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Abstract of Thesis Presented to the Graduate School 
of the University of Florida in Partial Fulfillment of the 

Requirements for the Degree of Master of Science 
 

MKB: A NEW ANESTHETIC APPROACH TO FERAL CAT STERILIZATION SURGERY 

By 

Kelly Ann Meyer 

December 2007 

Chair:  Sheilah Robertson 
Major: Veterinary Medical Sciences 

A combination of medetomidine (M), ketamine (K), and buprenorphine (B) (MKB) was 

evaluated as an injectable anesthetic in 240 feral cats undergoing ovariohysterectomy or 

castration surgery at a high-volume sterilization clinic. A selected dose of MKB (100 μg/kg M, 

10 mg/kg K, 10 μg/kg B) was evaluated for efficacy in a weight-specific manner and was then 

extrapolated to a fixed dose to be used in all cats, regardless of true weight. The selected dose of 

MKB provided adequate duration of action, acceptable physiological parameters, and acceptable 

duration and quality of recovery; however, the fixed dose of MKB was ineffective and 

unreliable.  

Cats were not intubated and breathed room air. Hemoglobin oxygen saturation (SpO2), 

systolic blood pressure (BP), heart rate (HR), respiratory rate (RR), and rectal temperature were 

measured and recorded. Atipamezole (A) (5 mg/mL) was administered following the completion 

of surgery to reverse the effects of medetomidine. The selected dose of MKB (100 μg/kg M, 10 

mg/kg K, 10 μg/kg B) produced rapid onset of lateral recumbency (4.3 ± 4 minutes in males and 

5.2 ± 5.6 minutes in females) and adequate duration of surgical anesthesia in both males and 

females. 
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SpO2 significantly increased over time in both males (R: 36-99 %) (R = range) and females 

(R: 73-100 %). SpO2  fell below 90% at least once in most cats. Blood pressure (R: 91-195 mm 

Hg) and heart rate (R: 77-176 beats/minute) in males did not change significantly as a factor of 

time, however, blood pressure (R: 38-190 mm Hg) and heart rate (R: 57-172 bpm) significantly 

decreased over time in females. There was no significant change in respiratory rate over time in 

males (R: 4-76 breaths/minute) or females (R: 4-56 breaths/minute). Rectal temperature 

significantly decreased throughout the duration of anesthesia in both males and females. Time 

from medetomidine reversal until sternal recumbency was 38.6 ± 38 minutes in males and 40.6 ± 

78.2 minutes in females. Eleven cats (11%) required a second dose of the selected combination 

of MKB to maintain an adequate plane of surgical anesthesia and this was associated with 

significantly longer recovery times (62 ± 20.7 minutes in males and 103.8 ± 28.4 minutes in 

females). The selected dose of MKB was used to calculate a fixed volume to be used in all cats, 

regardless of true weight. Injection volumes of 0.7 mL and 0.8 mL of MKB were studied and 

proved to be ineffective at providing adequate anesthesia. There were no perioperative deaths 

associated with this study. 

 The selected dose of MKB fulfilled many of the demanding requirements associated with 

feral cat sterilization clinics, however, it was not possible to use a fixed volume, acceptable for 

use in all cats, regardless of true weight. The selected dose of MKB may be used more 

effectively in smaller clinics or settings in which it can be dosed in a weight-specific manner. 
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CHAPTER 1 
INTRODUCTION 

Feral Cat Populations 

Feral cats are considered the “wild” offspring of domesticated cats; although a variety of 

alternate definitions exist. The classification of these animals is loosely defined and is often 

based upon opinion, rather than a universally accepted definition.  Socialization status, 

recognition of ownership, and overall way life-style are often considered when defining a feral 

cat. The lines between loosely owned outdoor cats, tame strays, and feral cats are often blurred 

(Levy & Crawford 2004). Lack of consistency in terms of definition is further complicated by 

the idea that cats may change classification over time. Owned outdoor cats that wander or 

become lost may be considered stray. Stray cats that have lived an extensive amount of time in 

the wild may become untrusting of humans and be considered feral. Alternatively, a cat born in 

the wild, and deemed feral, may be adopted and over time become an acceptable companion 

animal. While the exact definition is undefined, for the purpose of this study, a feral cat is 

considered any free roaming cat that does not have a rightful owner, regardless of socialization 

status.  

While it is impossible to say with certainty, it is estimated that there are between 60 and 

100 million feral and abandoned cats in the United States today (Jessup 2004). Cats are often 

depicted as independent or anti-social animals; however, feral cats are known to congregate 

around a stable food source, forming a colony (Mahlow & Slater 1996; Centonze & Levy 2002). 

Feral cat colonies vary in size, but are often dependant upon the availability of food (Mahlow & 

Slater 1996). Colonies are generally closed societies with members remaining their entire life; 

with replacement coming from births, immigration, and illegal abandonment (Wolski 1982; Levy 
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et al. 2003). Human caretakers may provide food, a source of shelter, and some veterinary care 

(Centonze & Levy 2002). 

In one study (Centonze & Levy 2002), 101 caretakers in north central Florida were 

surveyed in an effort to characterize 920 feral cats and the people who cared for them. Most 

colonies were located on the caretaker’s property and contained less than 10 cats. Most (91%) 

caretakers reported caring for their colonies out of sympathy, affection, or a sense of 

responsibility for hungry or injured animals.  Nearly all caretakers provided a consistent source 

of food, while 75% provided shelter and 37% provided or were willing to provide veterinary 

care. Most of the caretakers surveyed believed the cats they cared for had an excellent or good 

quality of life, and while many were too wild to be handled, they were still considered “like 

pets.”  

The Problem 

Feral cat colonies are often a source of controversy as their right to exist is widely debated. 

Overpopulation of cats contributes to a variety of problems, resulting in heated arguments 

between people in favor of their survival, and those opposing it. While some feel these animals 

should be a focus of community efforts to sterilize, vaccinate, and return them to the wild, others 

simply feel that eradication is a more definitive solution. This issue is further complicated by the 

lack of scientific data demonstrating the most effective control strategy. Discussions about feral 

cats are often emotionally charged and perceptions based on personal experiences often 

substitute for missing objective scientific data (Stoskopf & Nutter 2004).  

Although public opinion, attitude, and actions play a predominant role in the number of 

unwanted and abandoned animals, a domestic cat’s high reproductive capacity creates additional 

problems. Free-roaming cats produce an average of 1.4 litters per year and have the potential to 

produce up to 3 litters per year (Stoskopf & Nutter 2004). Mean litter size of free-roaming cats 
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reported in one study was 4.1 ± 1.3 (Stoskopf & Nutter 2004). The overpopulation and prolific 

breeding ability of feral cats is of concern regarding public health, impact on wildlife, and animal 

welfare.  

Public Health Considerations 

Although disease carried by feral cats is a concern for public health officials, its zoonotic 

impact is unknown.  Several unanswered questions include the degree to which infections 

circulate within a population; whether or not cats maintain or amplify infection after introduction 

from other reservoirs; and whether or not the existence of feral cat populations impact the 

likelihood of human exposure to pathogens (Case et al. 2006).  

Feral cats may be carriers of infectious diseases transmissible to humans and other 

animals. Toxoplasma gondii, Salmonella typhimurium, Escherichia coli, and bacteria from the 

genera Rickettsia, Bartonella, and Coxiella; among others, are the causative agents responsible 

for numerous infectious diseases found in humans and domestic animals (Patronek 1998; Case et 

al. 2006; Dabritz et al. 2006). While the harboring and transmission of these infections by feral 

cats is of concern, public health officials are primarily concerned with the potential implications 

surrounding rabies.  

Rabies is a fatal infectious disease that is transmitted to humans by the bites of infected 

animals. Non-bite exposures also exist by means of scratches, abrasions, open wounds, or 

mucous membranes exposed to virus-containing saliva or other forms of infected tissue 

(Fearneyhough 2001). In the United States, rabies is primarily a disease that affects and is 

maintained by wildlife populations (Krebs et al. 2005). Feral cats are of concern because they are 

generally unvaccinated and may become infected from contact with wild animals. The fact that 

feral cats are commonly regarded as domestic animals may, in itself, pose a serious threat. The 

Texas Department of Health reported that  rabid domestic animals expose 5 times as many 
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people to rabies as the average infected wild animal (Clark 1988).  Since the middle of the 

century, an average of one or two human rabies cases have been reported annually in the United 

States (Fearneyhough 2001). Transmission of rabies by wild animals, primarily bats, has 

accounted for more than 85% of  reported cases in the United States since 1976 (Krebs et al. 

1997). In most other countries, dogs remain the major species with rabies and the most common 

source of rabies transmission to humans (2003). An estimated 40,000 to 100,000 human deaths 

result worldwide from rabies (Rupprecht et al. 1995).  While the incidence of rabies in free-

roaming cats is not known, an increase in feline rabies cases in the United States, from 183 to 

288, was reported in 1988 and 1995, respectively (Eng & Fishbein 1990; Krebs et al. 1996). 

During 2005, 49 states and Puerto Rico reported 6,417 cases of rabies in nonhuman animals and 

1 case in a human being, representing a 6.2% decrease from the 6,836 cases in nonhuman 

animals and 8 cases in human beings reported in 2004 (Blanton et al. 2006). 

Wildlife Vulnerability 

Whether or not feral cats pose a threat to native wildlife species is an undefined and 

controversial issue. The notion that free-roaming cats are detrimental to wildlife populations is 

often accepted at face value due to limited studies and lack of definitive scientific proof. The 

debate surrounding feral cats and wildlife generally centers on three major issues: predatory 

behavior of feral cats on native wildlife species, the notion that cats are an introduced species 

that should not be allowed to remain in the wild, and the concept that cats are viewed as a 

domestic species and it is society’s responsibility to keep them confined for their protection, as 

well as the protection of other species (Slater 2004).  

Much of the evidence that implicates feral cats as the source for extinction or 

endangerment of wildlife species come from studies conducted on islands (Girardet et al. 2001; 

Veitch 2001; Bester et al. 2002; Nogales et al. 2004; Tantillo 2006). Cats have been introduced 



 

14 

to remote islands off the coasts of New Zealand, Australia, and South Africa where native 

wildlife evolved in the absence of predators (Patronek 1998). On many of these islands, cats 

were reported to have devastating effects on local species and were even responsible for their 

extinction (Veitch 2001). Results from these studies, however, have been inappropriately 

extrapolated to the United States, where the impact of feral cats on native wildlife species is not 

well documented or understood (Patronek 1998). 

Whether or not feline predation is detrimental to wildlife populations remains unclear in 

many parts of the world. Few studies accurately report feral cat predation and concisely relate it 

to detrimental effects on wildlife (Tantillo 2006). Although studies documenting the negative 

impact of feral cats on island ecosystems and their subsequent recovery following the removal of 

cat populations exist, many references of cat predation are unsupported by factual data (Coman 

& Brunner 1972; Girardet et al. 2001; Veitch 2001; Bester et al. 2002; Nogales et al. 2004; 

Tantillo 2006). In one study (Coleman et al. 1997), a previously published “best guess” of the 

amount of birds killed by feral cats per year in Wisconsin was later self-cited in another 

publication and reported as “research” (Tantillo 2006). Examples such as these often go 

unnoticed, are cited by other authors, and are rarely critically evaluated (Tantillo 2006).   

The predatory behavior of feral cats has been reported largely based upon casual 

observations, perpetuated rumor, and speculation (Bradt 1949). Even if carefully designed to be 

representative of the feline population, predation studies that rely on human observation and 

reporting are subject to a variety of bias (Patronek 1998). Tantillo points out several biases 

common to predation studies (Tantillo 2006). Fecal analyses may only highlight the dietary 

habits of animals whose excrements are easiest to find. Similarly, stomach contents of deceased 

cats may correlate with the manner and/or location of death. For example, cats killed by cars 
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along roadsides may prey upon roadside species more than a normally distributed population of 

cats. Furthermore, few studies address whether or not predatory behavior by feral cats is 

considered “additive,” adding to a base level of predation and contributing to an increase in 

overall mortality; or “compensatory,” where cat predation replaces other forms of mortality and 

merely compensates for mortality that would happen anyway (Tantillo 2006). 

The uncertainty surrounding the impact or lack thereof, of feral cat populations on native 

wildlife species is cause for concern for wildlife conservationists, ecologists, researchers, and 

feral cat activists. Although further evidence is needed to more clearly define the ambiguity and 

bias surrounding wildlife vulnerability, the topic remains an unresolved issue.    

Animal Welfare 

Feral cats are frequently considered a nuisance to society as they often exhibit noisy 

courting and territorial behavior, fecundity, and urine spraying by males. Despite these 

misgivings, a general concern for their welfare and way of life is recognized (Zaunbrecher & 

Smith 1993). High neonatal and juvenile mortality rates are reported for feral cats (Nutter et al. 

2004). In one study, colony-based observations found a kitten mortality rate of 48% three months 

following the initiation of the study, which contributed to a 75% cumulative kitten mortality rate 

at 6 months (Stoskopf & Nutter 2004). Kitten death was highly dependent upon environmental 

factors, but trauma accounted for most deaths in which cause could be confirmed (Nutter et al. 

2004). In addition, feral cats, like wildlife, are susceptible to every day threats including dogs, 

cars, humans, disease, starvation, and climate. The potential for suffering is a cause for concern 

and warrants a solution to end overpopulation and its negative effects on the welfare of feral cats. 

Current Methods of Control 

A variety of population control methods have been tried and are ongoing, however, none 

have proved to be the most obvious choice. Two management schemes, removal and trap-neuter-
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return (TNR), are strategies recognized in the attempt to control feral cat populations. Traditional 

animal control, or capture and removal, is often limited by resources and is rarely successful in 

extensive cat populations (Andersen et al. 2004).  The population management technique of trap-

neuter-return focuses on decreasing feral cat populations through sterilization as an alternative to 

conventional removal methods.  

Removal Methods 

Eradication in situ, removal for culling off-site, transferring to sanctuaries, and adoption 

are all examples of removal strategies employed in the quest to eliminate feral cat populations. 

Due to the magnitude of feral cat overpopulation, an effective control program must integrate 

environmental safety, affordability, sustainability, and public aesthetics (Levy & Crawford 2004) 

Lethal eradication methods can be effective; however, they often present logistical barriers 

that compromise environmental safety and put non-target animals at risk (Veitch 2001; Bester et 

al. 2002). In addition, opposition is common as such removal techniques are often found 

unacceptable by the general public (Levy & Crawford 2004). Introduction of disease, poison, and 

hunting are examples of lethal eradication strategies. A combination of such tactics has been 

employed on at least 48 islands with the first successful campaign taking place on Stephens 

Island, New Zealand, in 1925 (Nogales et al. 2004). The majority of islands (75%, n=36) where 

eradication has been successful are less than 5 km2 (Nogales et al. 2004). Therefore, these results 

cannot be appropriately extrapolated to larger islands and other mainland parts of the world 

where lethal eradication strategies may be considered. 

Trapping efforts are generally orchestrated near or at colony sites where cats are humanely 

captured. Cats considered feral, sick, or injured may be culled, whereas socialized cats and 

kittens may be put up for adoption. While this appears to be the ideal solution, two problems 

exist within this strategy. Feral cats are naturally wary of unusual conditions in their environment 
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and may be reluctant to enter traps even if they are baited (Nutter et al. 2004). Therefore, total 

elimination is usually unsuccessful as several colony inhabitants will likely evade capture and 

ultimately repopulate the area (Mahlow & Slater 1996). Feral cats are territorial animals and 

their highest potential for population increase occurs when populations are low (Foley et al. 

