found in Parramore, particularly west and north of the railroad and along Central Boulevard, and much of the land is government owned (see Figure 4-2). Two public housing complexes, Griffin Park and Carver Court, are located in the southern portion of Parramore, and the Orlando Centroplex is located in the northeast section, just south of Lake Dot.

Historic Parramore: The Traditional Neighborhood

Located near the railroad, Parramore was settled in the 1880s by workers drawn to the jobs offered by industries fueled by the transportation system (in particular, the citrus industry). The area became a place where Africans Americans concentrated, and a community with commercial businesses, churches, and schools began to augment the job opportunities of the citrus industry. Although there was a concentration of African Americans in the Parramore area, it was not exclusively so. Many white families lived in the areas surrounding the African American neighborhoods, and white employers often provided modest housing for African American workers located close to industries.

Modernist Planning in Parramore: Zoning, Urban Renewal, and Highway Building

In the 1920s, the City of Orlando experienced a housing boom, and city officials began to find ways to make the de facto segregation of African American neighborhoods into law. While racial zoning was declared unconstitutional by the Supreme Court in 1917, segregationists in
Orlando pushed for a zoning code that would ensure the protection of middle-class, white neighborhoods as separate entities from African American neighborhoods (Larsen 2002: 158, 166-7). Attempts made in 1925 and 1926 to delineate specific areas of the city that were already predominately African American as the official “colored” sections of the city failed, but the plans reveal the intention of white leaders in Orlando to institutionalize segregation (Larsen 2002: 167).

In 1927, the first comprehensive zoning code was adopted for the City of Orlando. Like many zoning codes today, the code promoted single-family neighborhoods and provided for the complete separation of single-family areas from commercial and industrial uses. Even though the traditional patterns throughout the city reveal single family areas coexisting with commercial uses, the new zoning code called for complete separation of residential uses in white areas. However, for the predominately African American sections in Parramore – where residential uses were located near the industrial uses – the city officials “considered the mixture of industrial and residential uses convenient for employers” and designated large sections for industrial and unrestricted uses (Larsen 2002: 168). Other areas of Parramore were designated for multi-family uses, intensifying the density of some areas.

In 1940, Orlando opened its first public housing project, Griffin Park, in the southern portion of Parramore. The density of the Griffin Park housing project doubled what had previously existed, and all of the 174 units were designated for African American occupation. Griffin Park is still operated today by the Orlando Housing Agency. In 1945, a second public housing project, Carver Court, opened in the southern portion of Parramore – all 212 units were designated for African Americans. Carver Court was demolished in 2002 as a part of a HOPE VI Revitalization Grant, and plans for its redevelopment will be discussed later in this chapter.
Urban Renewal did not result in large tracts of “slums” being cleared in Parramore. However, “slum” clearance in other parts of Orlando coupled with the construction of public housing in Parramore for the African American residents displaced from other parts of the city resulted in the further densification of poor African Americans in the area (Larsen 2002).

The construction of Interstate 4 in 1960 separated the Parramore Heritage District from the rest of Orlando’s downtown. Then, in the mid-1960s, the Orlando-Orange County Expressway Authority (OOCEA) began plans for the East-West Expressway in order to provide an east-west transportation corridor for the City (Shofner 2001: 19-22). An engineering study proposed two routes for the new expressway. The first route would generally parallel Colonial Drive (State Road 50). The second route would run south of the business district along Anderson Street and cut through the Holden-Parramore Neighborhood in the Parramore Heritage District. (Shofner 2001: 21-2). OOCEA chose the second option because it would save 14.4 million dollars in estimated right-of-way costs (Shofner 2001: 21-2). In building the East-West Expressway, approximately 1,100 homes, 80 businesses, and six churches had to be acquired and demolished to create the right-of-way for the new road (Schofner 2001: 25). Although only a portion of the parcels were located in the Parramore Heritage District, the acquisition and demolition for the right-of-way served to further divide and isolate the area. The East-West Expressway opened for traffic in 1973.

With the introduction of the highway access to Parramore, a trend of demolishing residences on the east side of the Parramore Heritage District began, and many single-family units were lost (Larsen 1998: 602). Most notably, renovation and construction of civic uses south of Lake Dot resulted in the area known as the Orlando Centroplex in the 1980s.
A New Urbanist Vision for Parramore

In 1992, the City of Orlando began the Parramore Heritage Renovation Project as a “comprehensive campaign to improve the district, its governance, its economy and the quality of life of its citizens” (DKP 1994: 1-1). The project enabled the creation of community task forces to make recommendations on issues affecting Parramore’s neighborhoods and direct redevelopment efforts to areas that would serve as appropriate “model projects” (Larsen 1998: 603). The established purposes of the project were:

- To prepare, with the input of property owners, merchants, neighbors, technical experts and government officials, a detailed and vividly illustrated Plan of what all or parts of the Parramore District should become;

- To focus this Plan on the gradual transformation of the district as a vital mixed-use environment while preserving, restoring and enhancing those qualities valued by the community;

- To address in this Plan problems of traffic behavior, pedestrian mobility, site layouts, and opportunities for preservation of contributive buildings;

- To establish a simple, graphic set of Standards for development, redevelopment, and adaptive re-use in the District;

- To guide through this Plan future public investment in infrastructure, civic buildings, and public spaces; and

- To guide through this Plan future private investment by property owners so that each new act of construction will be a contributive part of the merging neighborhood fabric. (DKP 1994: 1-1)

The project resulted in the completion of two documents in the summer of 1994: the Parramore Heritage Renovation Strategic Plan and the Parramore Heritage District Master Plan. The former was adopted by the city council, but one of the main funding sources outlined in the plan – designation as a federal Urban Enterprise Community – failed to materialize, indefinitely delaying the plan’s goals. The latter, a design plan created by DKP, was also adopted, but Orlando’s Land Development Code was never amended to align with the design
guidelines outlined in the plan (Larsen 1998: 603-4). Although never put into practice, the Parramore Heritage Renovation District Master Plan is used in this case study as a theoretical document that provides evidence for a discussion on how the New Urbanism can fit into an existing historic neighborhood that has experienced a degradation of its traditional fabric.

