ANCHOR EMBEDMENT REQUIREMENTS FOR SIGNAL/SIGN STRUCTURES

By

KATHLEEN M. HALCOVAGE

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ENGINEERING

UNIVERSITY OF FLORIDA

2007
To my family, for your constant love and support throughout my life. To my parents, Barbara and George, your dedication to providing me with the best education available has been a pivotal part of my success. To my siblings, Barbara, George, Sarah, and Christopher, you have always encouraged me and challenged me to be the very best that I can be. To my niece and nephew, Grace and Aidan, you light up my life and always remind me of what is important in life.
ACKNOWLEDGMENTS

I thank my advisor, Dr. Ronald A. Cook, for his guidance throughout the course of my research and tenure at the University of Florida, the Florida Department of Transportation Structures Research Center Staff for their hard work in building my test apparatus and orchestrating the testing of the specimen, and my supervisory committee for their assistance in the preparation of this thesis. I also thank my family for their constant support and encouragement.
TABLE OF CONTENTS

ACKNOWLEDGMENTS ... 4

LIST OF TABLES ... 7

LIST OF FIGURES .. 8

ABSTRACT .. 11

CHAPTER

1 INTRODUCTION ... 13

2 BACKGROUND ... 15

 2.1 Literature Review .. 15
 2.2 Site Investigation .. 19
 2.3 Applicable Code Provisions .. 19
 2.3.1 Cracking and Threshold Torsion .. 20
 2.3.2 Nominal Torsional Strength .. 22
 2.3.3 Combined Shear and Torsion .. 23
 2.3.4 ACI Concrete Breakout Strength for Anchors ... 24
 2.3.5 Alternate Concrete Breakout Strength Provisions ... 26
 2.3.6 ACI 318-05 vs. AASHTO LRFD Bridge Design Specifications 28

3 DEVELOPMENT OF EXPERIMENTAL PROGRAM ... 33

 3.1 Description of Test Apparatus .. 33
 3.2 Shaft Design .. 34
 3.2.1 Torsion Design ... 34
 3.2.2 Longitudinal and Transverse Reinforcement .. 35
 3.2.3 Flexure .. 35
 3.3 Anchor Design ... 36
 3.3.1 Diameter of Anchor Bolts .. 36
 3.3.2 Concrete Breakout Strength of Anchor in Shear Parallel to a Free Edge 37
 3.3.3 Development Length of the Bolts ... 39
 3.4 Steel Pipe Apparatus Design .. 39
 3.5 Concrete Block Design .. 41
 3.6 Combined Shear and Torsion ... 42
 3.7 Overview .. 42
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Field dimensions</td>
<td>50</td>
</tr>
<tr>
<td>3-2</td>
<td>Summary of design calculations</td>
<td>50</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1-1</td>
<td>Failed cantilever sign structure</td>
<td>14</td>
</tr>
<tr>
<td>2-1</td>
<td>Cantilever sign structure at Exit 79 on Interstate 4 in Orlando</td>
<td>29</td>
</tr>
<tr>
<td>2-2</td>
<td>New foundation installed at the site</td>
<td>29</td>
</tr>
<tr>
<td>2-3</td>
<td>Failed foundation during post-failure excavation</td>
<td>30</td>
</tr>
<tr>
<td>2-4</td>
<td>Concrete breakout of an anchor caused by shear directed parallel to the edge for a circular foundation</td>
<td>30</td>
</tr>
<tr>
<td>2-5</td>
<td>Concrete breakout failure for an anchor loaded in shear</td>
<td>31</td>
</tr>
<tr>
<td>2-6</td>
<td>Determination of A_{Vco} based on the 35° failure cone</td>
<td>31</td>
</tr>
<tr>
<td>2-7</td>
<td>Shear load oriented (a) perpendicular to the edge and (b) parallel to the edge</td>
<td>32</td>
</tr>
<tr>
<td>3-1</td>
<td>Schematic of test apparatus</td>
<td>44</td>
</tr>
<tr>
<td>3-2</td>
<td>Front elevation of test apparatus</td>
<td>44</td>
</tr>
<tr>
<td>3-3</td>
<td>Plan view of test apparatus</td>
<td>45</td>
</tr>
<tr>
<td>3-4</td>
<td>Side elevation of test apparatus</td>
<td>45</td>
</tr>
<tr>
<td>3-5</td>
<td>Lever arm for the calculation of bolt flexure</td>
<td>46</td>
</tr>
<tr>
<td>3-6</td>
<td>Adjusted cover based on a single anchor and 35° failure cone</td>
<td>46</td>
</tr>
<tr>
<td>3-7</td>
<td>Development of the projected failure area for the group of anchors around a circular foundation</td>
<td>47</td>
</tr>
<tr>
<td>3-8</td>
<td>Two anchor arrangement displays the minimum spacing such that no overlap of the failure cones occurs</td>
<td>47</td>
</tr>
<tr>
<td>3-9</td>
<td>Overlap of failure cones</td>
<td>47</td>
</tr>
<tr>
<td>3-10</td>
<td>The contribution of the “legs” of the failure cone to A_{Vco} along a straight edge decreases as the number of bolts increases</td>
<td>48</td>
</tr>
<tr>
<td>3-11</td>
<td>Overlap of failure cones for a circular foundation</td>
<td>48</td>
</tr>
<tr>
<td>3-12</td>
<td>Assembled test specimen</td>
<td>49</td>
</tr>
<tr>
<td>3-13</td>
<td>Shaft with pipe apparatus attached prior to instrumentation being attached</td>
<td>49</td>
</tr>
</tbody>
</table>
4-1 Method for the determination of the tension, T_{CFRP}, that must be resisted by the CFRP wrap

4-2 Instrumentation layout on the base plate

4-3 Instrumentation layout on face of shaft

4-4 Instrumentation layout on rear of shaft/face of concrete block

4-5 Instrumentation layout of pipe at load location

4-6 Location of LVDTs D1V, D4, and D7 on the test specimen

4-7 Strain gage layout on base plate

4-8 Strain gage on base plate of test specimen

5-1 Initial cracks on face of shaft

5-2 Initial cracks on face and side of shaft (alternate view of Figure 5-1)

5-3 Face of test specimen after testing exhibits cracks between the bolts along with the characteristic concrete breakout cracks

5-4 Crack pattern on face of shaft after testing depicts characteristic concrete breakout failure cracks

5-5 Applied Torsion vs. Plate Rotation Plot- Initial Test

5-6 Applied Torsion vs. Bolt Strain Plots for each bolt at the appropriate location on the base plate with Applied Torsion vs. Plate Rotation plot in center (full size plots in Appendix C)

5-7 Bolt Strain Comparison Plot for Initial Test exhibits the redistribution of the load coinciding with crack formations

5-8 Shaft with the CFRP wrap applied prior to testing

5-9 Applied Torsion vs. Plate Rotation Plot- Retrofit Test

5-10 Shaft exhibiting characteristic torsion cracks from face to base of shaft

5-11 Applied Torsion vs. Bolt Strain plots for the Retrofit Test at the appropriate bolt location around the base plate with Applied Torsion vs. Plate Rotation plot in center (full size plots in Appendix D)

5-12 Bolt bearing on the bottom of the base plate during loading
5-13 Bolt Strain Comparison plot for the retrofit test exhibits slope changes at milestone loads ...73

5-14 Face of shaft after test illustrates yielding of bolts, concrete breakout cracks around the perimeter, and torsion cracks in the center. ...74

5-15 Torsion cracks along length of the shaft after the test ...74

A-1 Dimensioned front elevation drawing of test apparatus ..77

A-2 Dimensioned plan drawing test apparatus ..78

A-3 Dimensioned side elevation drawing of test apparatus ...79

A-4 Dimensioned pipe apparatus drawing ..80

A-5 Dimensioned channel tie-down drawing ...81

C-1 Applied Torsion vs. Rotation Plot ... 108

C-2 Bolt Strain Comparison Plot ... 108

C-3 Applied Torsion vs. Strain Plots for each bolt location ... 109

D-1 Applied Torsion vs. Rotation Plot ... 115

D-2 Bolt Strain Comparison Plot ... 115

D-3 Applied Torsion vs. Strain Plots for each bolt location ... 116
During the 2004 hurricane season, several anchor embedment failures of the foundations of cantilever sign structures occurred. The purpose of this research program was to determine the cause of the failure of those foundations. After a thorough literature review, in conjunction with site investigation, and testing, it was determined that the failure originated from the shear load on the anchors directed parallel to the edge of the foundation. The shear load resulted from the torsion loading on the anchor group that occurred during the hurricane. Investigation of this failure mode, based on the ACI 318-05 Appendix D provisions for concrete breakout of anchors, indicated that this is a failure mode not considered in the current design procedures for these types of foundations. Furthermore, it was determined that it very well describes the type of failure noted in the field investigation.

A test specimen was designed to preclude other possible failure modes not exhibited in the field (e.g. steel failure of the anchors, bending of the anchors, and torsional failure of the foundation). The results of the testing indicated the failure of the foundations was caused by concrete breakout due to shear on the anchors directed parallel to the free edge of the foundation. The test specimen failed at the torsion predicted by the ACI 318-05 Appendix D provisions based on the expected mean strength of the anchors for concrete breakout with shear directed
parallel to the free edge. Additionally, the cracks that formed were the same type as those noted in the field investigation, and matched the expected pattern for concrete breakout failure.

After failure, additional testing was performed to determine a viable repair/retrofit option. The repair/retrofit option used a carbon fiber reinforced polymer (CFRP) wrap around the top of the foundation. The results of this testing indicated that this repair/retrofit technique strengthens the foundation such that it not only meets its initial capacity for concrete breakout, but, also, can exceed this capacity. The results of this test led to the development of guidelines for the evaluation and repair/retrofit of existing foundations.
CHAPTER 1
INTRODUCTION

During the 2004 hurricane season, the failure of foundations of cantilever sign structures occurred along Florida highways (Figure 1-1). These failures necessitated a review of the current design and construction procedures for the foundations of cantilever sign structures.

The main objective of this research program was two-fold: to determine the cause of the failure of the cantilever sign structures; and, to propose a retrofit option for the foundation. In order to fulfill this objective, a thorough literature review, site investigation of a failed foundation, and experimental program were conducted. The findings of the literature review and site investigation were used to develop the experimental program. The findings of the experimental program were applied in the development of the retrofit guidelines.

Furthermore, this project tested whether or not the ACI 318-05, ACI (2005), Appendix D provisions for anchorage to concrete are applicable for circular foundations.
Figure 1-1. Failed cantilever sign structure
CHAPTER 2
BACKGROUND

While there have not been published reports detailing failures of sign structure foundations, such as those being investigated in this study, information on the behavior of anchor installations under various load conditions was found. The main subjects of much of the literature were the effects of fatigue and wind load on overhead sign structures. Additionally, there have been studies conducted on the failure modes of anchor installations, but these findings were not based on circular foundations. In later sections, one of these anchorage failure modes will be introduced for application in this research program.