2005). This repopulation will likely attract immigrant cats and together they will breed to fulfill 

whatever the environmental niche can support. Cat population size tends to increase until a 

carrying capacity is reached (Foley et al. 2005).  

While adoption is often considered the ideal outcome, an additional problem arises because 

there are simply not enough homes for the number of cats that need them. A proposed alternative 

to adoption is the creation of cat sanctuaries. Sanctuaries are refuges for homeless cats that serve 

as permanent homes where they are provided for, however, many of these facilities fill to 

maximum capacity almost immediately after opening (Levy & Crawford 2004). Additionally, 

sanctuary cats are not guaranteed proper care nor are they ensured a good quality of life (Slater 

2004). 

The effectiveness of removal methods rely on a variety of factors that often limit the 

success of a particular strategy. Public opposition and environmental safety concerns prevent 

eradication from becoming a feasible option in regard to population disposal. Similarly, removal 

by culling and adoption alone has proven to be ineffective and inadequate (Neville & Remfry 

1984; Mahlow & Slater 1996; Levy & Crawford 2004). It has been shown that partially 

successful removal of feral cats produces a vacuum phenomenon in which population dynamics 

and territorial behavior encourage new animals to move into an unoccupied area (Zaunbrecher & 

Smith 1993; Patronek 1998; Gibson et al. 2002). Alternative strategies continue to be explored 

with the goal of reducing the problem of feral cat overpopulation. 
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Trap-Neuter-Return 

The newest approach in feral cat population management is trap-neuter-return (TNR). The 

concept of TNR was introduced in Denmark and England in the 1970’s and has spread in recent 

decades to the United States. Trap-neuter-return programs generally focus on unowned cats, 

being fed by caretakers, and are often considered more acceptable to the public than trap and 

destroy methods (Mahlow & Slater 1996). TNR involves trapping, sterilizing, and then returning 

feral cats to their initial capture site. Some TNR programs offer additional amenities including 

vaccination, parasite control, retroviral testing, and treatment of injury or illness. The primary 

goal of TNR programs is to reduce populations of feral cats, and therefore, their impact on 

society. 

The long term goal of TNR is often extinction of a colony through natural attrition. The 

deaths of sterilized animals will ultimately result in a slow total population decline. A three-

tiered approach of incorporating euthanasia of sick or injured animals, adoption of socialized 

cats, and TNR is considered to be most effective (Levy & Crawford 2004). TNR programs serve 

to prevent the birth of new litters, reduce the threat of feline and zoonotic diseases through 

vaccination, and improve the quality of life for homeless cats (Foley et al. 2005). Most feral 

populations are at a capacity for available resources (Gibson et al. 2002). Reducing the birth rate 

decreases the competition for food and shelter, therefore increasing survivability. In addition, 

animal stress is reduced with less fighting and competition for mates (Gibson et al. 2002).  

There is a disagreement among veterinarians and members of animal protection groups 

about whether TNR programs should be discouraged, tolerated, or encouraged (Patronek 1998). 

While most advocates of TNR recognize its limitations, opposition arguments include mainstay 

topics such as concerns over zoonotic diseases, wildlife vulnerability, hidden costs of performing 

surgery, and the questionable quality of life following release. Additionally, the question arises 
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that if these animals are indeed considered wild, why should  they be treated any differently than 

other wild animals (Mahlow & Slater 1996)? Evidence that TNR is an effective method for 

controlling cat populations is scarce (Zaunbrecher & Smith 1993; Levy et al. 2003). The concept 

of TNR has contributed to a decline in population over time when compared to control colonies 

in which cats are not neutered (Stoskopf & Nutter 2004). Several studies deliver varying results, 

illustrating both the potential benefits and limitations associated with TNR (Levy et al. 2003; 

Stoskopf & Nutter 2004; Natoli et al. 2006). 

One limitation associated with TNR is the time necessary for results to become evident. In 

Rome, Italy, 8000 cats were neutered over the span of 10 years and reintroduced into their 

colonies (Natoli et al. 2006). While a significant decrease in overall population was observed 

(16-32%), it was not noted until at least 3 years from the time of neutering. While a decrease was 

observed, it was indicated that the results were not as great as originally hoped for. Immigration 

due to abandonment and spontaneous arrivals were found to be 21% in this study, offsetting the 

decrease from sterilization, and it was concluded that without proper education on 

overpopulation and abandonment.    

Similar to the findings of Natoli and Maragliano, new arrivals as a result of illegal 

abandonment may hinder the success of a TNR program. One study revealed that the presence of 

highly visible, well-fed, established feral colonies encouraged illegal desertion of pet cats 

(Castillo & Clarke 2003). While TNR was shown to decrease the original population, the 

population at the end of the study was observed to increase as a result of illegal abandonment. 

This phenomenon is thought to be the result of cat owners’ desperate attempts to “give the cat a 

chance,” as opposed to relinquishment to an animal shelter, where high rates of euthanasia exist 

(Levy & Crawford 2004). 
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Conversely, the effects of TNR have also been shown to substantially reduce populations 

of feral cats. In Randolph County, North Carolina, USA, a study used 9 managed colonies to 

assess reproductive parameters in feral cats (Stoskopf & Nutter 2004). Of the 9 colonies, 6 

participated in a TNR program. The remaining 3 colonies did not participate in a TNR program 

and were used as control groups. Of the surgically sterilized colonies, all 6 decreased in 

population (mean decrease of 36%) and continued to decline within the first 2 years. In the same 

2 years, the remaining 3 control colonies, which were not sterilized, were found to increase in 

number by 47%. The study concluded that TNR may bring feral colonies to extinction, but is not 

a rapid solution. 

Similarly, an 11-year study at the University of Central Florida (USA) found TNR to be  

highly successful at reducing the number of feral cats amongst several populations (Levy et al. 

2003). Between 1991 and 1995 an original group of 155 study cats were sterilized, with the 

exception of 1 male cat. While records were not kept prior to 1991, observers estimated the cat 

population on campus may have reached 120 cats. Sterilization and adoption of socialized cats 

reduced the population to 68 by 1996 and only 23 cats remained on campus at the end of the 

study in 2003, representing a 66% reduction. Additionally, no known kittens were observed to be 

born on campus after 1995. The study concluded that long-term reduction of feral cat 

populations is feasible by TNR.  

A separate study in north central Florida (USA) distributed a written survey to feral colony 

caretakers who participated in a local TNR Program (Centonze & Levy 2002). The survey 

reported 132 colonies being cared for with a total of 920 cats.  At the time of the completed 

survey, caretakers had participated in monthly sterilization clinics for 1 to 9 months.  Most 

colonies contained less than 10 cats with the largest colony containing 89 cats. The mean colony 
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size before participation in monthly sterilization clinics was 7 cats. The mean colony size 

following participation in a TNR program was 5.1 cats. Within less than one year of TNR 

participation, average colony size decreased by 27%, while the largest colony was observed to 

decrease in numbers from 89 to 24 cats. In conclusion, implementation of TNR was determined 

to decrease colony size and the number of cats overall, from 920 to 678, as a result of death, 

disappearance, adoption, and the prevention of new births.  

In addition to halting reproduction, TNR has also been reported to offer additional benefits. 

One study reported improved body condition of feral cats 1 year after sterilization surgery (Scott 

et al. 2002). Body weight, body condition scoring (BCS), and falciform fat pad measurements 

were used to determine changes in feral cat body conditions before and after sterilization. 

Reported scores indicated more than half of feral cats were less than the ideal weight prior to 

surgery. Cats were found to increase in mean body weight by 40% and scored 1 point higher on 

the BCS scale (1-9) 1 year following participation in a TNR program. In addition, caretakers 

reported a decreased tendency to roam following neutering. Fighting amongst cats was also 

observed to decrease following sterilization.  

The Gillis W. Long Hansen’s Disease Center, a federal research facility and hospital 

located in Carville, Louisiana, USA, was the site of a well-established feral colony (Zaunbrecher 

& Smith 1993). In response to noise and odor complaints by hospital residents and staff, trap and 

removal methods were employed without success. A TNR study was designed and initiated. The 

colony was regarded as a nuisance prior to the study and implementation of TNR. After the 

initiation of the TNR program, not only was the population found to stabilize, but overall health 

and body condition was found to improve and complaints about territorial behavior and noise 

decreased. The overall attitude toward the feral cats had also changed. After participation in the 
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TNR program, cats attained a certain amount of status evoking a protective and possessive 

behavior from both patients and staff. The TNR program also incorporated the participation of 

several hospital patients that hand-delivered 18 cats to partake in the study, indicating support 

and endorsement for the project. Patients and staff soon regarded the feral cats as pets. TNR was 

determined to be effective, economically feasible, and a humane solution to the once negative 

attitude towards the colony. In this particular example, not only did colony health improve, but 

the overall attitude and approach to the colony was increasingly positive.  

While it may not embody the gold standard for pet cats, TNR offers an alternative way of 

life for feral cats. TNR programs offer the opportunity for feral cats to live a good quality of life 

for an extended period of time as their population is diminished by way of adoption, natural 

attrition, and the prevention of new births. 

Nonsurgical Contraception 

Alternatives to surgical sterilization programs, using pharmacaceutical or immunological 

methods, are currently under investigation for use in feral cats. One example of non-surgical 

contraception is chemical castration, in which intratesticular or intraepididymal injections of a 

chemical agent (4.5 % solution of chlorhexidine digluconate) are used to cause infertility in 

males (Kutzler & Wood 2006). Similarly in females, mechanical barriers, such as intravaginal 

and intrauterine devices, can be implanted to disrupt fertility. (Kutzler & Wood 2006). 

Additionally, hormonal treatments, including progestins, androgens, or analogs of gonadotropin 

releasing hormone (GnRH) act either directly or indirectly to block reproductive hormone-

mediated events and conception (Kutzler & Wood 2006). 

Recently, the concept of immunocontraception has been investigated for a nonlethal and 

nonsurgical approach to controlling feral cat populations (Levy et al. 2004; Kutzler & Wood 

2006; Purswell & Kolster 2006). Immunocontraception, via vaccination against GnRH, uses the 
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immune system to block fertility (Purswell & Kolster 2006). While immunocontraception is 

promising, there are also some drawbacks. In addition to finding the most appropriate antigen for 

a vaccine, appropriate delivery systems have proven to be a challenge. Oral vaccine baits raise 

the concern for non-target species and the implications of introducing a widely distributed oral 

contraceptive vaccine into the environment (Purswell & Kolster 2006). Additionally, animals 

generally require a series of immunizations for adequate immunity, some of which fail to 

respond and remain fertile (Levy et al. 2004). In order to be considered effective, 

immunocontraception vaccines for feral cats require long-term immunity for a large population, 

achieved with a single treatment, eliminating the need for repeat vaccines (Purswell & Kolster 

2006). 

While progress continues to be made, the development of non-surgical contraceptive 

strategies are complex and slow. Therefore, the use of surgical sterilization and TNR programs 

must be retained, at least for the present time, to control feral cat populations. 

Operation Catnip®: A Trap-Neuter-Return Program 

Operation Catnip® is a non-profit organization that holds monthly feral cat sterilization 

clinics at the University of Florida’s College of Veterinary Medicine. Cats are presented the 

morning of each clinic confined in humane, wire mesh traps. Upon arrival, cats are assigned an 

identification number. After being anesthetized, cats encounter a series of stations in preparation 

for surgery. Eyes are lubricated, bladders are expressed, injectable antibiotics are administered, 

and appropriate surgery site preparation is performed. After sterilization is complete, all cats are 

vaccinated against feline rabies, feline leukemia virus, feline panleukopenia virus, herpes virus, 

and calicivirus. In addition, they receive topical treatment with selamectin for parasite control. 

The tip of the left ear is removed to permanently identify sterilized cats. 
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Operation Catnip® is considered a high-volume sterilization clinic, averaging between 100 

and 200 surgeries at each monthly clinic. The largest clinic to date sterilized 230 feline 

participants. Each clinic is completed in a matter of hours and is comprised solely of volunteers, 

students, clinicians, and surgeons. In 2006, Operation Catnip sterilized 3,725 feral cats (Scott 

2007). 

Challenges of Working with Feral Cats 

The challenges associated with feral cats include a variety of obstacles in regards to their 

capture and sterilization. Trapping is relatively easy and requires little to no training in order to 

safely transport and present feral cats for sterilization; however, some feral cats may evade 

trapping attempts. Providing an acclimation period to traps prior to capture may prove beneficial 

to colonies not used to human contact or particularly “trap-shy” cats. Additional methods are 

available, but are not practical as they require experience or the participation of a veterinarian; an 

example being net capture or sedative-laced food (Nutter et al. 2004).  

Once trapped, feral cats present a unique problem because these animals, similar to 

wildlife, cannot be safely handled while conscious. Therefore, feral cats must be anesthetized 

within their traps. Anesthesia presents additional challenges in regard to administration. Feral 

cats are usually of unknown weight, age, and health status, which are influential in choosing any 

anesthetic regime. Similarly, unknown factors such as injury or illness may influence or even 

compromise the safety of anesthesia. An anesthetic protocol to be used in feral cats must 

consider the safety of both the handlers and the animals. 

Properties of an Ideal Anesthetic 

Injectable anesthetics permit immobilization while cats are confined within their traps, 

eliminating the potential for escape or contact with conscious animals that may prove to be 

dangerous. Intramuscular injections are the most efficient route of administration when 
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anesthetizing feral cats. An ideal anesthetic regime to be used in feral cats would be predictable, 

reliable, and offer a wide margin of safety. It would be suitable for both males and females of 

any age and physical condition. In addition, it would provide rapid onset, sufficient duration of 

surgical anesthesia, rapid return to normal function, and adequate post-operative analgesia. 

Injectable anesthesia for use in feral cats also requires consideration of the injection 

volume. Ensuring a complete and accurate injection for feral cats restrained within their traps is 

difficult because restraining options are limited and often inefficient. Large drug volumes pose 

the risk of incomplete administration because cats may move upon injection. A small volume 

increases the likelihood for complete administration. 

Feral Cat Anesthesia: Shortcomings of Current Methods 

The current anesthetic protocol used in Operation Catnip® is an injectable combination of 

tiletamine, zolazepam, ketamine, and xylazine (TKX) given intramuscularly. TKX is considered 

an acceptable injectable anesthetic for use in feral cat sterilization and importantly, is associated 

with a low (0.35%) perioperative mortality rate (Williams et al. 2002). However, TKX possesses 

several limitations that have prompted the search for an alternative injectable anesthetic. 

Shortcomings include oxygen saturation levels that are below accepted values, prolonged 

recovery times, postoperative hypothermia, and likely inadequate post-operative analgesia 

(Cistola et al. 2004).  

Tiletamine is a dissociative anesthetic, chemically related to ketamine. It provides 

analgesia and immobilization in a dose-dependent manner (Lin et al. 1993). Zolazepam is a 

benzodiazepine and provides muscle relaxation (Lin et al. 1993). Tiletamine and zolazepam are 

combined in a 1:1 ratio by mass and marketed under the trade name, Telazol® (Fort Dodge 

Animal Health, Fort Dodge, IO, USA) (Lin et al. 1993). Telazol® is not considered a good 
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combination for maintenance of anesthesia beyond its initial dose, as recoveries may be 

prolonged and the actions of zolazepam may outlast those of tiletamine (Pascoe 1992). This is a 

problem because the animal experiences a greater degree of tranquilization than anesthesia 

during recovery (Plumb 2005). Xylazine is used as a sedative analgesic and also provides good 

muscle relaxation and is approved for use in the dog and cat in the United States. Xylazine may 

cause significant cardiovascular depressant effects (Paddleford & Harvey 1999).  