Carver Park and HOPE VI

As mentioned previously, Carver Court was demolished in 2002 to be redeveloped as a HOPE VI project. The redevelopment, which will be renamed Carver Park, will replace the 212 units that previously existed with 203 housing units, including 64 units for a seniors-only multifamily complex (Bryant 2006). The other units will be attached town homes, single family detached homes, duplexes, quadplexes and row houses, with some units designated for rental and some for home ownership (Bryant 2006). The 17-acre site located between Conley Street and Gore Street will also include a three-acre lake and introduce through streets to create smaller blocks than currently exist (Bryant 2006).

The master design plan created by DKP in 1994 identifies the Carver Court complex as an area in need of “design intervention,” criticizing the area for overly large blocks, buildings oriented away from streets, and undefined public space (DKP 1994: 6-14). While the DKP proposed plan for the area calls for the replacement of some of the buildings in the complex, the introduction of two new connecting streets, and the addition of street trees and hedges to better define public spaces, the HOPE VI redevelopment plan allows for more ambitious development. The plans for Carver Court, scheduled for completion in 2008, incorporate the New Urbanist principles supported by DKP’s proposed changes for the area through complete demolition and rebuilding.
Current Patterns: Measuring Good Urban Form

The Parramore Heritage District contains 1,983 parcels, most of which (1,374 or 69.22 percent) are residential parcels. However, residential parcels only cover 199.08 acres (24.39 percent of the total land area). Publicly owned land accounts for another 20.14 percent of the total land area, and industrial uses are also common (14.66 percent of the total land area). The layers below use parcels as the main way to assign values associated with distinct elements of good urban form. The layers below were created using the methodology described in Chapter Three.

Layer 1: Enclosure

In the study area, 62.41 percent of the parcels have structures or trees in the first 45 feet that contribute to the enclosure of the street. However, only a few streets are enclosed on both sides (see Figure 4-3). Areas with good enclosure exist directly north of Washington Street and east of Parramore Avenue, around Lake Dot, south of South Street and north of Long Street, and small enclaves south of the East-West Expressway and east of the Interstate-4 interchange (see Figure 4-3).

Layer 2: Lost Space

Parramore has 535 parcels with vacant classifications that are classified as lost space outright (433 vacant residential parcels, 89 vacant commercial parcels, eight vacant industrial parcels, and five vacant institutional parcels). With the addition of lost space evident in parking lots and other undefined spaces, 825 polygons of lost space exist in the study area covering 224.4 acres (27.49 percent of the total area). The lost space is evenly distributed throughout the study area (see Figure 4-4).
Layer 3: Sidewalks

Over half of the parcels (57.29 percent) have sidewalks – 22.09 percent of the parcels have sidewalks that are not buffered from the street and 35.2 percent of the parcels have sidewalks that are buffered from the street. However, 35.75 percent of the parcels have no sidewalks at all. Sidewalks are fairly evenly distributed throughout the study area, although the northwest section of the area has the most consistent coverage (see Figure 4-5).

Layer 4: Public Space

In the study area, there are 182 parcels (164.38 acres) with a land use classification that indicates public ownership. When undefined space is removed, 44 polygons (66.18 acres) exist of defined public space. Therefore, a fifth (20.14 percent) of the total land area in Parramore is publicly owned, but only 40.26 percent of the publicly owned land exists as defined public space. The public space is mostly concentrated in the northeast section of the study area (where the Centroplex and other public buildings are located), with a scattering of public space in the southern portions of the study area (see Figure 4-6).

Layer 5: Incompatible Streets

Of the 1,374 residential parcels in the study area, 472 parcels (34.35 percent) are located adjacent to incompatible streets (see Figure 4-7). Of these, 119 are multi-family parcels for less than ten units (25.21 percent), 16 are multi-family greater than ten units (3.39 percent), seven are orphanages (1.48 percent), 200 are single-family parcels (42.37 percent), and 130 are vacant residential parcels (27.37 percent). Generally, the distribution of the residential parcel types located next to incompatible streets matches the distribution of residential parcel types as a whole, with a few exceptions. Over half of the parcels classified for orphanages and multi-family greater than ten units are located adjacent to incompatible streets (61.54 percent and 63.64 percent, respectively).
Layer 6: Lot Width

Of the 1,985 parcels in the study area, 497 (25.04 percent) are wider than 72 feet. While the parcels are located throughout the study area, there are concentrations of wide parcels along the east and west boundaries of the study area as well as running east to west along Church Street and Central Boulevard (see Figure 4-8). Residential parcels (including parcels dedicated to uses generally allowed in residential areas such as churches and schools) account for 49.27 percent of parcels wider than 72 feet, industrial parcels (including automobile repair and service stations) account for 30.83 percent, retail and office parcels account for 20.39 percent, and government-owned parcels account for 19.17 percent.

Layer 7: Proximity

The residential parcels in the study area are well served by retail and public space. No residential parcel is farther than a fourth of a mile from a retail parcel or a defined public space, and 95.38 percent of the residential areas are located within an eighth of a mile to a retail parcel or a defined public space (see Figure 4-9). This layer represents one of the variables that is not dichotomous. However, the uniformity of the results indicates that using the dichotomous scoring system did not result in a loss of sensitivity to the varying distances of each cell.