This chapter presents the findings of the literature review, the conclusions drawn based on a site investigation of a failed foundation, and applicable design equations for the determination of the failure mode. The information presented in the chapter served as the base upon which the experimental program was developed.

2.1 Literature Review

Keshavarzian (2003) explores the wind design requirements and safety factors for utility poles and antenna monopoles from various specification manuals. It was found that the procedure outlined in ASCE (1991), ASCE 74- Guidelines for Electrical Transmission Line Structural Loading, resulted in the smallest factor of safety for the design. AASHTO (2001), Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals, was used as a part of the comparison for the design of the antenna monopole. The design from this specification was compared to that from ASCE (2000), ASCE 7-98-Minimum Design Loads for Buildings and Other Structures; TIA/EIA (1996), Structural Standards for Steel Antenna Towers and Antenna Supporting Structures; and, ASCE 74. The wind forces at the base were the same for ASCE 74, AASHTO, and ASCE 7-98. The forces using TIA/EIA
were higher because it requires that a 1.69 gust response factor be applied to the design. Therefore, the pole designed using TIA/EIA would have between 30 and 40 percent extra capacity. ASCE 7-98 and AASHTO resulted in the same margin of safety. The paper did not include findings that were completely relative to this project, but it provided additional sources for design of structures for comparative purposes.

Keshavarzian and Priebe (2002) compares the design standards specified in ASCE (2000), ASCE 7-98, and IEEE (1997), NESC- *National Electrical Safety Code*. The NESC does not require that utility poles measuring less than 60 feet in height be designed for extreme wind conditions. Short utility poles were designed to satisfy NESC specifications (i.e. without extreme wind conditions). The poles were then evaluated according to the ASCE 7-98 wind load requirements. It was found that the poles did not meet the ASCE 7-98 requirements. Therefore, it was recommended that the exclusion for short utility poles in the NESC be reevaluated. The paper also mentioned AASHTO (1994), *Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals*. It outlined that in the AASHTO specification, support structures exceeding 50 feet and overhead sign structures must be designed for a 50-year mean recurrence interval, or extreme wind loading condition.

MacGregor and Ghoneim (1995) presents the background information for the formulation of the thin-walled tube space truss analogy design method for torsion that was first adopted into ACI (1995), ACI 318-95. The design methodology was adopted because it was simpler to use than the previous method and was equally accurate. The basis for the derivation of the new method was based on tests that were conducted in Switzerland. Both solid and hollow beams were tested during that research. In comparing the data from both tests, it was discovered that after cracking the concrete in the center had little effect on the torsional strength of the beam.
Therefore, the center of the cross-section could be ignored, and the beam could be idealized as a hollow tube.

A space truss was formed by longitudinal bars in the corners, the vertical closed stirrups, and compression diagonals. The compression diagonals were spiraled around the member and extended between the torsion cracks. The paper also explained the shear stresses created by torsion on the member.

In addition to the derivation of the equations for torsion and shear, the authors discussed the limits for when torsion should be considered and the requirements for minimal torsional reinforcement. The tests, conducted on both reinforced and prestressed concrete beams, showed that there was acceptable agreement between the predicted strengths, as determined by the derived equations, and the test results. This agreement was comparable to the design equations from the ACI Code.

In addition to these papers, other reports reviewed include Lee and Breen (1966), Jirsa et al. (1984), Hasselwander et al. (1977), and Breen (1964). These four studies focused on important information regarding anchor bolt installations. Other reports that were examined for relevance were from the National Cooperative Highway Research Program (NCHRP). These are: Fouad et al. (1998), NCHRP Report 411; Kaczinski et al. (1998), NCHRP Report 412; and, Fouad et al. (2003), NCHRP Report 494.

Fouad et al. (2003) details the findings of NCHRP Project 17-10(2). The authors stated that AASHTO (2001) does not detail design requirements for anchorage to concrete. The ACI anchor bolt design procedure was also reviewed. Based on their findings, they developed a simplified design procedure. This procedure was based on the assumptions that the anchor bolts are hooked or headed, both longitudinal steel and hoop steel are present in the foundation, the
anchor bolts are cast inside of the reinforcement, the reinforcement is uncoated, and, in the case of hooked bolts, the length of the hook is at least 4.5 times the anchor bolt diameter. If these assumptions did not apply, then the simplified procedure was invalid. The anchor bolt diameter was determined based on the tensile force on the bolt, and the required length was based on fully developing the longitudinal reinforcement between the embedded head of the anchor. The authors further stated that shear loads were assumed to be negligible, and concrete breakout and concrete side face blowout were controlled by adequate longitudinal and hoop steel. The design procedure was developed based on tensile loading, and did not address the shear load on the anchors directed parallel to the edge resulting from torsion.

Additionally, the authors presented the frequency of use of different foundation types by the state Departments of Transportation, expressed in percentages of states reporting use. According to the survey the most common foundation type used for overhead cantilever structures was reinforced cast-in-place drilled shafts (67-100%) followed by spread footings (34-66%) and steel screw-in foundations (1-33%). None of the states reported the use of directly embedded poles or unreinforced cast-in-place drilled shafts.

ASCE (2006), ASCE/SEI 48-05, entitled Design of Steel Transmission Pole Structures was obtained to gather information on the foundation design for transmission poles structures. The intent was to determine whether or not the design of such foundations was relevant to the evaluation of the foundations under examination in this research. In §9.0 of the standard, the provisions for the structural members and connections used in foundations was presented. Early in the section, the standard stated that the information in the section was not meant to be a foundation design guide. The proper design of the foundation must be ensured by the owner based on geotechnical principles. The section commented on the design of the anchor bolts. The
standard focused on the structural stability of the bolts in the foundation; it looked at bolts in
tension, bolts in shear, bolts in combined tension and shear, and the development length of such
bolts. The standard did not present provisions for failure of the concrete.

2.2 Site Investigation

A site investigation was conducted at the site of one failed overhead cantilever signal/sign
structure located at Exit 79 on Interstate 4 in Orlando (Figure 2-1). Figure 2-2 is the newly
installed foundation at the site. The failed foundation had the same anchor and spacing
specifications as the new foundation. This site visit coincided with the excavation of the failed
anchor embedment. During the course of the excavation the following information was
collected:

- The anchor bolts themselves did not fail. Rather, they were leaning in the foundation,
 which was indicative of a torsional load on the foundation. While the integrity of the
 anchor bolts held up during the wind loading, the concrete between the bolts and the
 surface of the foundation was cracked extensively (Figure 2-3). The concrete was
 gravelized between the anchors and the hoop steel. It should be noted that upon the
 removal and study of one anchor bolt, it was evident that there was no deformation of the
 bolt itself.

- The hoop steel did not start at the top of the foundation. It started approximately 15 in.
 (381 mm) into the foundation.

- The concrete was not evenly dispersed around the foundation. The hoop steel was exposed
 at approximately three to four feet below grade. On the opposite side of the foundation
 there was excess concrete. It was assumed that during the construction of the foundation,
 there was soil failure allowing a portion of the side wall to displace the concrete.

2.3 Applicable Code Provisions

The initial failure mode that was focused on in the background review was torsion.

However, based on the results of the site investigation, it was determined that the most likely
cause of failure was concrete breakout of an anchor (Figure 2-4). The equations for torsion are
presented in this section as they were used during the design of the experimental program to
prove that the concrete breakout failure will occur before the torsional failure.
2.3.1 Cracking and Threshold Torsion

Torsion is the force resulting from an applied torque. In a circular section, such as the foundation under review, the resulting torsion is oriented perpendicular to the radius or tangent to the edge. ACI (2005), ACI 318-05, details the equation for the cracking torsion of a nonprestressed member. In §R11.6.1, the equation for the cracking torsion, T_{cr}, is given (Equation 2-1). The equation was developed by assuming that the concrete will crack at a stress of $4\sqrt{f'_c}$.

$$T_{cr} = 4\sqrt{f'_c} \left(\frac{A_{cp}}{p_{cp}} \right)^2$$ \hspace{1cm} (2-1)

Where

- T_{cr} = cracking torsion (lb.-in.)
- f'_c = specified compressive strength of the concrete (psi)
- A_{cp} = area enclosed by the outside perimeter of the concrete cross-section (in.2)
 \hspace{1cm} $= \pi r^2$, for a circular section with radius r (in.)
- p_{cp} = outside perimeter of the concrete cross-section (in.)
 \hspace{1cm} $= 2\pi r$, for a circular section with radius r (in.)

This equation, when applied to a circular section, results in an equivalent value when compared to the basic equation (Equation 2-2) for torsion noted in Roark and Young (1975). The equality is a result of taking the shear stress as $4\sqrt{f'_c}$.

$$T = \frac{\tau \pi r^3}{2}$$ \hspace{1cm} (2-2)

Where

- T = torsional moment (lb.-in.)
- τ = shear stress, $4\sqrt{f'_c}$, (psi)
- r = radius of concrete cross-section (in.)

ACI 318-05 §11.6.1(a) provides the threshold torsion for a nonprestressed member (Equation 2-3). This is taken as one-quarter of the cracking torsion. If the factored ultimate torsional moment, T_{ut}, exceeds this threshold torsion, then the effect of torsion on the member must be considered in the design.
\[T = \phi \sqrt{f'_c \left(\frac{A_{cp}^2}{p_c} \right)} \]

(2-3)

Where

\(\phi \) = strength reduction factor

AASHTO (2004), *AASHTO LRFD Bridge Design Specifications*, also presents equations for cracking torsion (Equation 2-4) and threshold torsion (Equation 2-5). Equation 2-4 corresponds with the AASHTO (2004) equation for cracking torsion with the exception of the components of the equation related to prestressing. That portion of the equation was omitted since the foundation was not prestressed. It must be noted that these equations are the same as the ACI 318-05 equations.

\[T_{cr} = 0.125 \sqrt{f'_c \frac{A_{cp}^2}{p_c}} \]

(2-4)

Where

\(T_{cr} \) = torsional cracking moment (kip-in.)

\(A_{cp} \) = total area enclosed by outside perimeter of the concrete cross-section (in.\(^2\))

\(p_c \) = the length of the outside perimeter of the concrete section (in.)

AASHTO (2004) also specifies the same provision as ACI 318-05 regarding the threshold torsion. In §5.8.2.1, it characterizes the threshold torsion as one-quarter of the cracking torsion multiplied by the reduction factor. Equation 2-5 corresponds with the threshold torsion portion of AASHTO (2004) equation.

\[T = 0.25\phi T_{cr} \]

(2-5)

The above referenced equations considered the properties and dimensions of the concrete. They did not take into consideration the added strength provided by the presence of reinforcement in the member. For the purposes of this research, it was important to consider the impact of the reinforcement on the strength of the concrete shaft.
2.3.2 Nominal Torsional Strength

ACI 318-05 §11.6.3.5 states that if the ultimate factored design torsion exceeds the threshold torsion, then the design of the section must be based on the nominal torsional strength.