At the same inspired oxygen concentration, there is a tendency for arterial oxygen tensions 

to be less during general anesthesia than observed while conscious (McDonell 1996). 

Hemoglobin oxygen saturation (SpO2) > 95% is considered normal and SpO2 < 90% (defined as 

a PaO2 of < 60 mmHg) equates to serious hypoxemia (Thurmon et al. 1996). In cats anesthetized 

with TKX, SpO2 levels averaged 92 ± 3% in males and 90 ± 4% in females (Cistola et al. 2004). 

SpO2 levels were also found to drop below 90% at least once in most cats (Cistola et al. 2004). 

TKX does not require animals to be intubated and room air (Fi = 0.21) is inspired. This is likely 

a contributing factor to low oxygen saturation levels seen in cats anesthetized with TKX. While 

low oxygen saturation is easily preventable and treatable, it is not feasible to administer 

supplemental oxygen to all cats participating in Operation Catnip® because equipment is limited 

and up to 50 cats may be anesthetized at one time. The exact repercussions of low SpO2 levels in 

cats anesthetized with TKX are unknown, but prompt the search for alternative methods of 

anesthesia. 

Prolonged recoveries are often seen with the use of TKX in cats. The sedative effects of  

xylazine last 1-2 hours, but complete recovery may take 2-4 hours (Paddleford & Harvey 1999). 

After surgery is complete, the effects of xylazine may be reversed using one of its antagonists, 

yohimbine. However, the time from reversal to sternal recumbency has been reported to be 
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prolonged (72 ± 42 minutes) in cats anesthetized with TKX  (Cistola et al. 2004). The low 

specificity of yohimbine as an antagonist to xylazine may contribute to prolonged recovery times 

(Virtanen et al. 1989).  

One side effect of Telazol is hypothermia (Plumb 2005). Normal body temperature for cats 

ranges from 37.8-39.5ºC (100-103.1ºF) (Plumb 2005). Cats administered TKX were reported to 

be hypothermic with temperatures dropping as low as 36.6 ± 0.8ºC (97.8 ± 1.4ºF) post-

operatively (Cistola et al. 2004). Clinical hypothermia is associated with decreased liver and 

renal blood flow, resulting in reduced liver metabolism and renal excretion (Posner 2007). 

Subsequently, hypothermia-induced slowed metabolism of anesthetic drugs may account for 

prolonged recovery times seen in cats anesthetized with TKX. Another complication resulting 

from hypothermia is CNS depression, which may potentiate the effects of anesthetics and muscle 

relaxants (Short 1987). Additionally, hypothermic animals often shiver during recovery, 

increasing their metabolic requirements for oxygen. In humans, shivering in recovery is reported 

to be unpleasant (Kumar et al. 2005). 

Feline post-operative pain has been under treated largely as a result of fear of side effects 

and lack of suitable pharmaceutical products (Robertson & Taylor 2004). It has been reported 

that cats undergoing ovariohysterectomy that are not provided with analgesics have more post-

operative pain than cats that receive analgesics (Slingsby et al. 1998). While xylazine and 

ketamine may offer analgesic properties, TKX does not contain a recognized analgesic and 

therefore, post-operative pain control is likely inadequate. Due to the inadequacies surrounding 

TKX, alternative anesthetic regimes are desired.  
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Proposed Drug Combination 

A combination of medetomidine, ketamine, and buprenorphine (MKB) has been proposed 

for use in feral cat sterilization surgery. Similar to TKX, this combination of drugs is combined 

and administered intramuscularly as a single injection. Medetomidine and its specific antagonist, 

atipamezole, are highly specific for alpha2 adrenoceptors. Ketamine is classified as a dissociative 

anesthetic, offering a state of unconsciousness and somatic analgesia. Buprenorphine is an opioid 

analgesic used in pain management. It is hypothesized that the MKB combination may eliminate 

some of the inadequacies associated with TKX.  

Alpha2-Adrenoceptors 

Adrenergic drugs affect receptors stimulated by norepinephrine or epinephrine. These 

drugs can act directly on the receptor (adrenoceptor or adrenoreceptor) by activating it, blocking 

neurotransmitter actions, or interrupting the release of norepinephrine. Norepinephrine releasing 

neurons are found in the central and sympathetic nervous system where they serve as links 

between ganglia and effector organs  (Howland & Mycek 2000).  

Adrenoceptors can be distinguished pharmacologically and are divided into two families, 

alpha (α) and beta (β). Alpha adrenoceptors are further subdivided into several classes, including 

alpha1 and alpha2, based on relative affinities for agonists, independent of their anatomical 

location (Berthelsen & Pettinger 1977; Wickberg 1978; Wikberg 1978). Alpha2-adrenoceptors 

have been isolated in the central nervous system, gastrointestinal tract, uterus, kidney, and 

platelets and produce a variety of effects (Paddleford & Harvey 1999). Pharmacologic studies 

have revealed alpha2-adrenoceptors to be located in either pre-synaptic or post-synaptic positions 

(Cullen 1996). Alpha2-adrenoceptors located in the central nervous system regulate the neuronal 

release of norepinephrine and several other neurotransmitters that are intimately involved in the 

modulation of sympathetic outflow, cardiovascular and endocrine function, vigilance, emotion, 
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cognition, and nociception (Scheinin & MacDonald 1989).  In most cell types, but not all, 

alpha2-adrenoceptors regulate adenylate cyclase activity. Specifically, they are linked to a 

guanine nucleotide regulatory protein (G-protein), whereby receptor activation results in 

inhibition of adenylate cyclase activity and cAMP formation in target cells (Fain & Garcia-Sainz 

1980). This leads to the inhibition of further release of norepinephrine from the neuron. When a 

sympathetic adrenergic nerve is stimulated, released norepinephrine crosses the synaptic cleft, 

interacting with alpha1 receptors. A portion of the released norepinephrine “circles back” and 

reacts with alpha2 receptors on the neuronal membrane. The stimulation of the alpha2 receptor 

results in feedback inhibition for continued norepinephrine release from the stimulated 

adrenergic neuron. This inhibitory action decreases further output of the neuron and serves to 

reduce sympathetic output when sympathetic activity is high (Howland & Mycek 2000). 

Adrenoceptors are a natural target for the development of sedatives and anesthetics because their 

activation leads to reduced norepinephrine release and locus coeruleus activity, a site in the brain 

containing many norepinephrine releasing neurons (Stenberg et al. 1993). Norepinephrine is a 

neurotransmitter required for a variety of physiological effects and is necessary for the mediation 

of arousal and pain (Paddleford & Harvey 1999). If norepinephrine is blocked, the result is 

sedation and analgesia (Paddleford & Harvey 1999). Activation of alpha2-adrenoceptors by 

specific agonists offer profound sedative-anesthetic effects in a variety of species (Scheinin et al. 

1987).  

Medetomidine 

Medetomidine is one of the newer sedative drugs approved for veterinary use. It is 

classified as an adrenergic alpha2-agonist (Cullen 1996). Intended for use in dogs and cats, it 

provides predictable and dose-dependant sedation and analgesia, mediated by receptor 

stimulation in the spinal cord and brain (Cullen 1996). Medetomidine is lipophilic and rapidly 



 

30 

eliminated (Paddleford & Harvey 1999). Its alpha2 to alpha1 receptor selectivity binding ratio is 

1620, compared to 160 for xylazine (Virtanen 1989). Alpha2 agonist drugs bind to alpha2-

adrenoceptors, altering their natural membranes and preventing the release of neurotransmitters 

(Paddleford & Harvey 1999). Medetomidine induces sedation and analgesia, and in high doses, 

has anesthetic properties (Savola et al. 1986; Virtanen et al. 1988).  It has been shown to induce 

change in metabolites of various transmitters resulting in their decreased release, metabolism, 

and turnover (Virtanen et al. 1988).  

A clinical evaluation by seven veterinary clinics in Finland determined the recommended 

dose of medetomidine to be between 50-150 µg/kg for various clinical procedures in cats in 

which sedation was needed (Vaha-Vahe 1989a). Doses ranging between 80 and 110 µg/kg were 

used for examinations, clinical procedures, and minor surgical operations in cats (Vaha-Vahe 

1989a). The preferred route of administration was intramuscular injection (Vaha-Vahe 1989b; 

Vaha-Vahe 1989a). Cats administered 10 µg/kg of medetomidine show stupor-like sedation with 

loss of reflexes (Stenberg et al. 1993). Sedation for up to 90 minutes and analgesia for 20-50 

minutes is reported with 80 µg/kg (Vaha-Vahe 1990). Medetomidine has been shown to reduce 

dose requirements for other anesthetics in animals when used concomitantly (Segal et al. 1988). 

An advantage of medetomidine is that the sedative and depressant effects associated with it can 

be fully and rapidly reversed with its specific antagonist, atipamezole. 

Medetomidine: Cardiovascular and Respiratory Effects 

Medetomidine produces marked changes in the cardiovascular system, mostly through 

stimulation of central receptors, increasing vagal tone and decreasing sympathetic activity, 

resulting in bradycardia and hypotension (Cullen 1996). The autonomic nervous system, under 

control by the central nervous system, is the principal means by which heart rate is controlled 

(Berne et al. 2004). Drug lipophilicity is a major determinant of the rate of diffusion across 
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biological membranes (Gaynor & Muir 2002). Medetomidine is highly lipophilic and therefore, 

its ease of penetration into the central nervous system is reflected by its rapid onset of 

cardiovascular effects (Savola 1989). After medetomidine administration, peripheral vascular 

resistance increases due to alpha2 adrenoceptor-mediated events (Paddleford & Harvey 1999). 

Stimulation of postsynaptic receptors located in venous and arterial walls results in 

vasoconstriction, whereas stimulation of presynaptic receptors inhibits norepinephrine release, 

reducing sympathetic tone, and contributing to bradycardia (Ruffolo 1985). In cats, 

medetomidine induces a biphasic effect on blood pressure by increasing it transiently before a 

decrease to pre-injection control values or less is seen. Heart rate decreases immediately 

following injection (Savola et al. 1986; Savola 1989). Prior administration of atropine did not 

eliminate the hypotensive or bradycardic actions associated with medetomidine, nor was it found 

to modify the initial hypertensive phase (Savola 1989). Medetomidine consistently produces 

marked bradycardia in cats and heart rate may decrease by as much as 50% of pre-injection 

values (Vaha-Vahe 1989b; Vaha-Vahe 1989a; Cullen 1996). Cats administered 20 µg/kg of 

medetomidine IM showed a 58% decrease in heart rate from baseline values 15 minutes 

following administration (Lamont et al. 2001). Medetomidine-induced changes in heart rate are 

primarily due to centrally mediated effects and peripheral receptor stimulation; there is no 

evidence for a direct action of alpha2 agonists on heart muscle (Day & Muir 1993). 

Medetomidine has been reported to cause a decrease in arterial PaO2 in cats (Duke et al. 

1994). Venous desaturation also occurs and is likely the result of increased tissue oxygen 

extraction associated with decreased cardiac output (Gaynor & Muir 2002). Medetomidine 

depresses the respiratory center, decreasing sensitivity to increases in PaCO2 (Muir et al. 2000). 
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When large doses of medetomidine are administered, the respiratory threshold for PaCO2 values 

increase, resulting in marked respiratory depression (Muir et al. 2000).  

Medetomidine: Side Effects 

The other most common adverse effects observed clinically with the use of medetomidine 

are vomiting, muscle twitching, and hypothermia  (Cullen 1996). In one study of 678 cats, 65% 

vomited after IM administration of medetomidine, using doses ranging between 80-100 µg/kg 

(Vaha-Vahe 1989b). In addition, pale mucous membranes are often witnessed as a result of 

medetomidine’s profound vasoconstrictive effects (Muir et al. 2000). Inhibition of gastric 

secretions have also been reported with the use of medetomidine (Cullen 1996). 

Atimpamezole 

A major advantage of the use of alpha2 agonists, like medetomidine, is that specific 

antagonists have been developed to fully reverse their physiological effects. Atipamezole is a 

potent alpha2 antagonist and is the most selective drug currently available for clinical use in 

veterinary anesthesia (Paddleford & Harvey 1999). Its alpha2 to alpha1 receptor specificity is 

8526, compared to 40 for yohimbine, and it has virtually no effect on other receptors (Virtanen et 

al. 1989). Atimpamezole has been shown to effectively antagonize the cardiovascular, 

respiratory, gastrointestinal, and hypothermic effects of medetomidine (Savola 1989; Cullen 

1996). In one study, mean arterial pressure and heart rate values were completely restored 

following administration of atipamezole during maximal hypotensive and bradycardic phases 

induced by medetomidine (Savola 1989). In dogs, a transient decrease in mean arterial pressure 

of between 8% and 20% was found after intramuscular injection of atipamezole (Vainio 1990).  

In cats, the most effective dose of atipamezole was found to be 2-4 times (on a mg basis) 

the medetomidine dose administered IM (Cullen 1996). Atipamezole can be administered 

intravenously, intramuscularly, or subcutaneously and its half-life is twice that of medetomidine, 
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minimizing the risk for sedation relapse after atipamezole administration (Paddleford & Harvey 

1999; Bollen & Saxtorph 2006). Atipamezole reverses the undesirable depressant effects of 

medetomidine and is useful for rapidly returning animals to normal function. 

Atipamezole: Side Effects 

Adverse effects accompanying atipamezole reversal of medetomidine include urination, 

salivation, and muscle tremors (Vaha-Vahe 1990). Extremely high doses may induce signs of 

CNS stimulation, extreme excitement, panting, and vomiting (Paddleford & Harvey 1999). 

Following IV administration, tachycardia and hypotension have occurred and therefore slow IV 

or IM administration is recommended (Paddleford & Harvey 1999). 

Dissociative Anesthesia 

Dissociative anesthesia derives its name from its unique ability to simultaneously depress 

one area of the central nervous system, while stimulating another (Evans et al. 1972). 

Dissociative anesthetics produce unique effects in which animals are assumed to feel dissociated, 

or apart, from their body (Bill 2006). It is this effect that allows dissociative drugs to provide 

analgesia and anesthesia without disrupting vital physiological functions (Evans et al. 1972). One 

advantage to using dissociative anesthesia in cats is that their airway remains patent, eliminating 

the need for endotracheal intubation (Beck et al. 1971). Dissociative anesthesia differs further 

from other anesthetics in that its use often results in emergence reactions and hallucinatory 

behavior, unlike sluggish recoveries characteristic of most other agents (Wright 1982). These 

reactions are thought to be the result of CNS over stimulation. The consequences of feline 

hallucinations are not known, but post-anesthetic personality changes have been reported 

(Haskins et al. 1975). 
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Ketamine 

Ketamine hydrochloride is classified as a short-acting dissociative anesthetic that is used 

for chemical restraint, anesthesia induction, and surgical anesthesia in cats (Saywer et al. 1993). 

It is a rapid-acting general anesthetic that has significant analgesic activity and lacks 

cardiopulmonary depressant effects (Plumb 2005). In the past, ketamine has been recommended 

for most surgical procedures in cats, including abdominal surgery (Evans et al. 1972). 