Layer 8: Land Use Mix

This layer uses neighborhood statistics to calculate land use mix. The values for land use mix range from one to six. Because of the high percentage (74.16 percent) of land with values of one and two, values of three and higher are considered to have a “high” land use mix. Excluding areas occupied by roads, water bodies, centrally assessed land, rights-of-way, utilities, mineral processing, industrial storage, and parking lots, 25.84 percent of the study area contains a high level of land use mix. These areas are generally concentrated south of Church Street and north of the East-West Expressway and north of Washington Street between Westmoreland Drive and
Parramore Avenue (see Figure 4-10). This layer represents another variable that is not dichotomous, but like the proximity layer the values of the cells are fairly uniform. In this case, using a binary coincidence scoring system rates cells with a value of three the same as cells with a value of six. However, because 74.16 percent of the land scored only a one or a two for land use mix, this loss of sensitivity does not significantly affect the overall results.

Composite Layer: Calculating the Final Values

Using the scoring methodology described in Chapter 3, each of the above layers is converted to a raster layer with cells scoring either “0” or “1”. Table 4-2 shows the percentage of cells scoring “0” and “1” in each raster layer. The layers with the highest percentage of land scoring “1” are lost space (63.1 percent), sidewalks (65.22 percent), and incompatible streets (89.88 percent). The layers with the highest percent of cells scoring “0” are enclosure (78.89 percent), public space (91.91 percent), lot width (65.93 percent), proximity (68.78 percent), and land use mix (74.16 percent). These percentages represent the scores for individual layers before the analysis mask is used (all land in the study area including streets and water bodies is still represented in each layer). When the layers are added together using the enclosure area as an analysis mask, roads, water bodies, and all land outside the enclosure area (not encountered by pedestrian) are removed from the final results (see Figure 4-11).

In the composite layer, the final cell values range from zero (cells at that location meet none of the desired urban form characteristics) to eight (cells at that location meet all of the desired urban form characteristics). Only one cell (0.01 percent of total) scored a zero, and only one cell (0.01 percent of total) scored an eight. The distribution of the remaining values is 5.77

2 The percentages are different than the ones described for the vector layers because they include every single cell in the study area. For layers that measure a positive characteristic (enclosure, sidewalks, public space, proximity, and land use mix) all cells that do not meet the specific characteristic are assigned a value of 0. For layers that measure an undesirable characteristic (lost space, incompatible streets, and lot width) all cells that meet the characteristic are assigned a value of 0 and all other cells are assigned a value of 1.
percent with a score of one, 18.65 percent with a score of two, 22.99 percent with a score of three, 22.79 percent with a score of four, 17.4 percent with a score of five, 9.84 percent with a score of six, and 2.55 percent with a score of seven (see Figure 4-12). The cells are divided into three categories: low-scoring (values of 0-3), mid-scoring (values of 4 or 5), and high-scoring (values of 6-8) using natural breaks in the distribution of the data.

Analysis Zones

Using the value ranges described above as a guide, four analysis zones are selected for detailed comparison (see Figure 4-13). Analysis zones A and B represent generally high- and mid-scoring areas, while analysis zones C and D represent generally low-scoring areas. Other considerations for selecting the analysis zones were the availability of Sanborn maps from 1925 for the area and the boundaries of close-up views in the 1994 Master Plan.

While the northwest section of the study area (generally north of Robinson Street and west of Westmoreland Drive) displays many low-scoring cells (see Figure 4-11), Sanborn maps did not offer consistent coverage of the area in 1925. Similarly, enclaves of high and low scoring cells in the southwest section of the study area – south of the East-West Expressway and West of the Interstate-4 Interchange (see Figure 4-11) – were not chosen for detailed comparison because Sanborn maps did not offer complete coverage in 1925. The Master Plan splits the Parramore Heritage District into eight areas based on “what fits comfortably on each page, not by neighborhood or ward boundaries” (see Figure 4-14), and then includes close-up views for each of the eight areas (DKP 1994: 5-2). The boundaries of the four analysis zones respect the boundaries of the close-up views in the 1994 Master Plan to allow for ease of comparison of the current patterns with those proposed in the plan.
Analysis Zones A and B: High-scoring Areas

The raster cell values for these two zones are generally high, although no cell scores the highest possible score of eight and only one cell scores a seven. Of the 1,811 cells in the two zones, 11.84 percent (216) score a six, 31.41 percent (573) score a five, 30.7 percent (560) score a four, 19.3 percent (352) score a three, 6.25 percent (114) score a two, and 0.44 percent (8) score a one (see Figure 4-15). No cell scores zero in these two zones.

Zone A is located in the northwestern portion of the study area (see Figure 4-13, Figure 4-14). It is generally bounded on the south by Robinson Street, the west by the railroad, the north by Livingston Street (from the railroad to Westmoreland Drive and from Lee Avenue to Parramore Avenue) and Federal Street (between Westmoreland Drive and Lee Avenue), and to the east by Parramore Avenue. The zone is 33.73 acres and has an average of 4.68 parcels per acre. The 158 parcels contain 74 single-family parcels, 26 vacant residential parcels, seven multi-family parcels, five municipal parcels, three one-story store parcels, two vacant commercial parcels, two vacant institutional parcels, and two warehouse/distribution center parcels.

Zone B is located in the southwestern portion of the study area, just north of the East-West Expressway (see Figure 4-13, Figure 4-14). It is generally bounded on the south by Long Street, on the west by Woods Avenue, to the north by Randall Street (between Woods Avenue and Lee Avenue) and South Street (between Lee Avenue and Parramore Avenue), and to the east by Parramore Avenue. The zone is 28.19 acres and has an average of 6.1 parcels per acre. The 172 parcels contain 66 single-family parcels, 49 multi-family parcels (all less than 10 units), 40 vacant residential parcels, seven one-story store parcels, four vacant commercial parcels, and two church parcels.
Analysis Zones C and D: Low-Scoring Areas

The raster cell values in these two zones are generally low to middle scores, with the majority of the cells scoring a four or lower. Of the 1,477 cells in the two zones, 9.68 percent (143) score a one, 31.21 percent (461) score a two, 27.35 percent (404) score a three, 26.34 percent (389) score a four, 5.01 percent (74) score a five, 0.41 percent (6) score a six, and no cells score zero, seven, or eight (see Figure 4-16).