The nominal torsional strength (Equation 2-6) takes into account the contribution of the reinforcement in the shaft.

\[
T_n = \frac{2A_o A_t f_{y_t}}{s} \cot \theta
\]

(2-6)

Where

- \(T_n \) = nominal torsional moment strength (in.-lb.)
- \(A_o \) = gross area enclosed by shear flow path (in.\(^2\))
- \(A_t \) = area of one leg of a closed stirrup resisting torsion with spacing \(s \) (in.\(^2\))
- \(f_{y_t} \) = specified yield strength \(f_y \) of transverse reinforcement (psi)
- \(s \) = center-to-center spacing of transverse reinforcement (in.)
- \(\theta \) = angle between axis of strut, compression diagonal, or compression field and the tension chord of the member

The angle, \(\theta \), is taken as 45°, if the member under consideration is nonprestressed. This equation, rather than taking into account the properties of the concrete, takes into account the properties of the reinforcement in the member. These inputs include the area enclosed by the reinforcement, the area of the reinforcement, the yield strength of the reinforcement, and the spacing of the reinforcement. For the purpose of this research, the reinforcement under consideration was the hoop steel.

AASHTO (2004) also outlines provisions for the nominal torsional resistance in §5.8.3.6.2. Equation 2-7 is the same equation that ACI 318-05 presents. The only difference is in the presentation of the equations. The variables are represented by different notation.

\[
T_n = \frac{2A_o A_t f_{y_t}}{s} \cot \theta
\]

(2-7)

Where

- \(T_n \) = nominal torsional moment (kip-in.)
- \(A_o \) = area enclosed by the shear flow path, including any area of holes therein (in.\(^2\))
- \(A_t \) = area of one leg of closed transverse torsion reinforcement (in.\(^2\))
- \(\theta \) = angle of crack
As the above referenced equation evidences, the ACI 318-05 and the AASHTO (2004) provisions for nominal torsional strength are the same. Based on the code provisions, the nominal torsional strength represents the torsional strength of the cross-section.

2.3.3 Combined Shear and Torsion

Another area that had to be considered in this research was the effect of combined shear and torsion. Both ACI 318-05 and AASHTO (2004) outline equations for the combined shear and torsion. Since the foundation had a shear load applied to it, it had to be determined whether or not the shear load was large enough to necessitate consideration. The ACI 318-05 equation (Equation 2-8) and the AASHTO (2004) equation (Equation 2-9) are presented hereafter. The ACI 318-05 equation is located in §11.6.3.1 of ACI 318-05, and the AASHTO (2004) equation is presented in §5.8.3.6.2 of that specification. The ACI 318-05 equation is presented with V_u substituted on the left-hand side.

\[
V_u \leq \sqrt{\left(\frac{V_u}{b_w d}\right)^2 + \left(\frac{T_u P_h}{1.7 A_{oh}}\right)^2}
\]

(Equation 2-8)

Where
- $V_u = \text{factored shear force at section (lb.)}$
- $b_w d = \text{area of section resisting shear, taken as } A_{oh} \text{ (in.}^2\text{)}$
- $T_u = \text{factored torsional moment at section (in.-lb.)}$
- $P_h = \text{perimeter of centerline of outermost closed transverse torsional reinforcement (in.)}$
- $A_{oh} = \text{area enclosed by centerline of the outermost closed transverse torsional reinforcement (in.}^2\text{)}$

The AASHTO (2004) equation that is presented (Equation 2-9) is intended for the calculation of the factored shear force. For the purpose of this project, the right-hand side of the equation was considered.
Where
\(V_u = \text{factored shear force (kip)} \)
\(p_h = \text{perimeter of the centerline of the closed transverse reinforcement (in.)} \)
\(T_u = \text{factored torsional moment (kip-in.)} \)

The determination of whether or not shear had to be considered was made based on a comparison of the magnitudes of the coefficients of these terms. This is investigated further in Chapter 3.

2.3.4 ACI Concrete Breakout Strength for Anchors

In ACI 318-05 Appendix D, the concrete breakout strength is defined as, “the strength corresponding to a volume of concrete surrounding the anchor or group of anchors separating from the member.” A concrete breakout failure can result from either an applied tension or an applied shear. In this report, the concrete breakout strength of an anchor in shear, §D.6.2, will be studied. The breakout strength for one anchor loaded by a shear force directed perpendicular to a free edge (Figure 2-5) is given in Equation 2-10.

\[
V_b = 7 \left(\frac{\ell_e}{d_o} \right)^{0.2} \sqrt{d_o} \sqrt{f_c'(c_{al})}^{1.5} \tag{2-10}
\]

Where
\(V_b = \text{basic concrete breakout strength in shear of a single anchor in cracked concrete (lb.)} \)
\(\ell_e = \text{load bearing length of anchor for shear (in.)} \)
\(d_o = \text{outside diameter of anchor (in.)} \)
\(c_{al} = \text{distance from the center of an anchor shaft to the edge of concrete in one direction; taken in the direction of the applied shear (in.)} \)

The term \(\ell_e \) is limited to \(8d_o \) according to §D.6.2.2. The equations in ACI 318-05 were developed based on a 5% fractile and with the strength in uncracked concrete equal to 1.4 times the strength in cracked concrete. The mean concrete breakout strength in uncracked concrete is provided in Fuchs et al. (1995) and given in Equation 2-11.
For a group of anchors, Equation 2-12 applies. This equation is the nominal concrete breakout strength for a group of anchors loaded perpendicular to the edge in shear.

\[
V_{cbg} = \frac{A_V}{A_{Vco}} \psi_{ec,Y} \psi_{ed,Y} \psi_{c,Y} V_b
\]

(2-12)

Where
\[
V_{cbg} = \text{nominal concrete breakout strength in shear of a group of anchors (lb.)}
\]
\[
A_V = \text{projected concrete failure area of a single anchor or group of anchors, for calculation of strength in shear (in.}^2\text{)}
\]
\[
A_{Vco} = \text{projected concrete failure area of a single anchor, for calculation of strength in shear, if not limited by corner influences, spacing, or member thickness (in.}^2\text{)}
\]
\[
= 4.5(c_{a1})^2, \text{based on a 35° failure cone (Figure 2-6)}
\]
\[
\psi_{ec,Y} = \text{factor used to modify shear strength of anchors based on eccentricity of applied loads, ACI 318-05 §D.6.2.5}
\]
\[
\psi_{ed,Y} = \text{factor used to modify shear strength of anchors based on proximity to edges of concrete member, ACI 318-05 §D.6.2.6}
\]
\[
\psi_{c,Y} = \text{factor used to modify shear strength of anchors based on presence or absence of cracks in concrete and presence or absence of supplementary reinforcement, ACI 318-05 §D.6.2.7, accounted for in Equation 2-11}
\]

The resultant breakout strength is for a shear load directed perpendicular to the edge of the concrete. Therefore, an adjustment had to be made to account for the shear load acting parallel to the edge since this was the type of loading that resulted from the torsion on the anchor group. In §D.5.2.1(c) a multiplication factor of two is prescribed to convert the value to a shear directed parallel to the edge (Figure 2-7). Fuchs et al. (1995) notes that the multiplier is based on tests, which indicated that the shear load that can be resisted when applied parallel to the edge is approximately two times a shear load applied perpendicular to the edge.

In order to convert the breakout strength to a torsion, the dimensions of the test specimen were considered to calculate what was called the nominal torsional moment based on the concrete breakout strength, \(T_{n,breakout} \).
2.3.5 Alternate Concrete Breakout Strength Provisions

In the book *Anchorage in Concrete Construction*, Eligehausen et al. (2006), the authors presented a series of equations for the determination of the concrete strength based on a concrete edge failure. These equations are presented in Chapter 4, §4.1.2.4 of the text. Equation 2-13 is the average concrete breakout strength of a single anchor loaded in shear. It must be noted that this equation is for uncracked concrete.

\[
V_{u,c}^0 = 3.0 \cdot d_o^a \cdot \ell_e^\beta \cdot f_{cc200}^{0.5} \cdot c_{a1}^{1.5}
\]

(2-13)

Where

- \(V_{u,c}^0\) = concrete failure load of a near-edge shear loaded anchor (N)
- \(d_o\) = outside diameter of anchor (mm)
- \(\ell_e\) = effective load transfer length (mm)
- \(f_{cc200}\) = specified concrete compressive strength based on cube tests (N/mm²)

 \(\approx 1.18f'_c\)
- \(c_{a1}\) = edge distance, measured from the longitudinal axis of the anchor (mm)
- \(\alpha = 0.1 \cdot \left(\frac{\ell_e}{c_{a1}}\right)^{0.5}\)
- \(\beta = 0.1 \cdot \left(\frac{d_o}{c_{a1}}\right)^{0.5}\)

As was the case for the ACI 318-05 equations, the term \(\ell_e\) is limited to \(8d_o\). Equation 2-14 accounts for the group effect of the anchors loaded concentrically. The authors stated that cases where more than two anchors are present have not been extensively studied. They did, however, state that the equation should be applicable as long as there is no slip between the anchor and the base plate.

\[
V_{u,c} = \frac{A_{Vc}}{A_{Vco}} \cdot V_{u,c}^0
\]

(2-14)

Where

- \(A_{Vc}\) = projected area of failure surface for the anchorage as defined by the overlap of individual idealized failure surfaces of adjacent anchors (mm²)
- \(A_{Vco}\) = projected area of the fully developed failure surface for a single anchor idealized as a half-pyramid with height \(c_{a1}\) and base lengths \(1.5c_{a1}\) and \(3c_{a1}\) (mm²)
ACI 318-05 specifies that, in order to convert the failure shear directed perpendicular to the edge to the shear directed parallel to the edge, a multiplier of two be applied to the resultant load. The provisions outlined in this text take a more in-depth approach to determining this multiplier. The method for calculating this multiplier is detailed in §4.1.2.5 of Eligehausen et al. (2006). The authors stated that, based on previous research, the concrete edge breakout capacity for loading parallel to an edge is approximately two times the capacity for loading perpendicular to the edge if the edge distance is constant. The authors further moved to outline equations to calculate the multiplier based on the angle of loading. The first equation (Equation 2-15) that is presented in the text is a generalized approach for calculating the multiplier when the angle of loading is between 55° and 90° of the axis perpendicular to the edge. For loading parallel to the edge the angle is classified as 90° (Figure 2-7).

\[\psi_{a,\alpha} = \frac{1}{\cos \alpha + 0.5 \sin \alpha} \]

Where
\[\psi_{a,\alpha} \] = factor to account for the angle between the shear load applied and the direction perpendicular to the free edge of the concrete member
\[\alpha \] = angle of the shear load with respect to the perpendicular load

This equation results in a factor of two for loading parallel to the edge. Equation 2-16 provides the concrete breakout strength for shear directed parallel to the edge using \(\psi_{a,\alpha} \).

\[V_{uc,\alpha} = \psi_{a,\alpha} \cdot V_{u,c} \]