The functional disorganization associated with ketamine is the reason for its classification 

as a dissociative (Hanna et al. 1988). Ketamine is a non-competitive N-methyl-D-aspartate 

(NMDA) receptor antagonist (Thurmon et al. 1996). By inhibiting NMDA receptors, it is thought 

that ketamine may prevent nociceptive stimulation (Woolf & Thompson 1991). While its exact 

mechanism remains unclear, ketamine induces anesthesia by selectively interrupting CNS 

reactivity to various sensory impulses, without blocking sensory input at spinal or brain stem 

levels (Wright 1982). This mechanism is unique as most anesthetic properties cause complete 

CNS depression.  

After injection, patients enter a cataleptic state, similar to a trance, in which loss of 

voluntary motion and muscle rigidity are often seen (Evans et al. 1972). Lack of complete 

muscular relaxation makes ketamine unsuitable as a sole anesthetic agent (Bill 2006). In cats, 

ketamine only provides loss of clinical reaction to pain during its maximal effect (Haskins et al. 

1975). Additional doses of ketamine do not enhance muscle-relaxing effects, but do prolong 

recovery (Arnbjerg 1979). 

Recommended doses vary depending on desired depth of anesthesia, route of 

administration, and the use of other anesthetics concomitantly. In cats, ketamine can be given in 

doses ranging from 2-33 mg/kg, although doses of 50 mg/kg have been used without fatalities 

(Arnbjerg 1979; Wright 1982). Ketamine produces dose-related unconsciousness and analgesia 
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with a rapid onset of action (Thurmon et al. 1996). Following intramuscular injection, cats 

become recumbent in 1 to 8 minutes (Lumb & Jones 1973). After intramuscular injection, peak 

drug levels occur within approximately 10 minutes with the highest concentrations found in the 

brain, liver, lung and fat (Plumb 2005). Duration of anesthesia is approximately 30 to 45 minutes 

(Lumb & Jones 1973). In one study, small doses (4 and 8 mg/kg) of ketamine caused slow 

induction times and produced circulatory stimulation, catatonia, and bizarre behavior. Larger 

doses (32 and 64 mg/kg) caused circulatory depression, respiratory depression, and prolonged 

recovery times (Child et al. 1972). 

 Ketamine is excreted in the urine and a cat’s reduced ability to excrete the drug due to 

compromised renal function may prolong recovery (Haskins et al. 1975). Ketamine is rapidly 

biotransformed to its only known metabolite, norketamine, in the cat (Chang & Glazko 1974; 

Heavner & Bloedow 1979). The elimination half-life of ketamine in the cat is approximately 1 

hour (Plumb 2005). Recovery from symptoms associated with ketamine may not be complete 

within 10 hours, but most cats can stand unassisted within 2 hours (Evans et al. 1972) 

Ketamine offers many advantages. The route of administration is versatile as it can be 

administered subcutaneously, intravenously, intramuscularly, orally, and rectally (Wright 1982; 

Hanna et al. 1988; Wetzel & Ramsay 1998). Additionally, ketamine may aid in the prevention of 

post-operative pain as it has shown to exhibit weak visceral analgesic properties (Saywer et al. 

1993). Finally, ketamine has gained favor for use in animal surgical procedures because of its 

apparent lack of depressant effects on the cardiovascular and respiration systems when used in 

small doses (Child et al. 1972; Haskins et al. 1975) 

Ketamine: Cardiovascular and Respiratory Effects 

Ketamine stimulates the heart and lacks the depressant effects prevalent in other 

anesthetics (Wright 1982). The effects of ketamine on the cardiovascular system include 
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increased cardiac output, heart rate, mean aortic pressure, pulmonary artery pressure, systemic 

arterial blood pressure, and central venous pressure (Wong & Jenkins 1975; Plumb 2005). An 

increase in heart rate and blood pressure has been reported in a clinical setting, but the increase 

in heart rate is not proportional to the dose of ketamine given (Arnbjerg 1979). 

Ketamine causes dose-dependent respiratory depression (Wright 1982). Apneustic 

breathing is defined as sustained tonic contraction of the respiratory muscles, resulting in 

prolonged inspiration. Ketamine is capable of inducing an apneustic respiratory pattern, and may 

be the result of its ability to alter the functional organization of the respiratory controller 

(Pokorski et al. 1987). Respiratory rates and/or tidal volumes were decreased by ketamine in cats 

and occasionally transient apnea has been reported (Wright 1982). 

Ketamine: Side Effects 

Ketamine has a pH of 3.5 and tissue irritation may occur during intramuscular injection as 

a result of its acidic properties (Wright 1982). Pedal reflexes remain intact and purposeless 

movements, of varying degree, are often seen unrelated to specific noxious stimuli (Evans et al. 

1972). Cat’s eyes remain open after ketamine administration and need to be protected with an 

ophthalmic lubricant (Plumb 2005). Reduced body temperature may be seen with high doses of 

ketamine (Arnbjerg 1979). Body temperatures decrease on average 1.6ºC after therapeutic doses 

(Plumb 2005). Due to its dissociative effects, hallucinatory behavior may be observed during 

emergence from ketamine anesthesia (Thurmon et al. 1996). Cats should be placed in areas with 

little visual or auditory stimulation to aid in a smoother recovery. Additional emergence 

reactions include ataxia, increased motor activity, sensitivity to touch, avoidance behavior of an 

invisible object, and violent recovery (Plumb 2005). Sialorrhea, or excessive salivation, is also 

commonly seen with ketamine use (Evans et al. 1972). Most cats recover from these symptoms 

within several hours without further reoccurrence (Wright 1982). 
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Medetomidine and Ketamine Combination 

There are a number of reports using a combination of medetomidine and ketamine in cats 

for anesthetic purposes (Verstegen et al. 1989; Verstegen et al. 1990; Verstegen et al. 1991a; 

Dobromylskyj 1996; Wiese & Muir 2006). Used in combination, the centrally stimulating effects 

of ketamine have been reported to balance the depressive effects of alpha2-agonists (Verstegen et 

al. 1991a). The tendency for ketamine to increase heart rate may assist in counteracting negative 

cardiovascular effects associated with medetomidine (Verstegen et al. 1991a).  

In cats, the use of medetomidine (80-100 µg/kg) with a low dose of ketamine (7 mg/kg) 

proved to be sufficient for short acting (20-40 minutes) surgical anesthesia (Vaha-Vahe 1989b). 

Verstegen et al (1991) found that medetomidine (80 µg/kg) greatly potentiated the effects of low 

doses (5-7.5 mg/kg) of ketamine, providing suitable surgical anesthesia for 59 minutes. 

Intramuscular administration of medetomidine (80 µg/kg) combined with ketamine at doses of 

2.5, 5, 7, 7.5 and 10 mg/kg produced anesthesia in less than 4 minutes and the duration ranged 

between 36 and 99 minutes, dependent upon the dose of ketamine (Verstegen et al. 1990; 

Verstegen et al. 1991a). When increasing the dose of ketamine from 2.5 to 10 mg/kg, the 

duration of anesthesia was significantly extended (Verstegen et al. 1991a). Although the duration 

of action was found to be closely related to the dose of ketamine, the quality of anesthesia was 

similar in all groups. Verstegen and others reported the advantages of the 

medetomidine/ketamine combination over that of the xylazine/ketamine combination to be the 

need for a lower dose of ketamine, a longer duration of action, and better analgesia (Verstegen et 

al. 1990). It was concluded that medetomidine combined with low doses of ketamine forms a 

suitable combination for anesthesia in cats. 
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Medetomidine and Ketamine Combination: Cardiovascular and Respiratory Effects 

Bradycardia in cats is evident with medetomidine/ketamine combinations. In one study, 

varying doses of ketamine were combined with 80 µg/kg of medetomidine and evaluated. When 

the dose of ketamine was increased from 2.5 to 10 mg/kg a change from bradycardia to mild 

tachycardia was observed (Verstegen et al. 1991a).  

In the same study, additional anesthetic drug combinations were evaluated, including 

combining ketamine with acepromazine or xylazine. Bradypnoea was seen in all groups 

receiving ketamine, regardless of its anesthetic pairing (Verstegen et al. 1991a). Verstegen et al 

(1990) observed no respiratory depression in cats anesthetized with 80 µg/kg of medetomidine 

and 5 mg/kg of ketamine (Verstegen et al. 1990). However, periods of apnea were observed in 

cats anesthetized with 80 µg/kg of medetomidine and 10 mg/kg of ketamine (Verstegen et al. 

1991a). 

Medetomidine and Ketamine Combination: Side Effects 

The most common side effects seen with the concomitant use of medetomidine and 

ketamine are vomiting, excitability, and apnea (Verstegen et al. 1990; Verstegen et al. 1991a). 

Analgesia 

NSAIDS 

Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in pain management in 

both humans and animals as they are easy to administer, inexpensive, offer a long duration of 

action, and are not controlled substances (Papich 2000). NSAIDs, however, are not widely used 

in cats due to potential toxic effects. Due to their deficiency of certain metabolic pathways, 

particularly hepatic glucoronidation, cats are prone to decreased NSAID metabolism (Lascelles 

et al. 2007). This prolongs the duration of effect and may ultimately result in drug accumulation. 

Slow clearance may result in hyperthermia, metabolic acidosis, and kidney or liver injury (Davis 
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& Donnelly 1968). Severe adverse effects associated with NSAIDs also include gastrointestinal 

ulceration, perforation, and bleeding or renal ischemia (Papich 2000). NSAID use should be 

based on confirming normal renal function prior to use; and doing so in feral cats is not feasible. 

Hypotension during anesthesia can contribute to the renal toxicity of NSAIDs and blood pressure 

is rarely measured during feral cat procedures. Additionally, dehydration due to trapping may 

make some cats more susceptible to NSAID toxicity. Because feral cats do not participate in 

follow up examinations post-operatively, NSAID use is inappropriate. Alternative methods of 

pharmacologic analgesia should be sought for use in feral cats.  

Opioids 

Opioids are defined as any natural or synthetic drug that produces analgesia without loss of 

proprioception or consciousness (Gaynor & Muir 2002). An important advantage for opioid 

analgesics is that they can be administered without fear of the potential side effects associated 

with NSAIDS (Papich 2000). Opioid drugs are highly effective and remarkably safe (Papich 

2000). They are generally characterized by rapid and extensive distribution as they are highly 

lipophilic drugs (Papich 2000). Opioids exert their effects by interaction with opioid receptors 

located on cell membranes and are currently one the most effective systemic means of 

controlling post-operative pain (Gaynor & Muir 2002)There are three known opioid receptor 

classifications: mu, kappa, and delta; however, more types likely exist (Gaynor & Muir 2002; 

Evers & Maze 2004). Receptors are located throughout the body and drugs acting on them 

produce a variety of effects on tissue and organ systems (Pascoe 2000). Opioid drugs are 

classified as agonist, partial agonist, antagonist, or agonist-antagonist based on their affinity for 

specific opioid receptors (Gaynor & Muir 2002). 
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Buprenorphine 

Effective pain control is important in regards to the development of an anesthetic regime. 

The concomitant use of medetomidine and ketamine has been reported to offer analgesic 

properties. In one study, cats administered a combination of medetomidine and ketamine were 

shown to have less post-operative pain after ovariohysterectomy when compared to other 

anesthetic regimes (Slingsby et al. 1998). However, the short duration of action associated with 

these drugs likely limits their use as sole analgesics (Paddleford & Harvey 1999). In addition, 

any potential analgesic effects of medetomidine are reversed. 

 In the proposed combination, MKB includes a drug specifically for pain control, 

buprenorphine. Buprenorphine is the most popular opioid analgesic used in small animal species 

in the UK and is widely used in other parts of Europe, Australia, and South Africa (Watson et al. 

1996; Capner et al. 1999; Joubert 2001).  In clinical studies, it has provided better analgesia than 

other opioids and is considered highly suitable for perioperative pain management in cats 

(Dobbins et al. 2002; Robertson & Taylor 2004). 

Buprenorphine is classified as a partial mu-opioid agonist (Howland & Mycek 2000). Mu-

receptors are responsible for euphoria, sedation, analgesia, and respiratory depression (Papich 

2000). Partial mu-opioid agonist implies that buprenorphine does not produce the same effects as 

a full agonist, such a morphine (Pascoe 2000). However, buprenorphine has produced better 

analgesia in clinical studies in cats when compared with morphine (Stanway et al. 2002). 

 Agonists acting on receptor sites inhibit pain transmission or modulate pain sensation by 

inhibiting neurotransmitters associated with pain production (Papich 2000). Use of 

buprenorphine in cats is associated with euphoria, and often purring combined with rolling and 

kneading of the front paws (Robertson et al. 2005). The euphoric effects associated with mu-

opiate receptors help to relieve anxiety and stress for cats in an unfamiliar environment (Papich 
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2000). Another advantage to using buprenorphine is its long acting effects, which may exceed 6 

hours in cats (Pascoe 2000; Robertson et al. 2005). The recommended dose for buprenorphine 

ranges from 5-20 µg/kg in cats and can be administered intramuscularly, intravenously, 

subcutaneously, transmucosally, and orally (Pascoe 2000; Robertson et al. 2005). Thermal 

threshold responses have been used to evaluate the efficacy of buprenorphine. Cats that received 

10 µg/kg of buprenorphine intramuscularly increased thermal threshold from 4 to 12 hours 

following administration (Robertson et al. 2003). Another study concluded that thermal threshold 

only increased 45 minutes after a subcutaneous injection of buprenorphine (20 µg/kg) (Steagall 

et al. 2006). This suggests that the route of administration of buprenorphine may impact its 

effectiveness. Routes that lead to slow uptake may not achieve sufficient concentration gradients 

to drive the drug into the biophase (Steagall et al. 2007). No difference was seen in pain scores 

between control groups, who did not receive any analgesics, and cats administered 6 µg/kg of 

buprenorphine intramuscularly after ovariohysterectomy (Slingsby & Waterman-Pearson 1998).   

Buprenorphine: Side Effects 

In animals, well documented effects of excitement and dysphoria exist in conjunction with 

opioid use (Papich 2000). Cats are ordinarily the species considered to be more prone to 

excitatory effects associated with opioid administration (Papich 2000). However, many of the 

studies concluding these reactions were used in healthy, alert animals in which doses of opioids 

in excess of those required for analgesia were administered. These effects seem to be less 

apparent when opioids are administered to animals in pain (Papich 2000). Buprenorphine, on the 

other hand, is rarely seen to cause dysphoria in cats (Robertson & Taylor 2004). 

The use of opioid analgesics often raises concerns regarding clinical hyperthermia, or the 

elevation of body temperature above normal range. In cats, hyperthermia is considered to be ≥  

39.3ºC (103ºF) (Tilley & Smith 2004). The effects of severe hyperthermia are primarily related 
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to an increase in metabolic activity and cellular oxygen consumption and generalized cellular 

necrosis associated with the denaturation of proteins, enzymes, and cell membranes (Niedfeldt & 

Robertson 2006). Doses of buprenorphine ranging between 10-20 µg/kg were not found to cause 

hyperthermia in cats when compared with other opioid analgesics (Niedfeldt & Robertson 2006; 

Posner 2007). 

An additional side effect associated with buprenorphine use in cats is excessive mydriasis, 

or pupil dilation (Robertson & Taylor 2004). Precautions need to be taken when approaching the 

animal as they may not see clearly. In addition, they should be kept away from bright lights 

while their pupils are excessively dilated. Buprenorphine rarely causes dysphoria or vomiting in 

cats (Robertson & Taylor 2004). Buprenorphine is highly effective, easily administered, long-

acting and considered highly suitable for pain management in cats (Robertson & Taylor 2004).  

Opioid and Alpha2 Agonists 

Interestingly, a close association between opioid and alpha2-adenoceptors has been 

identified (Unnerstall et al. 1984). Enhanced antinociception occurs following simultaneous 

administration of agonists at specific sites in the spinal cord (Ossipov et al. 1989; Ossipov et al. 