Zone C is located in the northeastern portion of the study area, south and east of Lake Dot (see Figure 4-13, Figure 4-14). It is generally bounded on the south by Livingston Street, to the west by Parramore Avenue and Lake Dot, to the north by Concord Street (west of Lake Dot) and Colonial Drive (east of Lake Dot), and to the east by Interstate-4. The zone is the largest of the four zones at 70.69 acres and has the lowest average number of parcels per acre (0.24 parcels per acre). The 17 parcels contain six municipal parcels (the Centroplex and other public buildings), four orphanage parcels, and one parcel each for churches, homes for the aged, hotel/motels, mixed-use (store and office), parking lots/mobile home sales, public schools, and one-story stores.

Zone D is located west of Parramore Avenue in between Zones A and B (see Figure 4-13, Figure 4-14). It is generally bordered on the south by Church Street, to the west by Westmoreland Drive, to the north by Washington Street, and to the east by Parramore Avenue. The zone is 40.66 acres and has an average of .98 parcels per acre. The 40 parcels contain 14 warehouse/distribution center parcels, six county or municipal parcels, five vacant commercial parcels, four multi-family parcels, three single-family parcels, three parking lot/mobile home sales parcels, two one-story store parcels, two orphanage parcels, and one club, lodge, or union hall parcel.
Comparison of Past, Present, and Proposed Urban Form

The comparison of past, present, and proposed urban form in this paper will rely on observable urban form characteristics present in the documents from all three scenarios. These include street locations, parcel outlines, and building footprints (size, number, orientation, and location within the parcel). DKP’s Master Design Plan introduces street trees along all of the streets, but since the Sanborn maps do not show vegetation or landscaping, this element cannot be compared.

Analysis Zone A

This zone had mostly high or mid scoring cells in the composite layer, and the maps for this zone indicate that this area has barely changed since 1925 (see Figure 4-17). Most of the empty lots that existed in 1925 have structures built on them by 2005, but the layout of the parcels and the streets remains unchanged. The lots on the corner of Westmoreland Drive and Livingston Street had structures in 1925 that are no longer present in the 2005 aerial photos. The Master Plan reintroduces structures on these lots. The structures, while slightly different in each map, retain the same general scale and orientation. The only major change to the current and historic patterns in the Master Plan is the extension of Lee Avenue to Federal Street, breaking up the long block in the northern part of the analysis zone.

Analysis Zone B

This zone also had mostly high- or mid- scoring cells in the composite layer, and the maps for this zone indicate that, like Zone A, this area has not seen significant changes since 1925 (see Figure 4-18). Structures have been filled in on empty lots, and the bigger lots between Lee Avenue and McFall Avenue on the 1925 map are split into smaller parcels by 2005. The new structures evident on the 2005 map match the general scale and orientation of the older structures. One cul-de-sac street appears in the 2005 map between Jernigan Avenue and Lee
Avenue on the south side of Anderson Street (Holden on the 1925 map). The Master Plan does not introduce any major changes, with the exception of one east-west street and one east-west alley that change the orientation of the parcels on the northern ends of the long block formed by Lee Avenue and McFall Avenue (split by Glenn Alley). This is the location for a proposed “design intervention” (the number 15 on the map refers to a new public green and civic building intended to provide defined public space).

Analysis Zone C

This zone scored low in the composite layer, and the differences in urban form from zones A and B are immediately evident (see Figure 4-19). The Orlando Centroplex is located in the center of this zone, with large parking lots surrounding it on several sides. The patterns in this zone have changed considerably since 1925. Two north-south streets disappear between Parramore Avenue and Revere Avenue from the 1925 map to the 2005 map, and Lexington Avenue is truncated at Concord Street. Additionally, the path of Amelia Street changes to become more curvilinear in the 2005 map, instead of existing as a part of the regular grid pattern as it did in 1925. Very few small parcels remain at all: a parking lot replaces three blocks of small parcels just south of Lake Dot, large buildings on parcels spanning entire blocks replace the small parcels west of Interstate 4, and the Amway Arena replaces small parcels and the old route of Amelia Street in the middle of the zone.

The south portion of the zone has changed the least from the 1925 map in terms of parcel size. A large open space, Exhibition Park, with a one-mile race track occupies the space in 1925. In 2005, a parking lot occupies most of the area. While representing a clear change from the 1925 use (a public green space) to the 2005 use (an auto-dominated, potentially pedestrian hostile area), the scale and the openness of the area is retained.
DKP’s Master Plan introduces potential subdivision of the large parking areas into individual parcels. In some instances, they relate generally to those found on the 1925 map (in the area north of Amelia Street and south of Lake Dot), and in some instances they introduce new patterns that have never existed in the area (south of the arena in the parking lot that was once Exhibition Park).

Analysis Zone D

This zone also has mostly low-scoring cells in the composite layer, and considerable changes from 1925 to 2005 are apparent (see Figure 4-20). In particular, building footprints have increased to fill entire large parcels and many surface parking lots appear. Even in 1925, this area had fairly large lots compared to the other three zones, and few roads. The Master Plan introduces a few new roads in the northwest and southeast corners of the zone, but largely leaves the large lots and buildings in place. Rather than propose redevelopment of the buildings already in existence, the Master Plan proposes accessory buildings that would contribute the enclosure of the street. Two areas receive special attention, labeled “9” (Otey Place/Washington Street Model Project) and “10” (New Elementary School {Candidate Location}) on the map (DKP 1994: 5-9).