Where
\(V_{uc,\alpha} \) = concrete failure load for shear directed parallel to an edge based on \(\psi_{a,\alpha} \) (N)

An alternate equation for calculating this factor is also presented in the Eligehausen et al. (2006) text. This equation is only valid for loading parallel to the edge. This equation is based on research proposing that the multiplier to calculate the concrete breakout capacity for loading parallel to the edge based on the capacity for loading perpendicular to the edge is not constant.
Rather, it suggested that it is based on the concrete pressure generated by the anchor. The base equation for the application of this factor is Equation 2-17.

\[V_{u,c,\text{parallel}} = \psi_{\text{parallel}} \cdot V_{u,c} \]

(2-17)

Where

\(V_{u,c,\text{parallel}} \) = concrete failure load in the case of shear parallel to the edge (N)

\(\psi_{\text{parallel}} \) = factor to account for shear parallel to the edge

\(V_{u,c} \) = concrete failure load in the case of shear perpendicular to the edge (N)

Equation 2-18 is used for the determination of the conversion factor \(\psi_{\text{parallel}} \).

\[\psi_{\text{parallel}} = 4 \cdot k_4 \cdot \left[\frac{n \cdot d_a^2 \cdot f_{cc}}{V_{u,c}} \right]^{0.5} \]

(2-18)

Where

\(k_4 \) = 1.0 for fastenings without hole clearance

\(0.75 \) for fastenings with hole clearance

\(n \) = number of anchors loaded in shear

\(f_{cc} \) = specified compressive strength of the concrete (N/mm²)

conversion to \(f'c \) as specified for Equation 2-13

The results of Equation 2-13 through Equation 2-18 are presented alongside the ACI 318-05 equation results in Chapter 3. These are presented for comparative purposes only.

2.3.6 ACI 318-05 vs. AASHTO LRFD Bridge Design Specifications

In Sections 2.3.1 through 2.3.3, both the applicable design equations in ACI 318-05 and AASHTO (2004) were presented. As was shown, the ACI and AASHTO equations were the same. Additionally, the provisions for the concrete breakout failure capacity are only provided in ACI 318-05. AASHTO does not provide design guidelines for this failure. Therefore, the ACI 318-05 equations were used throughout the course of this research program.
Figure 2-1. Cantilever sign structure at Exit 79 on Interstate 4 in Orlando

Figure 2-2. New foundation installed at the site
Figure 2-3. Failed foundation during post-failure excavation

Figure 2-4. Concrete breakout of an anchor caused by shear directed parallel to the edge for a circular foundation
Figure 2-5. Concrete breakout failure for an anchor loaded in shear

Figure 2-6. Determination of $A_{V_{co}}$ based on the 35° failure cone
Figure 2-7. Shear load oriented (a) perpendicular to the edge and (b) parallel to the edge.
CHAPTER 3
DEVELOPMENT OF EXPERIMENTAL PROGRAM

After a thorough background investigation, it was determined that the most likely cause of the failure was the concrete breakout of an anchor loaded by a shear force directed parallel to a free edge. The shear force on the individual anchors was caused by torsion applied to the bolt group from the sign post. Based on this determination, an experimental program was formulated to determine if this was in fact the failure mode of the foundation. Therefore, it was of the utmost importance to design the test apparatus to preclude other failure modes. This chapter focuses on the development of the experimental program.

3.1 Description of Test Apparatus

The test apparatus was designed such that the field conditions could be closely modeled for testing at the Florida Department of Transportation (FDOT) Structures Research Center. A schematic of the test apparatus is shown in Figure 3-1. The test apparatus consisted of:

- A 30” (762 mm) diameter concrete shaft that extended 3’-0” (914 mm) outward from the concrete block
- Twelve 37” (940 mm), 1.5” (38.1 mm) diameter F1554 Grade 105 anchor bolts embedded into the concrete around a 20” (508 mm) diameter
- A 16” (406 mm) diameter steel pipe assembly welded to a 24” (610 mm) diameter, 1” (25.4 mm) thick steel base plate with holes drilled for the anchor bolts to provide the connection between the bolts and pipe assembly
- A 6’-0” x 10’-0” x 2’-6” (1830 mm x 3050 mm x 762 mm) reinforced concrete block to provide a fixed support at the base of the shaft
- Two assemblies of C12x30 steel channels and plates to attach the block to the floor

The base for the design of the various components of the test apparatus was one half of the size of the failed foundation investigated during the site visit. The dimensions of the field foundation are presented in Table 3-1. From that point, the elements of the test apparatus were designed to preclude all failure modes other than the concrete breakout failure of the anchors.
Information pertaining to the design of the components of the apparatus is presented in the following sections. Figures 3-2 through 3-4 are drawings of the test apparatus. For large scale dimensioned drawings, reference Appendix A. Complete design calculations are located in Appendix B.

3.2 Shaft Design

The starting point for the design of the concrete shaft was based on developing a test specimen approximately one half of the size of the foundation that was investigated during the site visit. From there, the various components of the shaft were designed to meet the ACI 318-05 requirements, and to prevent failure before the concrete breakout strength was reached and exceeded. All of the strengths were calculated using a concrete strength of 5500 psi (37.9 MPa), which was the strength indicated on the FDOT standard drawings.

3.2.1 Torsion Design

The basic threshold torsional strength of the shaft, 24.6 kip-ft (33.4 kN-m) was calculated using the ACI 318-05 torsional strength equation (Equation 2-3). This strength, however, did not take into account the reinforcement in the shaft. Therefore, it was assumed that the threshold torsion would be exceeded. As a result, the torsional strength of the shaft was based on the nominal torsional strength.

In order to calculate the torsional strength that the shaft would exhibit during testing, the ACI nominal torsional strength equation was applied. Before the strength was calculated, the minimum requirements for the shaft reinforcement were followed as outlined in ACI 318-05 §7.10.5.6 and §11.6.5.1. The nominal torsional strength (Equation 2-6) was then calculated for the specimen. This value, 253 kip-ft (343 kN-m), was compared to the concrete breakout strength. The spacing of the hoop steel in the shaft was altered until the nominal torsional strength exceeded the concrete breakout strength. Hence, if the concrete breakout failure was the
correct failure mode, it would occur before the torsional capacity of the shaft was exceeded during testing.

3.2.2 Longitudinal and Transverse Reinforcement

As was outlined in the previous section, the required amount of hoop steel to meet the ACI 318-05 specifications was determined using guidelines from Chapters 7 and 11 in the code. The resultant hoop steel layout was twenty-four #4 bars spaced evenly around a 27 in. (686 mm) diameter circle. The transverse hoops were comprised of #3 bars at 2.5 in. (635 mm) totaling fourteen #3 bar hoops. The required splice for the #3 bar was 12 in. (305 mm), and the development length required for the #4 bar into the concrete block was 8 in. (203 mm) with a 6 in. (152 mm) hook. In the test setup, the #4 bars extended 27 in. (686 mm) into the block, which exceeded the required length. This length was used for simplicity in design and construction of the test setup. The #4 bars were tied into one of the cages of reinforcement in the concrete block.

3.2.3 Flexure

Due to the eccentric loading of the bolts, the flexural capacity of the shaft had to be calculated. It had to be determined that the shaft would not fail in flexure under the load applied during testing. The flexural reinforcement in the shaft was the longitudinal reinforcement, the #4 bars. The first step to determine the capacity was to assume the number of bars that would have yielded at the time of failure. From that point, the neutral axis of the shaft was located following the ACI 318-05 concrete stress block methodology presented in Chapter 10 of the code. It was then checked if the number of bars that had yielded was a good assumption. Once this was verified, the nominal moment capacity of the shaft was calculated, and, then, compared to the maximum flexural moment based on the concrete breakout capacity. The flexural capacity of the shaft, 262 kip-ft (355 kN-m), exceeded the maximum flexural moment on the shaft, 60.6 kip-ft (95.2 kN-m).
3.3 Anchor Design

3.3.1 Diameter of Anchor Bolts

The starting point for the diameter of the F1554 Grade 105 anchor bolts to be used in the test apparatus was based on half the diameter of those in the field specimen. The size determined using that methodology was 1 in. (25.4 mm). Once the concrete breakout strength capacity of the anchors was determined, the corresponding shear load on each of the bolts was calculated. The anchor bolt diameter had to be increased to 1.5 in. (38.1 mm) in order to ensure that the bolts would not experience steel failure in flexure or shear. The maximum flexure on the bolts was calculated by taking the maximum shear applied to each bolt and calculating the corresponding maximum flexural moment (Figure 3-5). The lever arm (Equation 3-1) for the calculation of the capacity was defined in Eligehausen et al. (2006) Section 4.1.2.2 b.

\[l = e_1 + a_3 \]
(3-1)

Where:

- \(l \) = lever arm for the shear load (in.)
- \(e_1 \) = distance between the shear load and surface of concrete (in.)
- \(a_3 \) = 0.5 \(d_o \), without presence of a nut on surface of concrete, Figure 3-5 (in.)
- \(0 \), with a nut on surface of concrete

The base plate was restrained against rotation, and translation was only possible in the direction of the applied shear load. The maximum applied moment for each bolt was calculated based on these support conditions and the lever arm calculation. Full fixity occurred a distance \(a_3 \) into the shaft.

Using the section modulus of the bolts, the stress was then calculated and compared to the yield strength of the bolts, 105 ksi (724 MPa). The shear strength of the bolts was calculated using the provisions in Appendix D of ACI 318-05. In both cases it was determined that the bolts had sufficient strength.
3.3.2 Concrete Breakout Strength of Anchor in Shear Parallel to a Free Edge

The breakout strength provisions outlined in ACI 318-05 Appendix D and the breakout provisions introduced in Eligehausen et al. (2006) were applied to the design of the shaft. Equation 2-11, from ACI 318-05, was used as the primary equation for the calculation of the breakout strength. In order to apply the ACI provisions to the circular foundation a section of the concrete was ignored (Figure 3-6). If the full cover, \(c \), was used in the calculation, the failure region would have included area outside of the circle. Rather than extending beyond the edge of the concrete, the 35 degree failure cone (Figure 2-6) was extended to the edge of the shaft as shown in Figure 3-6. Equation 3-2 was developed to determine the adjusted cover, \(c_{a1} \).

\[
c_{a1} = \frac{\sqrt{r_b^2 + 3.25(r^2 - r_b^2)} - r_b}{3.25}
\]

(3-2)

Where

- \(r_b \) = radius measured from the centerline of the bolt to the center of the foundation (in.) (Figure 3-6)
- \(r \) = radius of circular foundation (in.)

As presented in Section 2.3.4, the projected concrete failure area for a single anchor, \(A_{Vco} \), is equivalent to \(4.5(c_{a1})^2 \). Figure 3-7 illustrates the development of the projected concrete failure area for a group of anchors, \(A_{Vc} \), as a function of the number of bolts, \(n \), the radius of the shaft, \(r \), and the adjusted cover. The resultant concrete breakout strength using the adjusted cover approach was conservative relative to assuming the full cover.