1990; Omote et al. 1991). Alpha2 agonists and mu-opioid agonists produce similar 

pharmacological effects in the CNS because their receptors are located in the same area of the 

brain, are connected to the same signal transducer, and the same effector mechanism is used by 

both agonists (Paddleford & Harvey 1999). Heightened effects of opioid and alpha2 agonist 

combinations may prove to be useful in potentiating their anesthetic and analgesic properties for 

use in feral cat sterilization surgery. 

Summary 

The overpopulation of feral cats has contributed to a variety of problems including animal 

welfare concerns, detriment to wildlife, and public health considerations. These issues have 
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sharply divided veterinarians, ecologists and conservationists, as well as the general public. In 

the quest for a solution, some control methods have proven to be ineffective, while others offer 

considerable promise. Currently, there is no obvious answer as to what the most effective 

management strategy is. Trap-neuter-return programs offer an alternative to lethal eradication 

methods and are bridging the gap until other solutions become available. Due to the unique 

situation feral cats present, successful anesthesia in high-volume clinics is challenging. The 

currently used anesthetic protocol, TKX, possesses limitations that have prompted the search for 

a superior alternative. The purpose of this study was to evaluate a combination of medetomidine, 

ketamine, and buprenorphine (MKB) for use in large-scale feral cat sterilization clinics.  
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CHAPTER 2 
MATERIALS AND METHODS 

Animals 

Feral cats admitted to trap-neuter-return programs in Alachua County (Operation Catnip® 

and Maddie’s Outdoor Cat Program®) were used in this study. Cats were captured from their 

colonies using humane traps and were transported to the University of Florida’s College of 

Veterinary Medicine by colony caregivers for sterilization. Over a 2-year study period, a total of 

240 cats and kittens were anesthetized using a combination of medetomidine, ketamine, and 

buprenorphine (MKB). Cats selected for the study were of unknown health status and because of 

this; all researchers were required to wear gloves and be vaccinated for rabies. 

Overview 

All anesthetic and surgical procedures were approved by the University of Florida 

Institutional Animal Care and Use Committee. Cats arrived on the morning of surgery in wire 

traps or plastic crates. Upon arrival, cats were assigned an identification number and a medical 

record to document anesthetic and surgical details. Cats were sterilized, vaccinated, and had the 

tip of their left ear removed for identification purposes. Cats were sent home later the same day. 

Caretakers were instructed to release the cats to their colonies the following day.  

Cat Selection 

Every attempt was made to choose apparently healthy cats free from obvious signs of 

upper respiratory infection or other advanced disease. Cats with evidence of trauma, fecal 

staining from diarrhea or signs of dehydration were avoided. Most cats were judged to be adults 

(≥ 1 year of age) (n = 238), although kittens under 6 months of age (n = 2) were included in the 

study. 
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Anesthetic Drugs 

Medetomidine HCl (M) 1 mg/ml (Domitor®, Orion Corporation, Espoo, Finland), 

ketamine HCl (K) 100 mg/ml (Ketaject®, Phoenix Pharmaceuticals Inc, St. Joseph, MO, USA), 

and buprenorphine HCl (B) 0.3 mg/ml (Buprenex®, Reckitt Benckiser Healthcare, Hull, England, 

UK) were used in this study. Atipamezole HCl (A) 5 mg/ml (Antisedan®, Orion Corporation, 

Espoo, Finland) was used to reverse the effects of medetomidine following the completion of 

surgery. 

Experimental Design 

This study was divided into three separate phases. Phase 1 was a dose-finding study to 

determine the optimal combination of medetomidine, ketamine, and buprenorphine to be used in 

feral cat ovariohysterectomy and castration surgeries. The route of administration and dose of 

atipamezole was modified based upon clinical observations and length of recovery. Each cat was 

instrumented non-invasively with monitoring equipment for measurement of the following 

physiological parameters: heart rate (HR), respiratory rate (RR), blood pressure (BP), and 

hemoglobin oxygen saturation (SpO2). Time intervals including time to lateral recumbency, 

surgical duration, and time from reversal to sternal recumbency were recorded.  The preliminary 

trials (Phase 1) continued until a satisfactory combination of MKB was achieved. The criteria 

required for the selected dose of MKB included adequate duration of action, acceptable 

physiological parameters, and rapid return to normal function.  

Phase 2 of this study evaluated the physiological parameters of the selected combination 

acquired in Phase 1. A total of 100 cats were to be anesthetized using the selected MKB 

combination. Each cat was instrumented with non-invasive monitoring equipment that allowed 

HR, RR, BP, and SpO2 to be recorded. Time to lateral recumbency, surgical duration, and time 

from reversal to sternal recumbency were also recorded.  
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In Phase 3 of this study, a fixed dose was created using an average estimated body weight 

of 3 kg/cat. A mixture of MKB was generated using the selected dosing regime evaluated in 

Phase 2. From this mixture, a fixed volume was calculated to be used in each cat, regardless of 

true weight.  Physiological parameters were not monitored during Phase 3; although time to 

lateral recumbency, surgical duration, and time from reversal to sternal recumbency intervals 

were recorded. Adjustments to the calculated MKB fixed volume were made based upon 

anesthetic requirements and overall assessment. If anesthesia was found to be inadequate, the 

fixed volume was increased in 0.1 mL increments. A fixed volume of atipamezole was calculated 

based on the volume of medetomidine in the fixed anesthetic combination. Adjustments to 

atipamezole were made based upon the volume of MKB, clinical observations, and the total time 

of recovery.  

Pre-operative Preparation 

Cats were weighed in their traps on a pediatric scale. Ten empty traps were weighed and 

determined to have an average weight of 2.4 ± 0.1 kg. The estimated trap weight of 2.4 kg was 

used consistently throughout this study, although actual trap weight was found to vary slightly. 

An approximate body weight was calculated by subtracting the average trap weight (2.4 kg) from 

the total weight of the cat plus the trap. This weight was used for MKB dose calculations.  

Induction of Anesthesia 

Cats were restrained at one end of the trap by passing a wire comb through the wire 

meshing of the trap. A 22-gauge, 1-inch needle was used to administer an intramuscular injection 

of MKB. The target injection site was into the paralumbar muscles, although this route of 

administration could not be confirmed. 
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Drug Administration Phase 1: Dose Finding Study 

In Phase 1, several different anesthetic combinations were performed, varying the dose of 

each drug and route of administration of the reversal agent. Previous evaluations of MKB  

(Verstegen et al. 1991a) were the basis of the preliminary dosing regimes for the initial trials in 

this study. Based upon duration of action and the physiological parameters, adjustments were 

made in order to achieve optimum results. The drug combinations performed in Phase 1 are 

shown in Table 2-1.  

 Each of the three drugs (M, K, and B) were measured separately and then combined into a 

single syringe immediately prior to injection. Each cat was administered a single intramuscular 

injection of MKB. If the initial dose of MKB was found to be insufficient, an additional dose of 

10 µg/kg of medetomidine was injected intramuscularly and recorded. Insufficient effect was 

defined as: the cat was still responsive to toe pinch through the trap 10 minutes post-injection. If 

the depth of anesthesia was still found to be insufficient (at t = 15 minutes), an additional dose of 

2.5 mg/kg of ketamine was injected intramuscularly. If anesthesia remained inadequate, a face 

mask was placed on the cat and isoflurane vaporized in oxygen was administered, via a non-

rebreathing Bain anesthetic circuit, for the duration of surgery.  

Dependent upon the conditions of the trial, atipamezole was given intramuscularly or 

subcutaneously at a volume of 0.125 or 0.25 times the initial volume of medetomidine. If cats 

were not sternal 1 hour post-injection, a second dose of atipamezole was administered. This dose 

was of equal volume and delivered intramuscularly, regardless of the initial route of atipamezole 

administration.  

Drug Administration Phase 2: Selected Dose Study 

Physiological parameters in cats given the selected drug combination from Phase 1 were 

evaluated in Phase 2. Each of the three drugs (M, K, and B) were calculated based upon each 
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cat’s estimated weight (cat plus trap weight – average trap weight) and combined in a single 

syringe prior to injection. The selected dosing regime is shown in Table 2-2.  

If the initial dose of MKB was found to be insufficient (at t =10 minutes), an additional 

dose of 20 µg/kg of medetomidine was injected intramuscularly. If anesthesia remained 

inadequate (at t =15 minutes) an additional dose of 2.5 mg/kg of ketamine was injected 

intramuscularly. If anesthesia continued to be insufficient, a face mask was placed on the cat and 

isoflurane gas vaporized in oxygen was administered via a non-rebreathing Bain anesthetic 

circuit, for the duration of surgery. At the completion of surgery, each cat received a 

subcutaneous (intrascapular) dose of atipamezole to reverse the effects of medetomidine. 

Drug Administration Phase 3: Fixed Dose Study 

In Phase 3, the selected dosing regime (100 µg/kg M, 10 mg/kg K, 10 µg/kg B) was 

calculated for a 3 kg cat (Table 2-4). A mixture of MKB was calculated to accommodate 20 cats 

(Table 2-5). In a sterile 30 mL vial, 6.0 mL medetomidine, 6.0 mL ketamine, and 2.0 mL of 

buprenorphine were mixed together. From this vial, an injection volume of 0.7 mL was 

withdrawn (Table 2-4). If anesthesia was found to be inadequate, the fixed volume was increased 

by 0.1 mL (0.8 mL). The fixed volume was administered to all cats, regardless of true weight. 

The MKB injection was administered intramuscularly. The target site was the paralumbar 

muscles, although this could not be confirmed. 

Subcutaneous atipamezole was administered post-operatively to reverse the effects of 

medetomidine.  The injection volume of atipamezole was 0.08 mL (0.4 mg) as calculated by the 

initital volume of medetomidine (Table 2-6). If cats did not achieve sternal recumbency by 1- 

hour following the injection of atipamezole, an additional 0.4 mg (0.08 mL) of atipamezole was 

given into the paralumbar muscle intramuscularly.  
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Cats that received the 0.8 mL (0.344 mg M, 34.4 mg K, 0.034 mg B) dose of MKB 

participated in the high-volume clinic (Operation Catnip®) without time interval, physiological 

measurement, or monitoring. Additionally, weights were not recorded. This was the first 

simulation of what would normally take place in a high volume clinic using the MKB protocol in 

mass. Due to the volume of cats anesthetized simultaneously, every effort was made to note the 

need for supplemental anesthesia, although actual numbers may be higher.  

Clinical Procedures: Evaluation of Anesthetic Effects 

Following injection, loss of reaction to toe pinch was tested from outside the trap. Once 

determined to be unresponsive, each cat was carefully removed from its trap and its sex was 

determined. Palprebral reflex, jaw tone, and overall muscle relaxation were evaluated and 

recorded. These criteria were used to determine adequacy of anesthesia before, during, and after 

surgical procedures. 

Clinical Procedures: Hemoglobin Oxygen Saturation 

A pulse oximeter sensor (Nellcor Puritan Bennett NPB-40, Nellcor Puritan Bennett Inc, 

Pleasanton, CA, USA) was placed on the cat’s tongue for the purpose of monitoring oxygen 

hemoglobin saturation (SpO2) levels and pulse rate. If readings could not be obtained from the 

tongue, digits or an ear were used in an attempt to obtain additional readings. 

Clinical Procedures: Evaluation of Cardiovascular Function 

Blood pressure was measured using a Doppler probe (Ultrasonic Doppler Flow Detector, 

Model 811-B and 811-L, Parks Medical Electronics Inc, Aloha, OR, USA). The hair over the 

caudal carpus was shaved. Ultrasound gel was applied to the doppler probe, placed directly over 

the digital arteries, and secured with zinc oxide tape.  A small (size 3) blood pressure cuff 

(Critikon Inc, Southington, CT, USA) was applied proximally and attached to a 

sphygmomanometer (Welch Allyn, Beaverton, OR, USA) from which systolic blood pressure 
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values were obtained. The size of each cuff was determined by cuff width encompassing 48-50% 

of the circumference of the forelimb where it was applied.  

Heart rate and systolic blood pressure were measured and recorded at 5 minute intervals 

throughout the duration of anesthesia. Pulse oximetry readings were only accepted if consistent 

with the pulse rate counted from the Doppler probe and the heart rate obtained by palpation. 

Clinical Procedures: Evaluation of Respiratory Function 

Respiratory rate was determined visually (counted for 30 seconds). Clear surgical drapes 

facilitated observation of chest movements during ovariohysterectomy surgeries. If clear surgical 

drapes were not used, respiratory rate was determined by palpation. Respiratory rate was 

conducted at 5 minute intervals throughout the duration of anesthesia. 

Clinical Procedures: Temperature 

Rectal temperature was measured using a standard electronic digital thermometer (MABIS 

Healthcare, Inc., Waukegan, IL, USA). Temperature was determined at the time of induction, at 

the completion of surgery, and 5 minutes following the reversal of medetomidine.  

Clinical Procedures: Pre-surgical  

A sterile petroleum-based ophthalmic lubricant (Akorn, Inc., Buffalo Grove, IL, USA) was 

applied to both eyes and each cat was administered a long-acting penicillin injection (Extended 

Action Penicillin G Benzathine and Penicillin G Procaine, G.C. Hanford Manufacturing 

Company, Syracuse, NY, USA) subcutaneously. Prior to surgery, approximately 1 cm of the 

distal tip of the left ear was removed using a sterile hemostat and surgical scissors. This step was 

used as the first indicator of anesthesia efficacy in our study. Finally, the hair was clipped from 

the surgery site and the skin was prepared using alternating providine iodine and alcohol scrubs. 
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Clinical Procedures: Post-operative  

After surgery was complete, each cat was vaccinated against rabies, feline leukemia virus, 

feline panleukopenia virus, herpes virus, and calicivirus (FVRCP) (Rabvac® 3TF Fort Dodge 

Laboratories, Fort Dodge, IO, USA; Fel-O-Guard™ Plus 3 + Lv-K, Fort Dodge Laboratories, 

Fort Dodge, IO, USA). The rabies vaccine was administered subcutaneously in the right hind leg. 

The feline leukemia/FVRCP combination vaccine was administered subcutaneously in the left 

hind leg. In addition, each cat received a single dose of selamectin (Revolution®) (Pfizer Animal 

Health, Exton, PA, USA) administered topically for parasite control. 

Quality of Recovery 

Following the completion of surgery and the subsequent reversal of medetomidine, a 

Quality of Recovery Score (QRS) was assigned and recorded according to predetermined 

guidelines (Table 2-3). 

Data 

Least square mean (LSM) and true mean for physiological data were reported. The least 

LSM is identical to the true mean assuming no missing data and the number of replications is the 

same in each group. Because our data did not meet these criteria, both were reported for 

comparison. 

Statistical Analysis 

SAS PROC MIXED (SAS Institute Inc., Cary, NC, 27513-2414, USA) was used to 

evaluate physiological parameters in support of missing data. SAS PROC MIXED assumes data 

are missing at random, which is suspected for the majority of absent records in this study, 

although cannot be confirmed. Missing data was the result of equipment error, human error, or 

the result of other unforeseen complications. 
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Individual anesthetic records were kept for each cat. Male and female data were compared. 

Physiological variables (BP, RR, SPO2, HR, and rectal temperature), the time from MKB 

injection until lateral recumbency, the time from MKB injection until the start of surgery, 

surgical duration, the time from atipamezole administration to sternal recumbency, and the total 

time recumbent were compared between males and females. Body weight, the need for 

additional MKB, and the need for additional atipamezole were also compared between males and 

females. In cats requiring additional MKB, time from reversal to sternal recumbency, total time 

recumbent, and additional atipamezole requirements were compared and analyzed amongst 

males and females, as well. 