The Otey Place/Washington Street model project aims to address the problems of large blocks, disconnected streets, and a lack of defined public space in the neighborhood (DKP 1994: 6-8). The plan proposes creating a new public square at the corner of Lee Avenue and Washington Street, introducing a new street through the block, delineating new lots surrounding the square, and building new single-family houses (DKP 1994: 6-9). The potential location for the new elementary school is included in response to the issue of a lack of neighborhood schools in the Parramore Heritage District raised in design charrettes. The issues of putting a neighborhood school in Parramore are complex given the current demographics of the area, so
the location is included as a future possibility that should be considered and preserved rather than an immediate project to implement (DKP 1994: 6-32).

Summary of Comparisons

In general, the location of streets proved the most resistant to change. Even when the Master Plan proposes additions to the street network, only in Zone C did those additions reintroduce streets that had been lost. The land use also remained relatively constant, especially for residential areas. Structures and parcels changed the most from 1925 to 2005, although the high-scoring zones displayed much fewer changes than the low-scoring zones. Zone C displayed the highest amount of change overall – the effects of demolition and consolidation of parcels are most evident in this zone. Both low scoring zones (Zone C and Zone D) had larger areas of undeveloped land in 1925 than the higher scoring zones (Zone A and Zone B) – which indicates they never possessed the same level of traditional patterns that the higher scoring zones have managed to retain. Both low-scoring zones also contain uses that require more parking than the residential uses found in the high-scoring zones, and combined with the existence of undeveloped land appears to have resulted in the construction of many surface parking lots.

However, in 1925 Zone C had many small residential lots and houses that display similar patterns to those seen in the higher scoring zones, and the undeveloped land in 1925 was used as a public open space. Some of the parking lots now found in Zone C replaced residential development rather than simply filling in previously undeveloped space. Zone C represents an area where the traditional patterns were defined in 1925 but largely gone by 2005. The changes the Master Plan proposes in Zone C most represent a return to the patterns that once existed in the area – such as the reintroduction of streets and the re-platting of smaller residential parcels if the large civic buildings and parking lots were to be redeveloped. Even though the proposed parcel layout is different from the way the area looked in 1925, the general scale and character is
consistent with the 1925 patterns seen in the northern portion of Zone C as well as those still existing in the higher scoring zones.

Areas of Interest in Dover, Kohl, and Partners’ Master Plan

The Parramore Heritage District Master Plan proposes three areas for redevelopment: (A) Parramore Plaza (the intersection of Parramore Avenue and South Street should be redeveloped as a plaza, defining the public space with architectural form), (B) Harmon’s Cove (the intersection of Division Avenue and South Street should be redeveloped as “the centerpiece of an ‘African Quarter’ or ‘Blues Alley’ concept,” with restored historic buildings and appropriate infill buildings), and (C) the former “Dixie Doodle” (construction of a new civic building to define the street and renovating the Sun Charm Apartments) (see Figure 4-21). These redevelopment projects are considered model projects to spur new investment and development. The plan also identifies thirteen areas for “design intervention” which are different from the redevelopment areas and are discussed in the following paragraph. The current patterns in areas targeted for redevelopment as model projects in the Master Plan have composite scores lower than the study area as a whole. No cells located in the proposed redevelopment areas score seven or eight, only 1.71 percent score a six, 6.84 percent score a five, 31.62 percent score a four, 15.38 percent score a three, 40.17 percent score a two, and 4.72 percent score a one (see Figure 4-22). The distribution breaks the general patterns seen in the analysis zones and study area as a whole, with a large percentage scoring a two and a large percentage scoring a four, with a smaller percentage of cells scoring a three. This may be in part due to the small size and number of redevelopment areas – only 117 raster cells fell within the areas.

The “design intervention” areas in the master plan are thirteen areas that display weaknesses in overall design, but are not crucial to immediately redevelop (see Figure 4-21):

- Lake Dot
• Colonial Drive between Westmoreland and Parramore Avenue
• Amelia Street at Charles Court
• Dewitt Drive, Washington Street, and Polk Street
• West Washington Street and South Lee Avenue
• South Street and South Lee Avenue
• “Hicks Quarters” – Parramore Avenue and South Street
• Chapman Court and Hughley Place
• Quill Street between Carter Street and Conley Street
• Carver Court
• Parramore Village and New Civic Building Site
• Griffin Park
• Livingston Street and Lee Avenue

The plan clarifies that these “design intervention” areas are not intended to be viewed as model projects; rather, they identify long-term improvements needed to eventually realize the type of urban form supported by the plan. The interventions consist of the “reworking of lot layouts, creation of new streets, or other interventions [to address] fundamental planning errors” (DKP 1994: 6-1). The composite scores for the patterns that currently exist in areas targeted for “design intervention” are much higher than the scores found in the areas targeted for redevelopment as model projects. Interestingly, the scores in the “design intervention” areas are also equal to or higher than the scores for the study area as a whole. Only 2.62 percent of the cells in the “design intervention” areas have a value of one, compared to 5.77 percent in the study area as a whole. Additionally, a higher percentage of cells had a value of five in the “design intervention” areas than in the study area as a whole – 20.96 percent compared to 17.4 percent. Percentages of cells scoring two, three, four, six, seven, and eight are fairly representative of the study area as a whole (16.17 percent with a value of two compared to 18.65 percent, 22.29 percent with a value of three compared to 22.99 percent, 23.68 percent with a value of four compared to 22.79 percent, 11.46 percent with a value of six compared to 9.84 percent, 2.8 percent with a value of seven compared to 2.55 percent, and 0.03 percent with a value of eight compared to 0.01 percent – see Figure 4-11, Figure 4-23).
The relatively high scores may indicate that methodology does not accurately measure all of the “fundamental planning errors” that the Master Plan attempts to address in the “design intervention” areas. Design solutions such as new street placement, the reintroduction of a gridded street pattern, and the reconfiguration of lot placement and orientation do not address design weaknesses that the scoring methodology specifically measures. Despite these discrepancies, the scoring methodology proves useful as a first step in comparing the urban form found in the various maps.