Equation 3-3 and Equation 3-4 are used to calculate the concrete breakout torsion, \(T_{n,breakout} \), and are based on the ACI provisions for shear parallel to the free edge.

For \(A \leq \sin^{-1}\left(\frac{1.5c_{a1}}{r_b}\right) \)

\[
T_{n,breakout} = 2 \cdot A_{Vc} \cdot V_b \cdot r_b
\]

(3-3)
\[A > \sin^{-1}\left(\frac{1.5c_{al}}{r_b}\right) \] (i.e. no overlap of failure cones)

\[T_{n,\text{breakout}} = 2 \cdot n \cdot V_b \cdot r_b \quad (3-4) \]

Where
- \(A \) = angle of circular sector for each bolt (deg) (Figure 3-7)
- \(c_{al} \) = adjusted cover (in.) (Equation 3-2)
- \(r_b \) = radius measured from the centerline of the bolt to the center of the foundation (in.) (Figure 3-6)
- \(A_{Vc} \) = projected concrete failure area of a group of anchors (in.\(^2\)) (Figure 3-7)
- \(A_{Vco} \) = projected concrete failure area of a single anchor (in.\(^2\)) (Figure 3-6)
- \(V_b \) = concrete breakout strength in shear for a single anchor calculated using Equation 2-11 with \(c_{al} \) as calculated in Equation 3-2 (lb.)
- \(n \) = number of bolts

Using Equation 3-3, the ACI concrete breakout torsion for the test specimen was determined to be 182 kip-ft (247 kN-m), which was less than the nominal torsional capacity.

During the analysis of the design equations, an issue arose regarding the calculation of the Eligehausen et al. (2006) factor \(\psi_{\parallel} \). The result of Equation 2-18 was 4.06 compared to the ACI 318-05 factor and \(\psi_{\alpha,V} \) of 2.0. This prompted an investigation of the application of the multiplier to the circular foundation in this research program.

The majority of the tests for the determination of \(V_{u,c} \) (Equation 2-14) were for groups of two bolts. Therefore, it was investigated how the \(A_{Vc}/A_{Vco} \) term is affected by the spacing between the bolts and the number of bolts. Figure 3-8 shows that for spacing, \(s \), of 3.0\(c_{al} \) or greater there is no overlap of the breakout cones. In those cases the strength is the sum of the single anchor strengths. Figure 3-9 illustrates the overlap of the breakout cones. The \(A_{Vc}/A_{Vco} \) term is used to calculate the breakout strength for the case where the failure cones overlap.

\(A_{Vc}/A_{Vco} \) can be normalized by dividing by the number of bolts. An increase in the number of bolts at the same spacing along a straight edge leads to a reduction in the normalized \(A_{Vc}/A_{Vco} \) term. This reduction is illustrated in Figure 3-10. The contribution of the failure cone outstanding “legs” at the ends of the group area, \(A_{Vc} \), decreases as the number of bolts increases.
For a circular foundation, with $s < 3.0c_{al}$, there is a constant overlap of the failure cones with no outstanding “legs” (Figure 3-11). The equivalent number of bolts along a straight edge is taken as infinity in order to represent a circular foundation (i.e. no outstanding “legs”). Therefore, the normalized A_{Vc}/A_{Vco} term for this case was calculated for an infinite number of bolts at the prescribed spacing for the foundation. To convert these ratios into a multiplier for ψ_{\parallel}, the ratio of the normalized A_{Vc}/A_{Vco} for an infinite number of bolts to the normalized term for two bolts was calculated. That multiplier, 0.52, was applied to the ψ_{\parallel} term resulting in an adjusted ψ_{\parallel} of 2.1. This resulting value agreed with the ACI 318-05 factor and the Eligehausen et al. (2006) factor $\psi_{\alpha,\beta}$ of 2.0.

The resultant concrete breakout torsions, based on the Eligehausen et al. (2006) concrete breakout strength (Equation 2-13), were 167 kip-ft (227 kN-m) using ψ_{\parallel} of 2.1 in Equation 2-17, and 159 kip-ft (216 kN-m) using $\psi_{\alpha,\beta}$ of 2.0 in Equation 2-16. These torsions were calculated using the same moment arm, r_b, used in Equation 3-3 and Equation 3-4. These results and the results of the other calculations are summarized in Table 3-2.

3.3.3 Development Length of the Bolts

Another key aspect of the shaft design was to ensure that the anchor bolts were fully developed. In order to meet the code requirements, the splice length between the #4 bars and anchor bolts was calculated using the development length equations presented in ACI 318-05 Chapter 12. The bolts needed overlap the #4 bars across 26.7 in. (678 mm), and in the test setup the overlap was 29 in. (737 mm). Therefore, this requirement was met.

3.4 Steel Pipe Apparatus Design

The components of the steel pipe apparatus included the pipe, which was loaded during testing, and the base plate. The pipe design was based on the interaction between torsion, flexure, and shear as presented in AISC (2001), LRFD Manual of Steel Construction-LRFD
Specification for Steel Hollow Structural Sections. Each of the individual capacities was calculated for various pipe diameters and thicknesses. The individual strengths were compared to the projected failure loads for testing, the concrete breakout failure loads. In addition to verifying that the capacity of the pipe exceeded those loads, the interaction of the three capacities was verified. The purpose was to check that the sum of the squares of the ultimate loads divided by the capacities was less than one. Based on this analysis, it was concluded that an HSS 16.000 x 0.500 pipe would provide sufficient strength.

In order to load the pipe, it needed to have a ninety degree bend in it. This was achieved by welding two portions of pipe cut on forty-five degree angles to a steel plate. The weld size for this connection was determined such that the effective throat thickness would equal the thickness of the pipe, which was 0.50 in. (12.7 mm).

The factors included in the design of the base plate were the diameter of the pipe, required weld size, bolt hole diameter, and the required distance between the edge of the bolt hole and the edge of the plate. The required width of the weld between the base plate and the pipe was calculated such that the applied torsion could be transferred to the plate without failing the weld. From that point, the bolt hole location diameter had to be checked to ensure that there was sufficient clearance between the weld and the nuts. It was important that the nuts could be fully tightened on the base plate. A 0.25 in. (6.35 mm) oversize was specified for the bolt hole diameter. This oversize was based on the standard oversize used in the field. Beyond that point, it was ensured that there would be sufficient cover distance between the bolt hole and the edge of the plate.

The design of the components of the steel pipe apparatus was crucial because these pieces had to operate efficiently in order to correctly apply load to the bolts. If the apparatus were to
fail during testing, the objective of the research could not be achieved. The weight of the pipe apparatus was calculated in order to normalize the load during testing. The load applied to the anchorage would be the load cell reading less the weight of the pipe apparatus.

3.5 Concrete Block Design

The design of the concrete block was based on several key factors to ensure that it served its purpose as a fixed support at the base of the shaft. The amount of reinforcement required was based on a strut-and-tie model of the block as outlined in ACI 318-05 Appendix A and, as an alternate approach, beam theory to check the shear strength and flexural strength of the block. For the flexural capacity calculations, the ACI 318-05 concrete stress block provisions were utilized. Based on the results of both approaches, it was determined that 3 #8 bars, each with a 12 in. (305 mm) hook on both ends, spaced across the top and the bottom of the block were required. Additionally, two cages of #4 bars were placed in the block on the front and back faces meeting the appropriate cover requirements to serve as supplementary reinforcement. The purpose of reinforcing the block was to ensure structural stability of the block throughout the testing process.

Two channel apparatuses were also designed in order to tie the block to the floor of the laboratory in order to resist overturning. The loads that had to be resisted by each tie-down were calculated such that the floor capacity of 100 kips (445 kN) per tie-down would not be exceeded. The channels were designed in accordance with the provisions set forth in AISC (2001). The welds between the channels and steel plates had to be sufficiently designed such that the channels would act as a single unit thereby transferring load from the plates through the channels. Also, the channels were spaced far enough apart to fit 1.5 in. (38.1 mm) bolts between the channels. A 0.25 in. (6.35 mm) oversize was specified for the spacing of the channels and the holes in the steel plates. The construction drawings for the channels are located in Appendix A.
In addition to assuring that the concrete block system had sufficient capacity to resist the applied load, the bearing strength of the concrete had to be calculated. This was done in order to verify that the concrete would not fail in the region that was in contact with the steel channels. The bearing strength was found to be sufficient. As a result, it was concluded that the concrete block system would efficiently serve as a fixed connection, and under the loading conditions it would not prematurely fail.

3.6 Combined Shear and Torsion

As was presented in Chapter 2, a calculation had to be carried out to ensure that shear need not be considered in the design. Rather than inputting the values for the ultimate shear and ultimate torsion into Equation 2-8, the coefficients of these terms were calculated. The base for doing so was to input the torsion as a function of the shear. For the test specimen, the ultimate torsion, T_u, was taken as the moment arm multiplied by the ultimate shear, V_u. The moment arm for the load was 9 ft. (2740 mm). As an alternate approach, the actual concrete breakout strength and the corresponding shear could have been inputted into the equation rather than the generic variables. The result of the calculation to determine the coefficients was that the coefficient for the shear term was 1 compared to a coefficient of 88 for the torsion term. This calculation sufficiently verified that the shear contribution could be ignored in design.

3.7 Overview

The previous sections detailed the design of the various components of the experimental program. It was of the utmost important to verify that the apparatuses not pertaining to the foundation failure would not fail during testing (i.e. concrete block system and pipe apparatus). Furthermore, all other foundation failure modes had to be precluded in the design. This ensured that if the concrete breakout failure in shear was the failure mode it would be observed during testing.
Figure 3-12 and Figure 3-13 show the fully assembled test specimen at the Florida Department of Transportation Structures Research Center.
Figure 3-1. Schematic of test apparatus

Figure 3-2. Front elevation of test apparatus
Figure 3-3. Plan view of test apparatus

Figure 3-4. Side elevation of test apparatus
Figure 3-5. Lever arm for the calculation of bolt flexure

\[A_{Vco} = 4.5c_{a1}^2 \]

Figure 3-6. Adjusted cover based on a single anchor and 35° failure cone
\[\text{chord} = 2r \sin \frac{A}{2} \]

\[A = \frac{360^\circ}{n} \]

\[A_{Vc} = n \cdot \text{chord} \cdot 1.5c_{a1} \]

Figure 3-7. Development of the projected failure area for the group of anchors around a circular foundation

Figure 3-8. Two anchor arrangement displays the minimum spacing such that no overlap of the failure cones occurs

Figure 3-9. Overlap of failure cones
Figure 3-10. The contribution of the “legs” of the failure cone to A_{V_c} along a straight edge decreases as the number of bolts increases.