Weight, MKB injection to time of lateral recumbency, MKB injection to start of surgery, 

surgical duration, time of reversal to sternal recumbency, and total time recumbent were 

compared by means of an unpaired t-test. Physiological variables (BP, RR, HR, SPO2) were 

compared separately over time by means of a two-factor ANOVA (Time-fixed; Subject-random) 

test.  Temperatures were compared over time using split-plot repeated measures ANOVA with 

post hoc time comparisons by means of Bonferroni’s t-test. The effect of multiple doses of MKB 

on the total time recumbent was evaluated using a two-way ANOVA test (SAS PROC MIXED, 

SAS Institute Inc., Cary, NC, 27513-2414, USA). Reversal to sternal time was compared 

between cats that did or did not require additional MKB by means of an unpaired t-test.  

The significance in the difference between physiological parameters upon the completion 

of surgery and 5 minutes following atipamezole administration were compared in all cats. 

Changes in physiological variables (BP, RR, HR, SPO2) before and after the reversal of 

medetomidine were analyzed using split-plot repeated measures ANOVA. The α-priori 

significance level used throughout this study was P < 0.05. 
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Finally, the associations between sex and additional MKB, and sex and the need for 

additional reversal were evaluated using a 2 x 2 contingency table and a chi-square test.  

Similarly, the need for additional MKB and the need for additional reversal were evaluated using 

a 2 x 2 contingency table and a chi-square test for males and females separately.  If expected 

values were < 5, then a minimum chi-square test was used instead of chi-square.  
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Table 2-1.  Dose-finding study 
n = M K B A A  

   
µg/kg  mg/kg  µg/kg (x M volume) Route of 

Administration 

Trial 1 10 80 7.5 10 0.25 IM 
Trial 2 10 80 10 10 0.25 IM 
Trial 3 15 100 7.5 10 0.25 IM 
Trial 4 3 100 10 10 0.25 IM 
Trial 5 4 110 7.5 10 0.125 IM 
Trial 6 8 110 7.5 10 0.25 IM 
Trial 7 9 110 7.5 10 0.25 SC 
Trial 8 10 100 10 10 0.25 SC 

 
 
 
Table 2-2.  Selected dosing regime 

Drug Dose Route of Administration 
Medetomidine (M) 100 µg/kg IM 

Ketamine (K) 10 mg/kg IM 
Buprenorphine (B) 10 µg/kg IM 
Atipamezole (A) 0.25 x M volume SC 

 
 
 
Table 2-3.  Quality of recovery scores 

QRS Scoring Guidelines 
3 Good: Smooth Recovery, No Excitement, < 45 min Reversal to Sternal Time 
2 Acceptable: Mild Excitement and/or <1hr Reversal to Sternal Time 
1 Unacceptable: Severe Excitement, 2nd Reversal, and/or >1hr Reversal to Sternal Time 

 
 
 
Table 2-4.  Fixed dose calculation 

Drug Dose Concentration mL/kg mL/3kg 
Medetomidine (M) 100 ug/kg 1 mg/ml 0.1 0.3 

Ketamine (K) 10 mg/kg 100 mg/ml 0.1 0.3 
Buprenorphine (B) 10 ug/kg 0.3 mg/ml 0.033 0.1 

 
 
 

Table 2-5.  MKB mixture calculation (20 Cats) 

  
mL/3 

kg x # of Cats Total (mL) 
Medetomidine (M) 0.3 20 6 
Ketamine (K) 0.3 20 6 
Buprenorphine (B) 0.1 20 2 
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Table 2-6.  Atipamezole fixed dose calculation 
Volume of (M) x 0.25 

0.3 mL x 0.25 = 0.075 mL 
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CHAPTER 3 
RESULTS 

Phase 1-Dose-Finding Study 

During Phase 1 of this study, 69 cats (41 males, 28 females) were anesthetized with MKB 

in 8 separate trial experiments (Table 3-1). All cats were of acceptable body condition and 

appeared healthy at the time of the procedure. Pregnancy (n = 3) and bilateral cryptorchidism (n 

=1) were observed in a small number of cats. In addition, one male was found to be previously 

castrated.  

Drug combinations in groups 1, 2, and 3 provided good anesthesia, however, duration of 

action was inadequate for surgery completion. Duration of action in groups 1, 2, and 3 were 35 ± 

16 minutes (M: 36 minutes; R: 14-62 minutes) (Median, Range), 41 ± 14 minutes (M: 45 

minutes, R: 19-67 minutes), and 38 ± 25 minutes (M: 30 minutes; R: 15-105 minutes), 

respectively. In group 4 duration of action was sufficient (62 ± 26 minutes) (M: 75 minutes; R: 

32-79 minutes) and physiological parameters were acceptable, but recoveries were violent and 

considered unacceptable in every cat (n = 3). In groups 5, 6, and 7 depth of anesthesia was good, 

but the duration of action was inconsistent and was not considered acceptable. The duration of 

action in groups 5, 6, and 7 were 50 ± 28 minutes (M: 46 minutes; R: 26-84 minutes), 30 ± 6 

minutes (M: 30 minutes; R: 21-40 minutes), 35 ± 6 minutes (M: 35 minutes, R: 26-47 minutes), 

respectively. 

The dose of atipamezole and route of administration in groups 1, 2, 3, and 4 provided 

acceptable recovery times (≤ 1 hour). In group 5, the reversal dose was decreased by one-half to 

see if a smaller dose would be sufficient. This protocol was found to result in delayed recoveries 

(≥ 1 hour) and all cats (n = 4) required an additional injection of atipamezole. The reversal 

volume and route of administration in groups 6 and 7 were satisfactory, with group 7 providing 
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an alternate option for atipamezole administration (subcutaneous injection). Cats that received 

subcutaneous atipamezole in group 7 were observed to have longer (28 ± 15 minutes; M: 31 

minutes, R: 5-50 minutes), yet acceptable, recoveries compared to group 4 (17 ± 13 minutes; M: 

14, R: 5-36 minutes). Recoveries in group 7 had no incidence of excitement or violent behavior. 

Group 4 was considered the best with respect to adequate depth of anesthesia and duration 

of action, however, recoveries were unacceptable. The recovery process appeared to take place 

undesirably fast, and was accompanied by excitement and violent behavior. Based on these 

observations, group 8 combined the MKB doses from group 4 (100 µg/kg M, 10 mg/kg K, 10 

µg/kg B) with the reversal dose and route of administration from group 7 (1.25 mg (0.25 mL) x 

M; subcutaneously). This protocol was carried out in 10 cats and exhibited superior qualities 

when compared to previous trials. Duration of action was sufficient (33 ± 11 minutes; M: 30, R: 

15-57) and time to sternal recumbency (34 ± 24 minutes; M: 25; R: 5-74 minutes) was adequate, 

uneventful, and within acceptable recovery parameters. The protocol executed in group 8 was 

considered to have the best potential for our needs, and therefore, was chosen for further 

investigation. 

Phase 1-Dose-Finding Study: Side Effects 

In Phase 1, 4 cats displayed severe respiratory depression. All 4 cats received the same 

dose of MKB (110 μg/kg M, 7.5 mg/kg K, 10 μg/kg B).  

Phase 2-Selected Dose Study: Animals 

One hundred and one cats (53 males, 48 females) were anesthetized with the selected 

dose of MKB (100 µg/kg M, 10 mg/kg K, 10 µg/kg B). Ninety-nine cats were identified as adults 

and 2 cats were approximately 6 weeks of age. Two cats were pregnant and 2 cats were lactating 

at the time of surgery. Three cats were found to be previously sterilized (1 male, 2 females), 

therefore, a total of 98 cats (52 males, 46 females) were sterilized using the selected dose of 
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MKB. With one exception, all cats were considered to be free from obvious signs of disease or 

trauma. One cat displayed signs of marked dehydration, diarrhea, and intestinal parasites upon 

examination following MKB administration. There was evidence of external parasites, such as 

fleas, on most cats.  

There was no significant difference in the weight of male cats (3.2 ± 0.2 kg) compared 

with female cats (2.9 ± 0.1) (P = 0.15). Cat weights ranged between 0.93 kg and 6.31 kg and 

therefore, the volume of the MKB combination was between 0.22 mL and 1.4 mL, respectively.  

Phase 2-Selected Dose Study: Time Intervals 

Lateral recumbency was achieved in 4.3 ± 4 minutes and 5.2 ± 5.6 minutes (mean ± SD) 

after the injection of MKB in male and female cats, respectively. There was no significant 

difference in lateral recumbency times between males and females (P = 0.35). Eight cats (2 

males, 6 females) vomited following anesthetic injection, however, the transition to lateral 

recumbency was free from signs of CNS excitement. The time from MKB injection until the start 

of surgery was significantly longer in females (23 ± 6.2 minutes) than in males (16.1 ± 5.2 

minutes) (P < 0.0001) due to longer surgical preparation requirements. Similarly, the surgical 

duration was significantly longer in female cats (29.6 ± 18.7 minutes) compared to male cats (3.2 

± 2.5 minutes) (P < 0.0001). 

The time from the injection of the reversal agent atipamezole until the onset of sternal 

recumbency was not significantly (P = 0.9) different between males (38.6 ± 38 minutes) and 

females (40.6 ± 78.2 minutes).  There was also no difference (P = 0.6) in time to sternal 

recumbency in cats that received a second dose of MKB (n =11). 

The total time recumbent (including preparation, surgery, and recovery) was significantly 

longer in females (86.9 ± 27.1 minutes) than in males (64.7 ± 36.2 minutes) (P = 0.0009). The 

total time recumbent was significantly different (P = 0.008) in males (62 ± 20.7 minutes) and 
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females (103.8 ± 28.4 minutes) who required a second dose of MKB (7 males, 4 females), 

however, there was no interaction observed between the two (total time recumbent and the need 

for additional MKB) (P = 0.34). 

There was no difference (P = 0.4) in the frequency of additional MKB requirements in 

male (n = 7) and female (n = 4) cats. Similarly, there was no difference (P = 0.4) in the frequency 

of cats (6 males, 8 females) requiring a second dose of the reversal agent, atipamezole. There 

was also no association (P = 0.3) between cats that required a second dose of MKB and cats that 

required a second dose of reversal agent. 

Phase 2-Selected Dose Study: Physiological Variables 

Physiological variables (BP, HR, SpO2, and RR) were measured immediately after 

removal from the trap, throughout the surgical procedure, and 5 minutes following the reversal of 

medetomidine. The feral nature of the cats prohibited further monitoring beyond this point. 

Physiological data are missing intermittingly as a result of equipment error, human error, or other 

unforeseen complications. Absent data are believed to be missing at random, although this 

cannot be confirmed. 

Male and female data were assessed separately over time. The average range of data 

collections were between 5 and 35 minutes in males and between 5 and 85 minutes in females. 

Data were collected every 5 minutes using set time intervals. The start point and the length of 

these intervals were determined by the time of lateral recumbency and the surgical duration. 

Following the reversal of medetomidine, physiological parameters were collected for an 

additional 5 minutes in all cats when possible. Some measurements were unable to be obtained in 

cats with unusually short recovery times.   

In males, a relationship between blood pressure (R: 91-195 mm Hg) and time could not 

be made (P = 0.52) with > 95% confidence. Blood pressure (R: 38-190 mm Hg) decreased 
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significantly over time (P < 0.0001) in female cats. One female cat was hypotensive (< 60 mm 

Hg) at least once throughout the duration of anesthesia. Twenty-two cats (7 females, 15 males) 

were hypertensive (> 160 mm Hg) at least once throughout the duration of anesthesia. 

Normotension was observed following the administration of medetomidine and throughout the 

duration of surgery in most cats (Figure 3-1 and Figure 3-2). 

In males, heart rate (R: 77-176 beats/minute) did not significantly (P = 0.32) change over 

time (Figure 3-3). No observation of tachycardia (> 180 beats/minute) was observed in any cat. 

Conversely, heart rate (R: 57-172 bpm) significantly decreased (P < 0.0001) as a factor of time in 

female cats (Figure 3-4). One female was observed to be bradycardic (< 60 beats/minute) 

throughout the duration of anesthesia. 

Severe hemoglobin desaturation was observed in both males (R: 36-99 %) and females 

(R: 73-100 %) 5 minutes following the administration of MKB. Hemoglobin saturation was 81.1 

± 1.9% and 86.3 ± 1.1 % 5 minutes following MKB administration in males and females, 

respectively. Hemoglobin oxygen saturation, however, significantly increased over time in both 

males (P = 0.0003) and females (P < 0.0001) (Figure 3-5 and Figure 3-6). There was no change 

in respiratory rate over time in males (R: 4-76 breaths/minute) (P = 0.13) or females (R: 4-56 

breaths/minute) (P = 0.14) (Figure 3-7 and Figure 3-8). Apneustic breathing was observed in 3 

cats and periods of apnea (longer than 1 minute) were observed in 1 cat. 

Oral mucus membrane color was also evaluated. Most cats contained pink membranes 

and were considered clinically acceptable. In addition, capillary refill time was evaluated in most 

cats and noted to be less than 2 seconds.  

Rectal body temperature was measured at three separate times throughout the procedure: 

following MKB induction (start), at the completion of surgery (pre-reversal), and 5 minutes 
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following the reversal of medetomidine (post-reversal) (Figure 3-9). Rectal temperature was 

lower in females (P < 0.0001) at all three points in time and temperature decreased over time in 

both males and females (P < 0.0001).  Start, pre-reversal, and post-reversal temperatures in males 

were 38.9 ± 0.6ºC, 38.2 ± 0.7ºC, 37.9 ± 0.7ºC, respectively. Start, pre-reversal, and post-reversal 

temperatures in females were 38.7 ± 0.5ºC, 36.8 ± 1.1ºC, 36.7 ± 1.2ºC, respectively. No male 

temperatures were below 34ºC (93.2ºF). One female had a temperature of 33.1ºC (91.4ºF) and 

was considered hypothermic. 

Phase 2-Selected Dose Study: Physiological Variables before and after Reversal 

Physiological parameters obtained following the completion of surgery (pre-reversal) and 

5 minutes following the reversal of medetomidine (post-reversal) were compared.  Male (P < 

0.0001) and female (P < 0.0001) blood pressures changed significantly over the 5 minute 

reversal period, but did not change differently over the 5 minute reversal period (P = 0.37). 

Blood pressures in females (P < 0.0001) were less than blood pressures in males (P < 0.0001) 

both prior to the reversal of medetomidine and following the reversal of medetomidine (Figure 3-

10). Blood pressure was significantly lower post-reversal (P = 0.0003) when compared to pre-

reversal values (P < 0.0001) in both males and females. 

Heart rate increased following the reversal of medetomidine in males (P < 0.0001) and 

females (P < 0.0001) when compared to immediate pre-reversal values (Figure 3-11). Pre-

reversal heart rates in males were greater than in females (P = 0.0006), however, there was no 

difference between male and female heart rates following the reversal of medetomidine (P = 

0.25). 

Following the reversal of medetomidine, hemoglobin oxygen saturation significantly 

increased in males (P = 0.0001) and females (P = 0.03). Oxygen saturation value pre-reversal (P 

< 0.0001) and post-reversal (P = 0.002) were significantly lower in males when compared to 
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females at both time points (Figure 3-12). There were no differences in respiratory rates in males 

or females over time (P = 0.7). 