Neither the redevelopment areas nor the “design intervention” areas appear to have a significant relationship to the analysis zones used in this study (see Figure 4-24). No redevelopment area is located in any of the analysis zones, but the three redevelopment areas are generally small in scale. The “design intervention” had more overlap with the analysis zones both in low and high scoring areas. The lack of a clear relationship between the low scoring areas identified through the scoring methodology and the areas that receive special attention in the Master Plan may reflect the preferences and priorities of those who participated in the visioning process that helped shape the final Master Plan.

Summary of Findings

In general, the lowest-scoring areas changed the most from their historic use and the highest-scoring areas changed the least. However, other relationships may exist that require additional variables to fully understand – for example, the scoring methodology tended to score residential areas higher than industrial or commercial areas. This could indicate that the New Urbanism favors historic residential development patterns seen, or that the non-residential areas simply experienced more development pressure that eroded their traditional patterns more severely than in residential areas. Because the methodology measures the current patterns against a theoretical ideal, some of the apparent disconnect between the Master Plan and the final scores
from the composite layer may indicate differences in priorities of New Urbanism “on the
ground.” The perspectives of the residents and business owners in the neighborhood on what the
essential or desirable projects for the area should be are not reflected in the scores for the
composite layer. Chapter Five discusses these and other implications of the results presented in
this chapter, as well as offering suggestions for future research on this topic.
Table 4-1: Demographic Patterns in the Parramore Heritage District Neighborhoods

<table>
<thead>
<tr>
<th></th>
<th>Lake Dot</th>
<th>Callahan</th>
<th>Holden/Parramore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>1008</td>
<td>2189</td>
<td>4184</td>
</tr>
<tr>
<td>Race & Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>53.2%</td>
<td>78.5%</td>
<td>92.6%</td>
</tr>
<tr>
<td>White</td>
<td>40.2%</td>
<td>17.3%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>13.6%</td>
<td>7.8%</td>
<td>4.3%</td>
</tr>
<tr>
<td>Population in Poverty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below Poverty</td>
<td>44.3%</td>
<td>45.2%</td>
<td>56.0%</td>
</tr>
<tr>
<td>Educational Attainment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School Diploma or GED</td>
<td>31.5%</td>
<td>32.8%</td>
<td>25.8%</td>
</tr>
<tr>
<td>Associate Degree</td>
<td>3.7%</td>
<td>4.4%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Bachelor’s Degree</td>
<td>8.3%</td>
<td>2.6%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Master’s Degree or Above</td>
<td>3.6%</td>
<td>2.2%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Total Housing Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner Occupied</td>
<td>5.7%</td>
<td>14.5%</td>
<td>11.3%</td>
</tr>
<tr>
<td>Renter Occupied</td>
<td>87.3%</td>
<td>77.5%</td>
<td>79.5%</td>
</tr>
<tr>
<td>Vacant</td>
<td>7.0%</td>
<td>8.0%</td>
<td>9.2%</td>
</tr>
<tr>
<td>Household Income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Household Income in 1999</td>
<td>$20,358.00</td>
<td>$21,039.00</td>
<td>$18,647.00</td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>32.7%</td>
<td>48.8%</td>
<td>43.0%</td>
</tr>
<tr>
<td>Unemployed</td>
<td>7.7%</td>
<td>10.3%</td>
<td>7.2%</td>
</tr>
<tr>
<td>Vehicle Availability per Household</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No vehicle</td>
<td>41.8%</td>
<td>39.2%</td>
<td>39.7%</td>
</tr>
<tr>
<td>1 vehicle</td>
<td>41.1%</td>
<td>42.7%</td>
<td>39.6%</td>
</tr>
<tr>
<td>2 vehicles</td>
<td>9.2%</td>
<td>6.8%</td>
<td>7.9%</td>
</tr>
<tr>
<td>3 or more vehicles</td>
<td>0.9%</td>
<td>3.3%</td>
<td>3.5%</td>
</tr>
</tbody>
</table>

Source: City of Orlando Neighborhood Demographic Profiles, estimated from the 2000 Census
<table>
<thead>
<tr>
<th>Description</th>
<th>Binary Coincidence Scoring for Raster Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enclosure</td>
<td>78.89% 21.11%</td>
</tr>
<tr>
<td>2. Lost Space</td>
<td>36.99% 63.01%</td>
</tr>
<tr>
<td>3. Sidewalks</td>
<td>34.78% 65.22%</td>
</tr>
<tr>
<td>4. Public Space</td>
<td>91.91% 8.09%</td>
</tr>
<tr>
<td>5. Incompatible Streets</td>
<td>10.12% 89.88%</td>
</tr>
<tr>
<td>6. Lot Width</td>
<td>65.93% 34.07%</td>
</tr>
<tr>
<td>7. Proximity*</td>
<td>68.78% 31.22%</td>
</tr>
<tr>
<td>8. Land Use Mix*</td>
<td>74.16% 25.84%</td>
</tr>
</tbody>
</table>

Source: Adopted from Talen 2005: 213

*Created as Raster Layer
Figure 4-1: Study Area with Neighborhoods
Figure 4-2: Current Land Use in the Parramore Heritage District
Figure 4-3: Layer 1: Enclosure
Figure 4-4: Layer 2: Lost Space
Figure 4-5: Layer 3: Sidewalks
Figure 4-6: Layer 4: Public Space
Figure 4-7: Layer 5: Incompatible Streets
Figure 4-8: Layer 6: Lot Width
Figure 4-9: Layer 7: Proximity to Retail and Public Space
Figure 4-10: Layer 8: Land Use Mix
Figure 4-11: Final Composite Values for Raster Cells (Current Conditions)
Figure 4-12: Raster Cell Values for Composite Score Layer
Figure 4-13: Analysis Zones based on Composite Score
Figure 4-14: Analysis Zones and Dover, Kohl, & Partners' Master Plan Close-Up Views
Figure 4-15: Raster Cell Values for Analysis Zones A and B