Figure 3-11. Overlap of failure cones for a circular foundation.
Figure 3-12. Assembled test specimen

Figure 3-13. Shaft with pipe apparatus attached prior to instrumentation being attached
Table 3-1. Field dimensions

<table>
<thead>
<tr>
<th>Component</th>
<th>Field Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft Diameter</td>
<td>60 in.</td>
</tr>
<tr>
<td>Hoop Steel Diameter</td>
<td>46 in.</td>
</tr>
<tr>
<td>Hoop Steel Size #5</td>
<td></td>
</tr>
<tr>
<td>Longitudinal Steel Size #9</td>
<td></td>
</tr>
<tr>
<td>Anchor Bolt Diameter</td>
<td>2 in.</td>
</tr>
<tr>
<td>Anchor Embedment</td>
<td>55 in.</td>
</tr>
<tr>
<td>Bolt Spacing</td>
<td>36 in.</td>
</tr>
<tr>
<td>Diameter</td>
<td></td>
</tr>
<tr>
<td>Base Plate Diameter</td>
<td>42 in.</td>
</tr>
<tr>
<td>Base Plate Thickness 1⅛ in.</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-2. Summary of design calculations

<table>
<thead>
<tr>
<th>Component</th>
<th>Design Type</th>
<th>Equation Reference</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft</td>
<td>Cracking Torsion</td>
<td>(2-1)</td>
<td>131 kip-ft</td>
</tr>
<tr>
<td></td>
<td>Basic Torsion</td>
<td>(2-2)</td>
<td>131 kip-ft</td>
</tr>
<tr>
<td></td>
<td>Threshold Torsion</td>
<td>(2-3)</td>
<td>24.6 kip-ft</td>
</tr>
<tr>
<td></td>
<td>Nominal Torsion</td>
<td>(2-4)</td>
<td>253 kip-ft</td>
</tr>
<tr>
<td>Anchor</td>
<td>ACI Concrete Breakout</td>
<td>(2-12)</td>
<td>182 kip-ft</td>
</tr>
<tr>
<td></td>
<td>Eligehausen et al. Concrete Breakout</td>
<td>(2-16)</td>
<td>159 kip-ft</td>
</tr>
<tr>
<td></td>
<td>Eligehausen et al. Concrete Breakout</td>
<td>(2-17)</td>
<td>167 kip-ft</td>
</tr>
<tr>
<td></td>
<td>Bolt Flexure</td>
<td></td>
<td>253 kip-ft</td>
</tr>
<tr>
<td></td>
<td>Bolt Shear</td>
<td></td>
<td>1756 kip-ft</td>
</tr>
</tbody>
</table>
CHAPTER 4
IMPLEMENTATION OF TESTING PROGRAM

In order to proceed with testing the specimen presented in Chapter 3, important considerations had to be made. The first area under consideration was the concrete strength. It was important to determine this to calculate the predicted failure mode prior to testing. Also, the flexural and shear strengths of the bolts were calculated using the specified yield strength. The other area that was of key importance was the instrumentation. The instrumentation was required to produce meaningful data during testing. The other section of this chapter is on the carbon fiber reinforced polymer (CFRP) wrap used in the retrofit test.

4.1 Materials

4.1.1 Concrete Strength

As it was stated in Chapter 3, the initial calculations for the design of the test setup were carried out on the assumption of a concrete strength of 5500 psi (37.9 MPa). The concrete breakout strength was recalculated based on the concrete strength at the time of testing. On the date of the test, the concrete strength was 6230 psi (43 MPa). This strength was calculated based on the average of three 6 in. (152 mm) x 12 in. (305 mm) cylinder tests.

4.1.2 Bolt Strength

The yield strength of the F1554 Grade 105 anchor bolts was assumed to be 105 ksi (723.95 MPa). This was used to calculate the flexural strength and shear strength of the bolts.

4.1.3 Carbon Fiber Reinforced Polymer Wrap

The first test was considered concluded after significant cracking and when the test specimen stopped picking up additional load. The loading was ceased before the specimen completely collapsed. The reason for doing so was to enable a second test to be performed on the specimen after it was retrofitted with a carbon fiber reinforced polymer (CFRP) wrap. The
second test verified whether the CFRP wrap was an acceptable means to retrofit the failed foundation.

The amount of CFRP that was applied to the shaft was determined by calculating the amount of CFRP required to bring the shaft back to its initial concrete breakout strength. The CFRP wrap that was used for the retrofit was SikaWrap Hex 230C. The properties of the wrap were obtained and the ultimate tensile strength was used to calculate the required amount that needed to be applied. The property specifications for the SikaWrap were based on the mean strength minus 2 standard deviations. ACI (2002), ACI 440.R-02, §3.3.1 specifies that the nominal strength to be used for design be based on the mean strength less 3 standard deviations. Therefore, the design strength provided by Sika was adjusted to ensure that the design met the ACI specifications.

The method for calculating the amount of CFRP required was to convert the torsion to a shear load per bolt. The shear load, which was directed parallel to the edge, had to be adjusted to such that it was directed perpendicular to the edge. In order to do this, the ACI multiplier of 2 was divided from the load. That load per bolt directed perpendicular to the edge was converted to a pressure around the circumference of the shaft. The equivalent tension that had to be resisted by the CFRP wrap was then calculated, and the amount of CFRP to provide that tensile strength was determined. Figure 4-1 illustrates this method.

Two layers of the wrap were prescribed to meet the ACI concrete breakout strength based on assuming that the full 12 in. (305mm) width of the CFRP wrap would not be effective. Rather, it was assumed that the depth of the concrete breakout failure cone based on the cover, \(1.5 \cdot \text{cover}\), was the effective width, 7.5 in. (191 mm). Three layers of the CFRP wrap were applied to the specimen. The addition of the extra layer exceeded the required strength, so it was
deemed acceptable. Once the wrap was set, the retrofit test was carried out. Calculations for the design of the CFRP wrap layout are located in Appendix B.

4.2 Instrumentation

4.2.1 Linear Variable Displacement Transducers

Linear Variable Displacement Transducers (LVDTs) were placed at the location of the load cell, and at various points along the shaft and base plate. A total of ten LVDTs were utilized in the project. Figure 4-2 is a schematic of the layout of the LVDTs on the base plate. Figure 4-3 and Figure 4-4 show the location of the LVDTs on the shaft, and Figure 4-5 shows the LVDT at the load location. The denotation for each of the LVDTs is also on the drawings. These identification codes were used to denote the LVDTs during testing. The purpose of the LVDTs along the shaft and base plate was to allow for the rotation of the base plate to be measured during the testing. The LVDTs at the front and back of the shaft were to allow for the rotation to be measured relative to the rotation of the shaft. The intent in the project was such that the shaft would not rotate; only the base plate would rotate as the bolts were loaded. The horizontal LVDT on the base plate was intended to indicate if there was any horizontal movement of the base plate. The rotation of the base plate was calculated using Equation 4-1.

\[
R = \tan^{-1}\left(\frac{D_{1V} + D_3}{D_{gage}}\right)
\]

Where

- \(R\) = base plate rotation (rad)
- \(D_{1V}\) = displacement of LVDT D1V (in.)
- \(D_3\) = displacement of LVDT D3 (in.)
- \(D_{gage}\) = distance between LVDTs D1V and D3 (in.)

Once the test apparatus was assembled, the distance \(D_{gage}\) was measured. This distance was 26.31 in. (668 mm). Figure 4-6 shows LVDTs D1V and D4 on the test specimen.
4.2.2 Strain Gages

Strain gages were attached to the base plate on the outer surface adjacent to the bolt holes in order to determine how many bolts were actively transferring load given the 1.75 in. (44.5 mm) holes for the 1.5 in. (38.1 mm) anchors. In applying the ACI 318-05 equation for concrete breakout strength of an anchor in shear directed parallel to an edge (Equation 2-12) it was of key importance to know how many bolts were carrying the load. For instance, if two bolts were carrying the load, the concrete would fail at a lower load than if all twelve bolts were carrying the load. In addition to showing the placement of the LVDTs, Figure 4-2 also details the location of the strain gages on the base plate. Figure 4-7 shows the denotation of the strain gages relative to the bolt number, and Figure 4-8 shows a strain gage on the base plate of the test specimen. Note that the bolt numbering starts at one at the top of the plate and increases as you move clockwise around the base plate.
Figure 4-1. Method for the determination of the tension, T_{CFRP}, that must be resisted by the CFRP wrap
Figure 4-2. Instrumentation layout on the base plate

Figure 4-3. Instrumentation layout on face of shaft
Figure 4-4. Instrumentation layout on rear of shaft/face of concrete block

Figure 4-5. Instrumentation layout of pipe at load location
Figure 4-6. Location of LVDTs D1V, D4, and D7 on the test specimen

Figure 4-7. Strain gage layout on base plate
Figure 4-8. Strain gage on base plate of test specimen
CHAPTER 5
TEST RESULTS

Two tests were performed on the test specimen. The initial test was conducted to
determine whether the concrete breakout failure was the failure mode demonstrated in the field.
The verification of this was based on the crack pattern and the failure load recorded. If the
failure torsion was the concrete breakout failure torsion, then the hypothesized failure mode
would be verified. The retrofit test was performed on the same test specimen. This test was
completed to establish whether a CFRP wrap was an acceptable retrofit for the foundation.

5.1 Initial Test

5.1.1 Behavior of Specimen During Testing

The initial test on the foundation was carried out on 31 August 2006 at the Florida
Department of Transportation Structures Research Center. The test specimen was gradually
loaded during the testing. Throughout the test, the formation of cracks on the surface of the
concrete was monitored (Figures 5-1 and 5-2). At 90 kip-ft (122 kN-m), the first cracks began to
form. When 108 kip-ft (146 kN-m) was reached, it was observed that the cracks were not
extending further down the length of the shaft. Those cracks that had formed began to slightly
widen. These cracks, Figure 5-1, were characteristic of those that form during the concrete
breakout failure. At 148 kip-ft (201 kN-m), cracks spanning between the bolts had formed
(Figure 5-3). The foundation continued to be loaded until the specimen stopped taking on more
load. The torsion load peaked at 200 kip-ft (271 kN-m). Loading ceased and was released when
the applied torsion fell to 190 kip-ft (258 kN-m). The predicted concrete breakout capacity of
the shaft at the time of testing was calculated as 193 kip-ft (262 kN-m) (Equation 3-3).

At failure, the foundation displayed the characteristic cracks that one would see in a
concrete breakout failure (Figure 5-4). As intended, the bolts did not yield, and the shaft did not
fail in torsion. Data was reduced to formulate applied torsion versus plate rotation and applied torsion versus bolt strain plots. The Applied Torsion vs. Plate Rotation plot (Figure 5-5) shows that the bolts ceased taking on additional load after the noted concrete breakout failure due to the shear parallel to the edge resulting from the applied torsion. It also exhibits slope changes at the loads where crack development started or the existing cracks were altered. The first slope change at 108 kip-ft (146 kN-m) coincided with the widening of the characteristic diagonal cracks on the front face of the shaft. The second change occurred at 148 kip-ft (201 kN-m) corresponding with the formation of cracks between the bolts.