Temperatures immediately following treatment with MKB were 38.9 ± 0.6ºC (102ºF ± 

1.1) in males and 38.7 ± 0.5ºC (101.7 ± 0.9ºF) in females. Following the completion of surgery, 

temperatures dropped to 38.1 ± 0.7ºC (100.8 ± 1.3ºF) and 36.7 ± 1.1ºC (98.4 ± 1.9ºF) in males 

and females, respectively. Temperature was significantly lower (P < 0.0001) in males (37.9 ± 

0.7ºC) (100.2 ± 1.2ºF), but not in females (36.6 ± 1.2ºC) (98.2ºF) (P = 0.16) following reversal. 

Females, however, had lower temperature values at both pre-reversal and post-reversal 

recordings (P < 0.0001) compared to males (Figure 3-13). 

Phase 2-Selected Dose Study: Rescue Anesthesia (Isoflurane) 

A total of 11 cats (2 males, 9 females) required supplemental anesthesia which constitutes 

approximately 11% of the study population. Females required supplemental anesthesia 

significantly more often (P = 0.02) than males. Rescue anesthesia in the 2 males was required at 

the time of induction, following a second dose of MKB that proved to be insufficient. Of the 9 

females that required supplemental anesthesia (isoflurane) 5 of them required it after 45 minutes 

of successful anesthesia (timed from the initial injection).  

Phase 2-Selected Dose Study: Quality of Recovery Scores 

Quality of Recovery Scores (QRS) (Table 3-2) were assigned following the completion 

of surgery and subsequent reversal of medetomidine. Recovery times in males and females were 

38.6 ± 38 minutes (M: 30 minutes; R: 5-207 minutes) and 40.6 ± 78.2 minutes (M: 22 minutes, 

R: 4-130 minutes) in males and females, respectively. Ninety-eight cats (51 males, 47 females) 

were scored for quality of recovery (QRS). Fifty-nine cats (28 males, 31 females) received a 

QRS of 3 (good) and 15 cats (12 males, 3 females) received a QRS of 2 (acceptable). The 

remaining 24 cats received a QRS of 1 (unacceptable), mainly due to prolonged recovery times 
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(n = 20). Only 4 cats (2 males, 2 females) were considered to have an unacceptable QRS as a 

result of overly excited or violent behavior. Approximately 75% of cats achieved an acceptable 

or good QRS. 

Phase 2-Selected Dose Study: Side Effects 

Under MKB anesthesia, apneustic breathing (holding of breath upon inspiration) was 

observed in male (n = 3), but not female cats. Additionally, rapid shallow breaths were observed 

in 6 anesthetized male cats. Eight males responded to the stimulus of castration surgery (tension 

on the spermatic cord) by hind limb movements, while spontaneous movement was observed in 

3 females. Spontaneous movements were defined as movement that did not occur in response to 

a noxious stimulus; when it was noted, cats were checked by squeezing their toe and no response 

was elicited. Spontaneous movement included paw extension and ear flicking. Post-induction 

apnea (n = 1), post-operative retching (n = 1), and pawing at the mouth post-reversal (n = 6) 

were also observed. 

Phase 3-Fixed Dose Study (0.7 mL): Animals 

Based on an average calculated weight of 3 kg/cat and the selected dosing regime 

achieved in Phase 1 and tested in Phase 2, a fixed-dose of MKB was extrapolated and performed 

in Phase 3.  

Two fixed volumes of MKB were evaluated in this study. Thirty-six cats (16 males, 20 

females) were anesthetized using an MKB fixed dose volume of 0.7 mL (0.3 mg M, 30 mg K, 

0.03 mg B). Seven cats were pregnant and one female was previously spayed. 

The average weight for both male and female cats was 2.8 ± 0.6 kg. Based on the fixed 

dose, the average cat received an overdose of MKB (107 µg/kg M, 10.7 mg/ kg K, 10.7 µg/kg 

B). This represented a 7% increase in the total amount of medetomidine, ketamine, and 

buprenorphine given in excess. The average weight for cats < 3 kg (n = 25) was 2.4 ± 0.3 kg. 
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Based on the fixed dose volume, cats weighing less than 3 kg were overdosed (125µg/kg M, 12.5 

mg/kg K, 12.5 µg/kg B) on average by 25% for MKB.  The smallest cat weighed 1.8 kg. Based 

on the fixed dose, this cat was overdosed (166 µg/kg M, 16.6 mg/kg K, 16.6 µg/kg B) as well. 

This represents a 66% increase in the amount of MKB given in excess. Approximately 30% of 

cats (n = 11) weighed over 3.0 kg. The average weight for cats weighing > 3 kg was 3.56 ± 0.4 

kg. Cats weighing over 3 kg were under dosed (84 µg/kg M, 8.42 mg/kg K, 8.42 µg/kg B) by -

16% . 

Seven cats (2 males, 5 females) needed an additional injection (0.1 mL; 0.043 mg M, 4.3 

mg K, 0.0042 mg B) of MKB. Four of the 7 cats that required an additional injection of MKB 

weighed ≥ 3.0 kg. Similarly, 7 cats (2 males, 5 females) required an additional injection of the 

reversal agent atipamezole, including 3 cats (1 male, 2 females) that received a second dose of 

MKB. One female cat required a third injection of atipamezole approximately 2 hours following 

the initial atipamezole injection. That cat achieved sternal recumbency approximately 10 minutes 

following the third injection of atipamezole. 

Phase 3-Fixed Dose Study (0.7 mL): Time Intervals 

Time to lateral recumbency was 7 ± 5 minutes and 4 ± 3 minutes in males and females, 

respectively. Surgical duration was longer in females (43 ± 18 minutes) than in males (7 ± 4 

minutes). Time from reversal to sternal recumbency was 31 ± 20 minutes in males and 31 ± 31 

minutes in females. Total time recumbent was 64 ± 20 minutes and 117 ± 46 minutes in males 

and females, respectively. 

Phase 3-Fixed Dose Study (0.7 mL): Side Effects 

Apnea or severe respiratory depression was observed in several cats (n = 6). The weight 

of these cats (4 females, 2 males) was 2.9 ± 0.5 kg (M: 2.9 kg, R: 2.34-3.9 kg). One cat vomited 

following injection of MKB. 
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Phase 3-Fixed Dose Study (0.7 mL): Rescue Anesthesia 

Thirteen cats (2 males, 11 females) required supplemental anesthesia. Of the 13 cats, 7 

weighed more than 3.0 kg. Cats were further divided into those requiring inhaled supplemental 

anesthesia before (n = 7) 45 minutes of successful anesthesia and after (n = 6) 45 minutes of 

successful anesthesia. Approximately 36% of the total population receiving the fixed dose 

required supplemental anesthesia. In conclusion, this number was far greater than our initial goal 

of less than 10% of the population requiring rescue anesthesia, and therefore the volume of MKB 

was increased. 

Phase 3-Fixed Dose Study (0.8 mL): 

Thirty-four cats (9 males, 25 females) were anesthetized using a fixed MKB volume of 

0.8 mL (0.344 mg M, 34.4 mg K, 0.034 mg B). Physiological parameters were not monitored 

and time intervals were not recorded.  

Excessive requirements for MKB (n =3) or the need for supplemental isoflurane 

anesthesia (n = 9) were observed. Because cats were monitored as a whole, and not individually, 

this number may be higher as a result of missed data. Three cats vomited following the initial 

injection of MKB.  

The initial injection of MKB was performed by an anesthetist unfamiliar with MKB and 

its volume in 28 cats. In 4 of the cats (14%), the anesthetist reported difficulty injecting a larger 

drug volume compared to the usual TKX protocol (0.25 mL). Two of the 4 cats with difficult 

injections required supplemental anesthesia.  

Apnea or severe respiratory depression was observed in most cats and was more recurrent 

in cats anesthetized with MKB (fixed volume) in Phase 3, compared to those anesthetized in 

Phase 2 (weight-specific). Because individual medical records were not kept for each cat, an 
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exact number is not available, although it is believed that more than half of the cats anesthetized 

with the 0.8 mL fixed volume of MKB displayed clinical signs of respiratory distress.  

Summary 

Based on preliminary findings in Phase 1, a selected dosing regime was chosen to be used 

in 100 feral cats. In Phase 2, cats anesthetized with the selected protocol were closely monitored, 

recording physiological parameters and time intervals of interest throughout the surgical 

procedure. The selected dose in Phase 2 provided an anesthetic combination that offered 

acceptable physiological parameters and the potential for a fixed-volume derivative. In Phase 3, 

a calculated a fixed volume of MKB (0.7 mL) based upon an average calculated value for a feral 

cat’s weight (3.0 kg) was found to provide inadequate anesthesia. Based on these observations, 

the decision was made to increase (0.8 mL) the fixed volume of MKB. The 0.8 mL of MKB was 

considered undesirable as a high percentage (30%) of cats required rescue anesthesia. In 

addition, apnea or respiratory depression was observed in most cats. There was no perioperative 

mortality for cats anesthetized with MKB. 

In conclusion, the selected dose of MKB used is Phase 2 offered potential when used in a 

weight-specific manner, although failed to meet the goals set out at the start of the study when 

extrapolated to a fixed dose to be used in all cats, regardless of true weight. In addition, the 

adverse physiological effects observed with the fixed-dose results were less than desirable, 

making the studied fixed dose of MKB an unsuitable combination for use in feral cats of 

unknown weight. 
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Table 3-1.  Dose-finding study groups 
n = M K B A A 

  
µg/kg mg/kg µg/kg (x M volume) Route of 

Administration 

Group 1 10 80 7.5 10 0.25 IM 
Group 2 10 80 10 10 0.25 IM 
Group 3 15 100 7.5 10 0.25 IM 
Group 4 3 100 10 10 0.25 IM 
Group 5 4 110 7.5 10 0.125 IM 
Group 6 8 110 7.5 10 0.25 IM 
Group 7 9 110 7.5 10 0.25 SC 
Group 8 10 100 10 10 0.25 SC 

 
 
 
 
Table 3-2.  Quality of recovery scores 

QRS Scoring Guidelines 
3 Good: Smooth Recovery, No Excitement, < 45 minutes Reversal to Sternal Time 
2 Acceptable: Mild Excitement and/or <1hr Reversal to Sternal Time 
1 Unacceptable: Severe Excitement, 2nd Reversal, and/or >1hr Reversal to Sternal Time 
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Figure 3-1.  Blood pressure in male cats over time 

 
 

 
Figure 3-2.  Blood pressure in female cats over time 
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Figure 3-3.  Heart rate in male cats over time 

 
 

Figure 3-4.  Heart rate in female cats over time 
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Figure 3-5.  Sp O2 (%) in male cats over time 

 

 

Figure 3-6.  Sp O2 (%) in female cats over time 
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Figure 3-7.  Respiratory rate in male cats over time 

 

 

Figure 3-8.  Respiratory rate in female cats over time 
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Figure 3-9.  Temperature over time 

 

 

Figure 3-10.  Blood pressure before and after reversal 
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Figure 3-11.  Heart rate before and after reversal 

 

 

Figure 3-12.  SpO2 (%) Before and after reversal 
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Figure 3-13.  Temperature before and after reversal 
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CHAPTER 4 
DISCUSSION 

Feral cat sterilization clinics are an integral component of Trap-Neuter-Return programs.  

Such programs present a variety of challenges and rely heavily on the efficacy, predictability, 

and safety of an anesthetic regime. Not only must anesthesia protocols be adequate to perform all 

surgeries, they must also safely and effectively render cats unconscious while still in their traps. 

An anesthetic protocol for use in large feral cat clinics must be injectable, provide adequate 

duration of action, support acceptable physiological parameters, have a wide margin of safety, 

and allow rapid return to normal function. In addition, postoperative analgesia must be adequate. 

TKX, the current anesthetic regime used in Operation Catnip® , accommodates many of the 

demands associated with feral cat anesthesia, however, it also posses inadequacies. An attempt to 

improve the TKX protocol through the study of MKB was the purpose of this study. While MKB 

may compensate for some of the limitations associated with TKX, the doses of MKB used in this 

study exhibited its own shortcomings. 

The preliminary trials of this study led to a MKB combination of considerable promise. In 

Phase 1 of this study, superior components from two trial groups (4 and 7) were combined. It 

was hypothesized that if the duration of action achieved in group 4 could be maintained while the 

recoveries could be slowed down and still provide acceptable recovery times, the overall product 

would provide adequate anesthesia and smoother recoveries, as seen in group 7. The anesthetic 

and physiological effects of the selected dose were considered acceptable and even resolved 

some of the limitations associated with TKX. However, when tested in a high-volume setting, 

the MKB fixed volume offered less than desirable anesthetic effects; these including the frequent 

need for additional MKB injections, rescue anesthesia with isoflurane gas, and repeated reversal 

injections. In addition, apnea and respiratory depression were more pronounced and occurred 
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with a higher incidence in cats that received the fixed volume dose of MKB compared to those 

dosed in a weight specific manor in Phase 2.  

One study reported anesthetic-related deaths to be 0.24% (0.21-0.27%) in cats (n = 79, 

178) sedated or anesthetized for a variety of surgical procedures using a wide range of drug 

combinations (Brodbelt 2006). None of the cats (n =240) in this study died prior to being 

released back to their colonies. The absence of perioperative mortality is thought to contribute to 

a wide margin of safety associated with the use of MKB. The MKB protocol used in this study 

was considered relatively easy to administer, although the large injection volume may have 

compromised the ability to accurately deliver full doses in some cats. Approximately 11 % of 

cats in Phase 2 and 13% of cats in Phase 3 required a supplemental injection of MKB. This may 

have been the result of a large injection volume preventing a complete and accurate injection or 

perhaps, more simply, the administration of a dose insufficient at providing adequate anesthesia. 

Both of these factors may have contributed to the need for supplemental anesthesia. Female cats 

had a greater need for rescue anesthesia compared to males. This is likely the result of lengthier 

preparation and surgical procedures when compared to males.  

Hemoglobin desaturation, particularly in the first five minutes following MKB 

administration, was common in both male and female cats; however, it was more apparent in 

male cats. One male cat was observed to report an oxygen saturation value of 36 % following 

MKB administration. Respiratory depression and periods of apnea (temporary suspension in 

breathing for more than 1 minute) were consistent with previous studies of similar medetomidine 

and ketamine combinations (80µg/kg M; 10 mg/kg K), in which apnea was observed in 8 out of 

10 cats (Verstegen et al. 1989; Verstegen et al. 1991a).  
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Low SpO2 values may be caused by anything that decreases the delivery of oxygen to the 

tissues including hypoxemia, vasoconstriction, or low cardiac output (Thurmon et al. 1996). 

Cardiac output (CO) is defined as the quantity of blood pumped by the heart each minute and 

varies dependent upon heart rate (HR) and stroke volume (SV) (Berne et al. 2004). The 

relationship between cardiac output and heart rate is linear (CO = HR x SV). Low SpO2 values 

may be the result of patient factors or detection limitations. Because pulse oximetry relies on 

peripheral blood flow, the accuracy of readings may be affected as a result of the 

vasoconstriction or decreased heart rate observed following the administration of medetomidine 

(Haskins 1996). The observed hemoglobin desaturation, especially as seen following the 

injection of MKB, may have been the result of equipment inaccuracies or simply, the known 

depressant cardiovascular effects of medetomidine. Cats were not intubated in this study and 

spontaneously breathed room air. This was likely a contributing factor to low oxygen saturation 

levels seen in cats anesthetized with both TKX and MKB. A study assessing a combination of 

MKB with a significantly lower dose of medetomidine (40 µg/kg) observed an overall SpO2 

value of 94 ± 4% (Cistola et al 2002). A higher dose of medetomidine, such as the amount used 

in this study, may have affected SpO2 values as a result of increased vasoconstriction. An 

increase in vasoconstriction may have contributed to either (1) a decrease in oxygen delivery to 

tissues or (2) a decrease in the accuracy of pulse oximetry readings. SpO2 values were observed 

to increase over time in MKB treated cats. It is hypothesized that the increase in SpO2 values 

over time was a result of the metabolism of medetomidine, lowering plasma concentration 

values, and exhibiting less total effect (vasoconstriction). A steady decrease in vasoconstriction 

may have contributed to increased oxygen delivery, resulting in higher SpO2 values over time. 