Figure 4-16: Raster Cell Values for Analysis Zones C and D
Figure 4-17: Comparison Maps for Analysis Zone A

Figure 4-18: Comparison Maps for Analysis Zone B

Figure 4-19: Comparison Maps for Analysis Zone C

Figure 4-20: Comparison Maps for Analysis Zone D

Figure 4-21: Dover, Kohl, & Partners' Master Plan for Parramore: Special Areas
Figure 4-22: Raster Cell Values for Dover, Kohl, & Partners’ Proposed Redevelopment Areas

Figure 4-23: Raster Cell Values for Dover, Kohl, & Partners’ “Design Intervention” Areas
Figure 4-24: Comparison of Dover, Kohl, & Partners’ Special Areas to High and Low Scoring Analysis Zones
CHAPTER 5
RELATING PAST FORM TO PRESENT PRACTICE

This chapter discusses the implications of the findings presented in Chapter Four. Several relationships present themselves: (1) the history of Parramore as a microcosm of the context for the New Urbanist movement, (2) the scores for individual variables as a measure of current urban form, (3) the amount of change from 1925 to 2005 for high-scoring areas compared to the amount of change from 1925 to 2005 for low-scoring areas, and (4) the attention various areas receive in the New Urbanist master plan based on the other relationships.

The Changing City: From Traditional to Troubled

Parramore may be a historic place, settled in the late 19th century, but it does not exist as an intact example of the good urban form early New Urbanists cited as existing in historic districts around the country. Rather, Parramore exists as proof of what the New Urbanism is reacting against – the destruction of the traditional fabric of cities. All of the cornerstones of modernist planning can be seen in this 1.3 square mile area – public housing complexes with high densities isolating the poor physically and psychologically from the rest of city, superblocks created by clearing and combining individual residential parcels (most notably for public projects directly west of Interstate-4), highways dividing once thriving neighborhoods, large parking lots, and lost space. Coupled with segregationist attitudes towards zoning that resulted in an intensification of the least desirable uses in this area, the challenges presented to the revitalization of Parramore will not be easy to overcome.

However, the opportunity Parramore and places like it present to the New Urbanists to prove themselves cannot be denied. For a movement that finds its inspiration in historic places, its justification in the problems associated with modernist planning, and its ideology in the ability of physical design to influence social change, the challenges of Parramore hit at the heart
of the Charter for the New Urbanism’s proclamations. Places like Parramore provide the New Urbanism a context for application that does not perpetuate the criticisms that the New Urbanism caters to the elite by building upscale greenfield communities on the outskirts of town. The socio-economic characteristics of Parramore and the stigma associated with neighborhoods of last resort present great challenges for the New Urbanism, but the rewards of successful redevelopment should theoretically achieve a final urban form that truly represents a mixed-income, thriving urban neighborhood.

Measuring Up to the New Urbanism’s Definition of Good Urban Form

The methodology used to measure the strength of the urban form of the study area focuses on the block level rather than on the neighborhood or the region. While the scoring method returned areas that clearly scored low, high scoring cells tended to be more dispersed. In general, the scores are concentrated in the range of two to five – meaning that while the scores indicate the study area has weaknesses in urban design, many cells score positively for at least half of the desired traits outlined in the methodology. Small improvements, such as the construction of sidewalks or the definition of existing public space, could shift the scores higher.

Additionally, the presence of vacant land throughout the area presents opportunities for small-scale, incremental infill development akin to the developments Daniel Solomon accomplished in California or the work Dan Camp has completed in the Cotton District in Mississippi. While high-profile model projects may help initially to counter the stigma associated with the area and entice private sector investment, the patterns revealed in the composite score for the area indicate a scattered site approach may be appropriate for long-term success.

The methodology does not address the inclusion of affordable housing, the mixture of housing types to encourage mixed income, the existence of public transportation, the size of the
block, or the connectivity of the network. Adding these variables to the analysis may change the results and provide a more comprehensive picture. Additionally, the methodology tended to favor residential areas, and the highest scoring areas are almost exclusively residential with a high occurrence of single-family homes.

The Influence of the Past: Evidence of the New Urbanism’s Traditionalism

The areas of Parramore that changed the least from 1925 to 2005 returned higher scores for good urban design than the areas of Parramore that changed the most from 1925 to 2005. The small lots, traditional grid patterns, buildings oriented to the street, and the presence of shade trees in these areas resulted in higher composite scores than the patterns evident in the low-scoring zones. The high-scoring areas are well-equipped to handle small-scale infill development because the overall character of the areas is intact – these findings support the practice of cities like Orlando that adopt New Urbanist initiatives. Design guidelines that ensure the “right” type of infill development on the available empty lots combined with select street improvements made by the city should be all these areas need to retain and build upon their traditional character.