5.1.2 Behavior of Strain Gages During Testing

Figure 5-6 displays the Applied Torsion vs. Bolt Strain plots for each bolt relative to its location on the foundation. Recall that the term bolt strain refers the measurement of the strain in the base plate at the bolt location. The strain was a result of the bolt carrying load. The first line on the plots in Figure 5-6 is 50 kip-ft (67.8 kN-m). At this level, all of the bolts were carrying load with the exception of bolts one, six, and eight. At the next level, 100 kip-ft (136 kN-m) bolt one picked up load, but bolts six and eight remained inactive.

It must be noted that, at 108 kip-ft (138 kN-m), which was the first slope change on the Applied Torsion vs. Plate Rotation Plot, a redistribution of the loading occurred. This redistribution is illustrated in Figure 5-7. As the cracks widened, those bolts that were transferring the majority of the load were able to move more freely, and, therefore, the other bolts became more active in transferring the load to the foundation. A similar redistribution to a lesser degree occurred at approximately 148 kip-ft (201 kN-m), which coincided with the first observation of cracks between the bolts.

As the various plots illustrate, some of the strain gages recorded negative strains, while others recorded positive strains. This was most likely due to the bearing location of the bolt on
the base plate. Although this occurred, the relative strain readings were considered acceptable. To further explore this phenomenon, strain gages were placed on the bottom of the base plate in addition to those on the top for the second test.

5.1.3 Summary of Initial Test Results

The results of this test indicated that the concrete breakout failure was the failure mode observed in the site investigation. The characteristic cracks and the structural integrity of the bolts in the failed foundations, as observed during the site investigation, was the first step to arriving at this failure mode. The percent difference between the failure torsion and the predicted failure torsion (Equation 3-3) was 3.6%. Therefore, it was concluded that the foundation failed at the failure torsion for the predicted failure mode. These results indicated that the design methodology for cantilever sign foundations should include the concrete breakout failure due to shear directed parallel to an edge resulting from torsional loading. All plots for the first test are located in Appendix C.

5.2 CFRP Retrofit Test

After the results of the first test were reviewed, the need for a method to strengthen existing foundations became apparent. Since the concrete breakout failure had not been considered in the design of the cantilever sign structure foundations, a system had to be put in place to evaluate whether or not those existing foundations would be susceptible to failure. One economical method of retrofitting the existing foundations is the use of Carbon Fiber Reinforced Polymer (CFRP) wraps.

Recall that, at the conclusion of the first test, the bolts had not yielded, and the concrete was still intact. This enabled a second test on the failed foundation to be carried out. The key focus of this second test was to determine if the foundation could reach its initial concrete breakout strength again. The foundation was retrofitted with three layers of 12 in. (305 mm)
wide SikaWrap Hex 230C (Figure 5-8). This amount of CFRP exceeded the amount required to attain the concrete breakout strength, 193 kip-ft (262 kN-m). The torsional strength of the shaft with the CFRP wrap was calculated. The resultant strength based on the effective width, Section 4.1.3, of 1.5·cover, or 7.5 in. (191 mm), was 229 kip-ft (310 kN-m). Since that effective depth was an assumption for design, the strength based on the full width, 12 in. (305 mm), of the wrap, 367 kip-ft (498 kN-m), was also calculated for reference.

5.2.1 Behavior of Specimen with CFRP Wrap During Testing

The second test was conducted on 13 September 2006. For this test, the concrete strength was not required to be known, since the concrete had already failed. The containment provided by the CFRP wrap, along with the anchor bolts, was the source of the strength of the foundation. As the purpose of the second test was to learn how much load the foundation could take, and if that load met or exceeded the concrete breakout strength, the load was not held for prolonged periods at regular intervals during the test. Figure 5-9 is the Applied Torsion vs. Plate Rotation plot for the second test. The foundation was closely monitored for crack formation along the shaft, propagation of existing cracks, and failure of the CFRP wrap.

The strength of the foundation exceeded the predicted concrete breakout strength of 193 kip-ft (262 kN-m). It was not until the loading reached 257 kip-ft (348 kN-m) that the first pops of the carbon fibers were heard. At that torsion load, the strength of the CFRP wrap based on the effective depth, 229 kip-ft (310 kN-m), was exceeded. Therefore, the effective depth of the wrap was a conservative assumption.

At approximately 288 kip-ft (390 kN-m) more pops were heard. However, the carbon fiber did not fail. During the course of the test, characteristic torsion cracks began to form along the shaft (Figure 5-10) and propagated to the base of the shaft. This occurred because the ACI 318-05 nominal torsional strength (Equation 2-6) of 253 kip-ft (343 kN-m) was exceeded. Although
these cracks had formed, the foundation still had not failed. Another phenomenon that occurred was the yielding of the bolts. According to the calculations for the yield strength of the bolts, the bolts yielded at approximately 253 kip-ft (343 kN-m) of applied torsion. The strength was determined using the same methodology outlined in Section 3.3.1. This was the within the range in which the yielding was observed (Figure 5-9). The bolts were yielding, but they did not reach their ultimate strength. The test abruptly concluded when the concrete block shifted out of place, causing the load cell to be dislodged from its location on the pipe. This occurred at 323 kip-ft (438 kN-m).

5.2.3 Behavior of Strain Gages During Testing

For the retrofit test, strain gages were placed on the top and bottom of the base plate. Figure 5-11 shows each of the Applied Torsion vs. Bolt Strain plots at the appropriate bolt locations. Note that as the loading increased, the bottom strain gages began to behave similarly for all of the bolts. The strain was increasing at a higher rate. This illustrated that as the bolts picked up load and began to bend, they were primarily in contact with the bottom of the base plate (Figure 5-12). The strains recorded by the bottom gages indicate that all of the bolts became active during the test.

Similar to the behavior of the bolts throughout the initial test, Figure 5-13 illustrates the changes in the bolt strain data for the top gages corresponding with milestone loads during the test.

5.2.4 Summary of Test Results

Upon removal of the pipe apparatus, the crack pattern illustrated the concrete breakout failure, and torsional cracks in the center of the shaft verified that the torsional capacity was exceeded during testing (Figure 5-14). Figure 5-15 details the characteristic torsion cracks on the side of the shaft after testing. The test proved that the CFRP wrap was an acceptable method
for retrofitting the foundation. It exceeded the concrete breakout strength. The success of this retrofit test led to the development of guidelines for the evaluation of existing foundations and the guidelines for the retrofit of those foundations in need of repair. All plots for the retrofit test are located in Appendix D.
Figure 5-1. Initial cracks on face of shaft

Figure 5-2. Initial cracks on face and side of shaft (alternate view of Figure 5-1)
Figure 5-3. Face of test specimen after testing exhibits cracks between the bolts along with the characteristic concrete breakout cracks

Figure 5-4. Crack pattern on face of shaft after testing depicts characteristic concrete breakout failure cracks
Figure 5-5. Applied Torsion vs. Plate Rotation Plot- Initial Test
Figure 5-6. Applied Torsion vs. Bolt Strain Plots for each bolt at the appropriate location on the base plate with Applied Torsion vs. Plate Rotation plot in center (full size plots in Appendix C)
Figure 5-7. Bolt Strain Comparison Plot for Initial Test exhibits the redistribution of the load coinciding with crack formations

Figure 5-8. Shaft with the CFRP wrap applied prior to testing
Figure 5-9. Applied Torsion vs. Plate Rotation Plot- Retrofit Test

Figure 5-10. Shaft exhibiting characteristic torsion cracks from face to base of shaft
Figure 5-11. Applied Torsion vs. Bolt Strain plots for the Retrofit Test at the appropriate bolt location around the base plate with Applied Torsion vs. Plate Rotation plot in center (full size plots in Appendix D)
Figure 5-12. Bolt bearing on the bottom of the base plate during loading

Figure 5-13. Bolt Strain Comparison plot for the retrofit test exhibits slope changes at milestone loads
Figure 5-14. Face of shaft after test illustrates yielding of bolts, concrete breakout cracks around the perimeter, and torsion cracks in the center.

Figure 5-15. Torsion cracks along length of the shaft after the test
The purpose of this research program was to determine the cause of the failure of foundations of cantilever sign structures during the 2004 hurricane season. After a thorough literature review, in conjunction with the site investigation, and testing, it was determined that the foundations failed as a result of an applied torsion which caused a concrete breakout failure due to shear directed parallel to the edge on the anchors. This anchorage failure is detailed in ACI 318-05 Appendix D. Previous to this experimental research, this failure mode was not considered in the design of the cantilever sign foundations. Cantilever sign foundations need to be designed for shear parallel to the edge on the anchor resulting from torsion.

Test results indicate that the failure of the foundations was caused by concrete breakout due to shear directed parallel to the edge on the anchors. The test specimen failed at the torsion predicted by the ACI 318-05 Appendix D design equations. Additionally, the crack pattern matched the crack pattern exhibited in the field, and both foundations emulated the characteristic crack pattern of the shear directed parallel to an edge for concrete breakout failure. It is recommended that future tests be performed on circular foundations to further investigate the concrete breakout failure for a shear load directed both parallel and perpendicular to an edge.

Additional testing was performed to determine an acceptable retrofit option. It was determined that applying a CFRP wrap to the foundation strengthens the foundation such that it not only meets its initial concrete breakout capacity, but, also, exceeds the capacity. The results of this test led to the development of guidelines for the evaluation and repair of existing foundations. The guidelines were based on the following:

- Using either the torsional load from the design or, if not available, using the ACI nominal torsional strength (ACI 318-05 §11.6.3.6), determine the torsional capacity of the foundation.
• Calculate the concrete breakout strength in accordance with ACI Appendix D.

• If the concrete breakout strength is less than the maximum of the nominal torsional strength and design torsion, then the foundation is susceptible to failure.

• The amount of the SikaWrap 230C required is calculated using the maximum of the nominal torsional strength and the design torsion. The amount required is given in layers of the CFRP wrap.