Alternatively, decreased vasoconstriction may have provided more accurate pulse oximetry 
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readings in which earlier readings, when medetomidine plasma concentrations were higher, 

would be considered less precise. The true cause for the observed increase in SpO2 values is 

unknown. Once the amount of deoxygenated hemoglobin exceeds 5 g/100 mL, the blood 

changes from a red color to a blue color (cyanosis) (Thurmon et al. 1996). Despite low pulse 

oximetry readings, oral mucous membrane color remained pink and was clinically acceptable in 

most cats. Pale mucous membranes were noted and hypothesized to be the result of drug-induced 

vasoconstriction following the administration of medetomidine. While low oxygen saturation is 

preventable and easily treated by providing supplemental oxygen, it is not feasible to administer 

to all cats due to the number of cats needing simultaneous administration and equipment 

limitations. Additionally, the challenge of identifying cats at risk of hypoxia and supplementing 

them as needed, should not be underestimated when many cats are anesthetized simultaneously. 

Hypoxia may result in abnormal organ function and/or cellular damage (Thurmon et al. 1996). 

The exact repercussions of low SpO2 levels in cats anesthetized with MKB are unknown and 

may result in injury not apparent in the immediate post-operative period. 

Normal heart rates in cats range between 145 and 200 beats per minute (Muir et al 2000). 

Following the administration of MKB, heart rate was significantly lower compared to normal 

values, although true baseline values of conscious animals could not be determined in this study. 

Ninety-one percent of cats in this study were observed to have lower than normal heart rate 

values.  In one study, heart rate in cats administered solely medetomidine (80 µg/kg-110 µg/kg) 

decreased to about 50% of starting values within 15-30 minutes (Vaha-Vahe 1989a). While 

baseline values were not obtained in this study, it is believed that the measured values following 

induction were more than 50% of their starting values as a result of the cardiovascular 

stimulating effects of ketamine. In combination, it is thought that the centrally stimulating effects 
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of ketamine counteract the depressive effects of alpha2 agonist compounds (Verstegen et al. 

1989). In this study, heart rate was not observed to change in males over time, but was 

considered below normal throughout the duration of anesthesia. Female heart rates, on the other 

hand, were observed to continually decrease over time to below normal values under anesthesia. 

Decreased heart rate is believed to be the result of the bradycardic effects of medetomidine; 

however, one study concluded that medetomidine in cats did not conclusively demonstrate 

specific bradycardic action as a lowered state of vigilance could, in itself, decrease heart rate 

(Stenberg et al. 1987). The observed bradycardia was believed to be a direct result of 

medetomidine as these effects were reversed following the administration of atipamezole. While 

the results of this study exhibited below normal heart rate values in anesthetized cats, one study 

conversely found a similar dose of medetomidine and ketamine (80 µg/kg M; 10 mg/kg K), 

without buprenorphine, to result in tachycardia between 10 and 30 minutes following injection. 

Buprenorphine has been shown to decrease both blood pressure and heart rate in cats, suggesting 

buprenorphine may have had an affect on heart rate in this study (Benson & Tranquilli 1992). It 

is hypothesized that the analgesic properties of burpenorphine may have prevented an increase in 

heart rate and blood pressure by blocking nociceptive input in response to surgical stimulus. 

Some clinicians prefer to preemptively use anticholinergic drugs, such as atropine, in patients 

administered alpha2-adrenergic drugs, however, others disagree (Paddleford & Harvey 1999). 

They argue that (1) the bradycardia is a normal physiological response to vasoconstriction and 

increased blood pressure, (2) anticholinergic drugs may increase myocardial work and oxygen 

consumption due to an increased heart rate, and (3) it may not be physiologically appropriate to 

have an increased heart rate in the face of severe vasoconstriction (Paddleford & Harvey 1999).  
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Normal systolic blood pressures in cats range between 110 and 160 mm Hg (Muir et al 

2000). Normotension was observed following the administration of MKB and throughout the 

duration of anesthesia in most cats. However, twenty-three cats were observed to have systolic 

blood pressures rise above 160 mm Hg at least once following treatment with MKB, while 7 cats 

were observed to fall below 110 mm Hg at least once following treatment with MKB. Whether 

or not blood pressure was related to physiological stress is unknown, however, blood pressure 

was not observed to rise consistently in response to surgical stimulation. In males, a relationship 

between blood pressure and time could not be made with > 95 % confidence. A Type II 

statistical error is suspected as this observation may be the result of missing data points (at 5, 10, 

and 15 minutes only 10%, 60%, and 64% of data were available, respectively). Actual blood 

pressures may be higher than reported as the technique used in this study may underestimate 

systolic blood pressure by approximately 15% in cats (Grandy et al. 1992). In addition, there are 

no published reports assessing the accuracy of the Doppler technique when systolic blood 

pressure is in excess of 200 mm Hg (Dobromylskyj 1996). Values did not exceed 200 mm Hg in 

this study, but some values were close (195 mm Hg). Blood pressures significantly decreased in 

both males and females following the reversal of medetomidine. It is hypothesized that reversing 

the vasconstrictive effects of medetomidine resulted in a decrease in vascular resistance, and 

therefore a decrease in blood pressure.  

Neither blood pressure nor heart rate was observed to increase at any time during the 

surgical procedure. Similarly, in another study, a comparable combination , although using a 

lesser dose of medetomidine (80 µg/kg), with ketamine (10 mg/kg) reported no reflex responses 

to traction of the ovarian pedicles (Verstegen et al. 1989).  Based on these observations in Phase 
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2, it is assumed that anesthesia was adequate in the majority of cats because changes suggestive 

of response to nociceptive stimuli, as measured by physiological variables, were not detected. 

Some opioids have been associated with an increase in body temperature in cats 

(Robertson & Taylor 2004). Alternatively, opioids have actually been found to lower the 

threshold for shivering, a thermoregulatory event that is meant to increase heat production, 

which can further contribute to heat loss (Posner 2006). Post-anesthetic rectal temperatures were 

not observed to rise significantly following buprenorphine administration in cats in a previous 

study (Niedfeldt & Robertson 2006). While temperatures were only collected during times of 

lateral recumbency in this study, no indication of measured hyperthermia (temperatures ≥ 103 

ºF) or clinical evidence (panting) was noted. In fact, hypothermia was observed. The effects of 

anesthesia on thermoregulation are multifactorial and include the loss of normal behavioral 

responses and an altering of normal thermoregulatory responses (Posner 2006). Temperatures in 

TKX treated cats (38.0 ± 0.8ºC (100 ± 1.4ºF) in males and 36.6 ± 0.8ºC (97.8 ± 1.4ºF) in 

females) and MKB treated cats (38.1 ± 0.7ºC (100.7 ± 1.3ºF) in males and 36.7 ± 1.1ºC (98.3 ± 

2ºF) in females) were similar at the time of reversal (Cistola et al. 2004). Loss of core body 

temperature occurs in three phases, the first of which is due to the redistribution of heat from the 

core to the periphery, where it is then easily lost (Posner 2006). Higher body temperatures found 

in MKB cats may be attributed to the vasoconstrictive properties of medetomidine as 

arteriovenous vasculature present in the skin contribute to thermoregulation (Posner 2006). The 

subsequent vasoconstriction of these shunts likely prevents heat loss from the core (Posner 

2006). Core temperatures may actually have been lower than measured, as rectal temperature 

tends to lag behind changes in core body temperature (Posner 2006). Nevertheless, even mild 

hypothermia can substantially prolong recovery times by decreasing hepatic and renal blood 



 

82 

flow, therefore slowing the metabolism of anesthetic drugs (Posner 2006). Medetomidine 

elimination appears to rely heavily on biotransformation and is likely regulated by hepatic blood 

flow, thus, maintenance of these metabolic processes is essential (Salonen 1989). The application 

of external heat sources during surgery and recovery may reduce the severity of prolonged 

recoveries and decrease recovery times; however, a logistical barrier arises when high numbers 

of cats are undergoing surgery and recovery, simultaneously. In addition, the ability to apply 

external heat sources from outside the trap is limited which will likely compromise effectiveness.  

No observations of licking or biting at incision sites were noted. In addition, body posture 

and overall demeanor appeared to be comfortable and relaxed in most cats.  

Immediate post-operative analgesia was assumed to be adequate as several studies have 

noted the efficacy of buprenorphine up to 6 hours (Pascoe 2000; Robertson et al. 2005). There 

are no validated methods for pain assessment in cats, which makes evaluation and treatment 

difficult, however, pain can be managed on the basis of previous experience and intuition 

(Cambridge et al. 2000).  

Overall, the recovery times observed with MKB were shorter compared to TKX with  

reversal to sternal recumbency times of 72 ± 42 minutes in cats administered TKX and 34 ± 33 

minutes in cats administered MKB in Phase 2 of this study (Cistola et al. 2004). Atipamezole 

administration appeared to completely reverse the effects of medetomidine, as evident by the 

significant increase in heart rate and decrease in blood pressure following reversal. Fourteen cats 

required a second injection of the reversal agent. In dogs, the manufacturer recommends giving 

the same volume of atipamezole as medetomidine (5 mg/ml A: 1 mg/ml M) to reverse its effects 

(2007). In this study, a quarter of the volume of medetomidine was administered. This dose was 

sufficient in most cats; however, approximately 14% of the cats required additional reversal 
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agent injections. Perhaps a larger volume of atipamezole would have prevented the need for a 

second reversal, although the side effects associated with an increased volume of atipamezole are 

unknown and should be considered. An unusually fast recovery, as observed in Phase 1 of this 

study, is unfavorable and could result with a larger dose of atipamezole. Relapse to sedation is 

not believed to be the cause for the need for second reversal injections, as the half-life of 

atipamezole is twice that of medetomidine (Paddleford & Harvey 1999). Interestingly, there was 

no relationship between cats that received supplemental doses of MKB and cats that required an 

additional reversal agent injection. This may suggest that the initial atipamezole-medetomidine 

ratio was inadequate at providing acceptable recoveries in some cats. An atipamezole-

medetomidine dose ratio (in mg) of 4:1 or 8:1 resulted in speedier return to normal vigilance 

patterns than a 2:1 ratio in cats receiving only medetomidine (Stenberg et al. 1993). However, 

one study that combined ketamine with medetomidine recommended a dose ratio of 2.5:1 as it 

prevents the undesirable tachycardia and CNS stimulation seen with higher doses of atipamezole 

(Verstegen et al. 1991b). 

The selected dose in Phase 2 provided adequate duration of action in most cats.  The 

number of cats requiring isoflurane supplementation was considered clinically acceptable. 

Approximately 11% of our study population required supplemental anesthesia. This was close to 

our initially set goal of less than 10% of the population  

requiring rescue anesthesia and the decision was made to initiate a fixed volume.  

Both fixed dose volumes (0.7 mL and 0.8 mL) of MKB were found to be inefficient at 

providing acceptable surgical anesthesia. Additionally, apnea and severe respiratory depression 

were observed in most cats. In Phase 3, twenty-one cats (30%) required inhaled supplemental 

anesthesia at some point throughout the surgical procedure. It is hypothesized that some of these 



 

84 

cats may have weighed > 3.0 kg and that individual anesthetic requirements were simply unmet. 

Furthermore, the 0.8 mL fixed dose was the first time anesthetists, other than those directly 

associated with this study, used the MKB protocol. In 14% of the injections, the anesthetist 

reported difficulty injecting the larger drug volume compared to the usual TKX protocol (.25 

mL). Half of the cats with noted difficult injections required supplemental anesthesia. It is 

hypothesized that these cats did not receive the full dose of MKB as they required supplemental 

anesthesia shortly after the initial MKB injection. 

For those weighing ≤ 3.0 kg, it remains unclear as to the differences observed in the fixed 

dose of MKB compared to the selected dose studied in Phase 2. Data on the number of cats 

anesthetized with TKX that require supplemental anesthesia are not available; but, this 

information would be useful in future studies to compare the failure rates between the two 

protocols. Regardless, the frequency of supplemental anesthesia and obvious physiological 

depressant effects observed with the fixed dose of MKB are considered unacceptable and this 

protocol is not recommended. If the individual weight of a feral cat could be verified prior to an 

anesthesia regime, it is believed that a higher rate of success and usefulness would be observed 

with the current combination of MKB. However, this would require increased time and labor 

considerations.    

The studied combination of MKB appears to offer several advantages. Medetomidine 

potentiates the effects of ketamine and the disadvantages associated with the two drugs may be 

offset by one another. Medetomidine makes up for the poor muscle relaxing and analgesic 

effects of ketamine, while the cardiovascular stimulating effects of ketamine compensate for the 

bradycardic tendencies of medetomidine (Verstegen et al. 1989). The use of the medetomidine’s 

specific antagonist, atipamezole, allows for the complete and rapid reversal of the depressant 
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effects exhibited by medetomidine. In addition, the combination of medetomidine and 

atipamezole may limit undesirable effects of less selective or less specific agonist/antagonist 

combinations.  

In conclusion, MKB appears to fulfill many of the demanding requirements necessary for 

feral cat anesthesia when true weight is considered. In Phase 2, MKB provided a completely 

injectable regime that was predictable, offered an acceptable duration of action, and provided a 

rapid return to normal function. The major shortcoming of MKB in this study was the inability to 

determine an effective fixed dose volume to be used in all cats, regardless of true weight. 

Additionally, based on the high incidence of severe respiratory depression observed in cats 

administered the fixed volume, it cannot be recommended. Moreover, it was determined that 

increasing the fixed dose volume further would be without regard for the safety of the animal. 

Although this study failed to produce an effective MKB fixed dose to be used in high volume 

sterilization clinics, it is believed that MKB offers considerable promise in feral cat anesthesia.  

Slight changes in Operation Catnip® may enhance the effectiveness of MKB and may be 

of interest in further investigations. It is believed that the MKB combination in this study would 

be more effective if given in a weight-specific manor.  The addition of a weight station would 

enable a dose to be calculated for each individual cat, eliminating the need for a universal fixed 

volume. Several categories of fixed volumes designed to accommodate weight classes (0-1 kg, 1-

2 kg, 2-3 kg, and > 3 kg) may prove to be beneficial. The addition of a weight station would, 

however, add additional labor and time constraints. If an MKB dosing regime does not take 

weight into consideration, it is possible that MKB will never be considered appropriate for use in 

high-volume clinics. However, the studied combination of MKB may be suitable for smaller 

clinics with fewer surgeries performed and shorter duration of action requirements.  
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There are approximately 1,440 combinations of MKB (based on relative doses of each 

drug used in cats). This study is believed to have narrowed the findings for an effective 

combination of MKB, although an exact fixed dose was not accomplished. Further research is 

required to determine whether or not a specific combination of MKB has the ability to produce a 

fixed volume that fulfills the unique demands of feral cat anesthesia and subsequent sterilization 

procedures. 
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