However, the high scoring areas are almost exclusively residential, whereas the low scoring areas are dedicated to civic uses (Zone C) and industry (Zone D). While the introduction of large-scale institutional projects and industrial zoning very likely played a role in the intensification of these types of uses in the two analysis zones, the 1925 Sanborn maps reveal that the these two zones never possessed the same qualities as the high scoring zones. The argument can be made that modernist planning techniques influenced the development of these areas in ways that proved to be detrimental to the pedestrian qualities generally associated with traditional neighborhoods, but one cannot ignore the historic presence of these patterns in the study area.
Theoretical Relationships of the Master Plan

The areas targeted for immediate redevelopment as model projects in the Master Plan displayed fairly uniform low scores in the composite layer, while the “design intervention” areas had a more even distribution (in some cases scoring higher than the average for the study area). Since the “design intervention” areas are included in the plan as future possibilities that should be used to guide planning decisions, they speak to an ideal final vision for the area. While the areas targeted for immediate redevelopment scored lower than the future “design intervention” areas, the redevelopment areas were not the lowest scoring areas overall. The inconsistencies between the areas targeted for redevelopment and the lowest scoring areas based on the methodology used in this study indicate that the master plan, developed specifically for application in the study area with input from the residents, may more easily allow for current patterns of industry and large-scale civic uses to remain as a part of the reality of the neighborhood. The methodology that produced the scoring system is more generalized and represents a theoretical ideal, so industrial uses may never receive high scores.

The input from the residents and other stakeholders in the community may have influenced the special attention certain areas received in the plan – these areas often aim to recreate or reestablish culturally significant areas such as the Harmon’s Cove Redevelopment, which aims to reintroduce an “African Quarter” or “Blues Alley” in an area that once a center for the arts in Parramore (DKP 1994: 5-17). Additionally, the intention of model projects to prove the neighborhood’s potential and to begin overcoming the social stigmas associated with Parramore influence the areas that DKP target for improvement. Even though blocks and streets may have scored low using the methodology presented in this study, DKP used other resources, such as the perceptions of residents and stakeholders in the area, to identify and prioritize these projects. The large-scale public buildings and industrial uses found in Parramore may be more acceptable to
residents since they have been a part of the landscape for some time, while the deterioration of important streets and the lack of small defined public spaces in residential areas may be more readily visible to the residents as areas in need of change. The perceptions of residents are not measured in this study’s methodology, so the difference between theoretical New Urbanism and practical infill applications is most apparent in the comparison of the current patterns and the proposed patterns of the Master Plan.

The comparison of the 1925 maps to the proposed master plans reaffirm the idea that while the New Urbanism may have found inspiration in historic districts, the movement does not call for a pure recreation of the past. The plan introduces streets in places where, based on the principles of the Charter, it makes sense to have a street. These sometimes correspond to places where streets have been lost, but also introduce streets that never existed. The same concept applies to a lesser extent to the placement of parcels and buildings. The difference between the New Urbanism and urban renewal programs grounded in the theories of modernism is that the New Urbanism is not wiping out entire blocks to design on a blank canvas, with the exception of some HOPE VI redevelopment projects. Interestingly, the treatment of Carver Court in Dover, Kohl, and Partner’s master plan called for much less demolition than the HOPE VI redevelopment grant has resulted in – even though the plans point to a similar end product: a housing project related to streets and defined public spaces. The piecemeal approach taken by DKP in the Master Plan makes sense for areas where the scars of urban renewal efforts and other destructive forms of redevelopment attempts are still so apparent.

Beyond Parramore: Opportunities for Further Research

The results of this study indicate that while the New Urbanism’s design principles are arguably a useful and powerful redevelopment strategy for existing urban neighborhoods, the amount of physical change a neighborhood has experienced in the 20th century may affect the
ease with which comprehensive New Urbanist redevelopment is accomplished. While demolition and redevelopment may be necessary or welcomed in the case of HOPE VI projects, it would be neither cost-effective nor desirable to completely remove all evidence of modernist development from historic neighborhoods. Rather, the strength of the New Urbanism to be flexible and to respect not only local character and architecture, but to also incorporate existing uses creatively into redevelopment plans must be proven. Dover, Kohl, and Partner’s Master Plan for Parramore attempts to accomplish this through making strategic recommendations based on things that can realistically be changed – such as infill projects and the redevelopment of parking areas – and keeping elements like the industrial uses and sports complexes that are a fact of life in the neighborhood.

Future research opportunities include the expansion of the variables to include measures of affordable housing, a mix of incomes, the type and configuration of public transportation, the size of blocks, and the connectivity of the roadway network. Refining the scoring system for variables not easily reclassified in a dichotomous way could increase the sensitivity of the analysis. Similarly, weighting specific variables considered to be more important for good urban form may offer a more conclusive picture of the areas most in need of redevelopment from a New Urbanist perspective. Finally, larger study areas may enable a better measure of the regional applications of the New Urbanism.

The issue of how an area like Parramore can be reconnected with the rest of the city is not addressed in this paper, but the issue of isolation in troubled neighborhoods is one the New Urbanists must reconcile if the regional goals of the Charter are to be realized. While the focus of this study is largely on the theoretical relationship between past patterns, current patterns, and
New Urbanist redevelopment plans, the social implications of such plans must be resolved in the implementation of revitalization efforts.
LIST OF REFERENCES

Jennifer Lynn Wheelock was born in Atlanta, Georgia on January 30, 1984. The oldest of three, her brothers and she grew up in the suburbs where she experienced her first frustrations with the shortcomings of suburban design. She graduated from Alan C. Pope High School in 2002 and came to the University of Florida on a National Merit Scholarship. Starting out as an art major, she took classes in art theory, drawing, graphic design, print making, digital art, and film before deciding to change majors to study creative writing and film in the English department. While she will always have a deep appreciation for art, writing, and creative expression, elective classes in geography, sociology, and urban planning made her realize that her career ambitions existed outside of the art world.

She graduated with her bachelor’s degree in English in 2005, and started the master’s program in urban and regional planning in 2006. She worked as a research assistant under Dr. Ruth Steiner on projects involving multi-modal transportation and the transportation-land use relationship. She also spent the summer of 2006 on the island of Nantucket studying historic preservation at the University of Florida’s Preservation Institute. Through these experiences, the ideas behind this thesis began to develop. She is interested in historic preservation, the New Urbanism, active living through design, and urban morphology, and hopes to continue to explore the relationship between historic patterns and current theory on good urban design as she transitions from the academic to the professional world.