These guidelines were submitted to the Florida Department of Transportation. The guidelines will be used to evaluate and, if necessary, repair the existing foundations. It is critical that such foundations be evaluated in order to determine the susceptibility to this type of failure. The proper use of the findings of this research program will allow for future prevention of the failures exhibited during the 2004 hurricane season.
APPENDIX A
TEST APPARATUS DRAWINGS

Figure A-1. Dimensioned front elevation drawing of test apparatus
Figure A-2. Dimensioned plan drawing test apparatus
Figure A-4. Dimensioned pipe apparatus drawing

Notes:
- 3- 24"Ø Base Plate (1" Thick)
- HSS 16,000 x 0.500 Pipe
Figure A-5. Dimensioned channel tie-down drawing
Design of Test Program

Input

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft Diameter</td>
<td>30 in</td>
</tr>
<tr>
<td>Concrete Strength</td>
<td>5500 psi</td>
</tr>
<tr>
<td>Hoop Steel Size</td>
<td>3</td>
</tr>
<tr>
<td>Spacing of Hoop Steel</td>
<td>2.5 in</td>
</tr>
<tr>
<td>Yield Strength of Hoop Steel</td>
<td>60 ksi</td>
</tr>
<tr>
<td>Hoop Steel Diameter</td>
<td>27 in</td>
</tr>
<tr>
<td>Longitudinal Steel Size</td>
<td>4</td>
</tr>
<tr>
<td>Torsion</td>
<td>0.75</td>
</tr>
<tr>
<td>Moment Arm</td>
<td>9 ft</td>
</tr>
</tbody>
</table>

Bolts

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of the Bolt</td>
<td>1.5 in</td>
</tr>
<tr>
<td>Center-Center Diameter of Bolts</td>
<td>20 in</td>
</tr>
<tr>
<td>Yield of Bolt</td>
<td>105 ksi</td>
</tr>
<tr>
<td>Number of Bolts</td>
<td>12</td>
</tr>
</tbody>
</table>

CFRP Properties

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of Wrap</td>
<td>0.015 in</td>
</tr>
<tr>
<td>Tensile Strength of CFRP</td>
<td>91.1 ksi</td>
</tr>
<tr>
<td>Width of CFRP Sheet</td>
<td>12 in</td>
</tr>
</tbody>
</table>

For the field model, F1554 Grade 55 Anchor Bolts were used.

\[f_{y_bolt_field} = 55 ksi \]
Failure Equations

Torsion

Cracking Torsion

\[
A_{cp} := \pi \left(\frac{d_s}{2} \right)^2 \quad p_{cp} := \pi \cdot d_s
\]

\[
T_{cr} := 4 \cdot \frac{f_c}{\text{psi}} \cdot \pi \left(\frac{A_{cp}^2}{p_{cp}} \right)
\]
(2-1)

Basic Torsion

\[
\tau := 4 \cdot \frac{f_c}{\text{psi}}
\]

\[
T_{basic} := \frac{\tau \cdot \pi \left(\frac{d_s}{2} \right)^3}{2}
\]
(2-2)

Threshold Torsion

\[
T_{threshold} := \phi_{tortion} \frac{f_c}{\text{psi}} \cdot \pi \left(\frac{A_{cp}^2}{p_{cp}} \right)
\]
(2-3)

Nominal Torsional Strength

\[
A_o := \pi \left(d_h + 2 \right)^2 \quad \text{Area enclosed by hoop steel}
\]

\[
A_t := \pi \cdot \left[(\text{Bar Size}_\text{Hoop} \cdot \text{in} + 8) \div 2 \right]^2 \quad \text{Area of hoop steel}
\]

\[
\theta := 45 \quad \text{ACI 318-05- 11.6.3.6 (a)} \quad \theta_{rad} := \theta \cdot \frac{\pi}{180}
\]

\[
T_{n _tortion} := \frac{2 \cdot A_o \cdot A_t \cdot f_{yt}}{s_h} \cdot \cot(\theta_{rad})
\]
(2-6)

\[
A_{cp} = 706.86 \text{ in}^2
\]

\[
p_{cp} = 94.25 \text{ in}
\]

\[
T_{cr} = 131.06 \text{ kip-ft}
\]

\[
T_{basic} = 131.06 \text{ kip-ft}
\]

\[
T_{threshold} = 24.57 \text{ kip-ft}
\]

\[
A_o = 572.56 \text{ in}^2
\]

\[
A_t = 0.11 \text{ in}^2
\]

\[
\theta_{rad} = 0.79
\]

\[
T_{n _tortion} = 252.95 \text{ kip-ft}
\]
Combined Shear and Torsion

\[T_u(V_u) := V_u \cdot \text{Moment Arm} \cdot \text{kip} \]

\[V(V_u) := \left(\frac{V_u}{A_{oh}} \right)^2 + \left(\frac{T_u(V_u) \cdot p_h}{\text{kip} \cdot \text{in}} \cdot \frac{p_h}{\text{in}} \right)^2 \]

\[(2-8) \]

If \(V_u := 1 \text{kip} \) then \(T_u(V_u) := V_u \cdot \text{Moment Arm} \)

Coefficient Shear := \[\left(\frac{V_u}{\text{kip}} \right)^2 \]

Coefficient Torsion := \[\left(\frac{T_u(V_u) \cdot p_h}{\text{kip} \cdot \text{in}} \cdot \frac{p_h}{\text{in}} \right)^2 \]

\[\frac{\text{Coefficient Torsion}}{\text{Coefficient Shear}} = 88.58 \]

The coefficient for the torsion term is 88 times that of the shear term. Therefore, shear need not be considered.
Concrete Breakout Strength

\[
\text{cover} := \frac{d_s - d_b}{2} \quad \text{Bolt Cover} \quad \text{cover} = 5 \text{ in}
\]

\[
c_{a1} := \sqrt{\left(\frac{d_b}{2}\right)^2 + 3.25 \cdot \left(\frac{d_s}{2}\right) - \frac{d_b}{2}} \cdot \left(\frac{d_s}{2}\right) - \frac{d_b}{2}
\]

\[3.25\]

(3-2) \quad c_{a1} = 3.85 \text{ in} \quad \text{Cover for the calculation of the anchor strength}

\[
A_{vc} = 4.5c_{a1}^2
\]

\[
al = 2r \sin \frac{A^\circ}{2}
\]

\[
A := \frac{360}{\text{No. Bolts}} \text{ deg}
\]

\[
A = 30 \text{ deg}
\]

\[
\text{chord} _\text{group} := 2 \cdot \frac{d_s}{2} \cdot \sin \left(\frac{A}{2}\right)
\]

\[
\text{chord} _\text{group} = 7.76 \text{ in}
\]

\[
A_{\text{min} _\text{group}} := 2 \cdot \text{as} \left(\frac{3.0 \cdot c_{a1}}{d_s}\right)
\]

\[
A_{\text{min} _\text{group}} = 45.24 \text{ deg}
\]

If A is greater than \(A_{\text{min} _\text{group}}\) then there is no group effect

\[
A_{\text{VC}} := \text{No. Bolts} \cdot \text{chord} _\text{group} \cdot 1.5 \cdot c_{a1}
\]

\[
A_{\text{VC}} = 537.55 \text{ in}^2
\]

\[
A_{\text{VC}0} := 4.5 \cdot c_{a1}^2
\]

\[
A_{\text{VC}0} = 66.57 \text{ in}^2
\]
Check_Group_Effect :=
"Group Effect- Analysis is Valid" if $A < A_{\text{min_group}}$
"Analysis Invalid" if $A > A_{\text{min_group}}$

\[\text{Check_Group_Effect} = "Group\ Effect-\ Analysis\ is\ Valid" \]

ACI 318-05-D.6.2

\[l_c := 8 \cdot d_o \]

\[V_b := 13 \cdot \left(\frac{l_c}{d_o} \right)^{0.2} \cdot \left(\frac{d_o}{\text{in}} \right) \cdot \left(\frac{f_c}{\text{psi}} \right) \cdot \left(\frac{c_{al}}{\text{in}} \right)^{1.5} \cdot \text{lbf} \] \hfill (2-11) \hfill $V_b = 13.5 \text{kip}$

$\psi_{cV} := 1.4$ \hfill ACI 318-05- D.6.2.7

1.0 for cracked concrete with no supplementary reinforcement or reinforcement smaller than a No. 4 bar
1.2 for cracked concrete with edge reinforcement of a No.4 bar or greater
1.4 for uncracked concrete or with edge reinforcement of a No.4 bar or greater enclosed within stirrups spaced no more than 4 in. apart

$\psi_{ecV} := 1.0$ \hfill ACI 318-05- D.6.2.5

$\psi_{edV} := 1.0$ \hfill ACI 318-05- D.6.2.6

All anchors are loaded in shear in the same direction

\[V_{cbg} := \frac{A_{Vc}}{A_{Vco}} \cdot \psi_{ecV} \cdot \psi_{edV} \cdot V_b \] \hfill (2-12) \hfill $V_{cbg} = 109.01 \text{kip}$

\[V_{cbg_parallel} := 2 \cdot V_{cbg} \]

$V_{cbg_parallel} = 218.03 \text{kip}$

\[T_{n_breakout_ACI} := V_{cbg_parallel} \cdot (d_b + 2) \] \hfill (3-3) \hfill $T_{n_breakout_ACI} = 181.69 \text{kip-ft}$

\[f_{cc200} := 1.18 \beta' \quad \text{1.18 is the conversion factor between the cylinder test and cube test} \]

\[
\alpha := 0.1 \cdot \left(\frac{d_o}{mm} \right)^{0.5} \cdot \left(\frac{c_{al}}{mm} \right) \\
\beta := 0.1 \cdot \left(\frac{d_o}{mm} \right)^{0.5} \cdot \left(\frac{c_{al}}{mm} \right)
\]

\[V_{uc} := 3.0 \cdot \left(\frac{d_o}{mm} \right)^{0.5} \cdot \left(\frac{c_{al}}{mm} \right)^{0.5} \cdot \sqrt{\frac{f_{cc200}}{N/mm^2}} \cdot (2-13) \]

\[V_{uc} = 52682.62 \text{ N} \]
\[V'_{uc} = 11.84 \text{ kip} \]

\[V_{uc} := \frac{A_{vc}}{A_{vc_0}} \cdot V_{uc} \quad (2-14) \]

\[V_{uc} = 425420.27 \text{ N} \]
\[V_{uc} = 95.64 \text{ kip} \]

\[\alpha_V := \frac{90 - \pi}{180} \]

\[\psi_{\alpha V} := \frac{1}{\cos(\alpha_V) + 0.5 \cdot \sin(\alpha_V)} \quad (2-15) \]

\[V_{uc, \alpha V} := V_{uc} \psi_{\alpha V} \quad (2-16) \]

\[V_{uc, \alpha V} = 191.28 \text{ kip} \]

\[\psi_{\text{parallel}} := 4 \cdot k_4 \cdot \left(\frac{V_{uc}}{N} \right)^{0.5} \quad (2-18) \]

\[\psi_{\text{parallel}} = 4.06 \]

Equation 2-18 was based on tests with two bolts with a straight edge. Therefore, the applicability of the equation comes into question when there are more than two bolts being loaded. The following analysis will determine the ratio of \(V_{uc} \) for 2 bolts and \(V_{uc} \) for arrangements of 2 or more bolts.

Step 1: For 2 bolt arrangements, calculate \(V_{uc} \) as a function of spacing \(s \), and \(V_{uc} \).

The spacing will be taken as a function of the cover.

Assume \(A_v \) will be the area of the group of anchors for a unit depth

Assume \(A_o \) will be the area of a single anchor for a unit depth
cover \(= 5 \text{ in} \)

\(s_b := \pi \cdot d_b + \text{No}_\text{Bolts} \)

\(s_b = 5.24 \text{ in} \)

\(A_0(c) := 1.5 \cdot 2 \cdot c \)

\(A_0(c) \rightarrow 3.0 \cdot c \)

This value does not change as a result of changing the spacing. The generic variable for the cover is \(c\).

\[
\begin{align*}
1.5c_{al} & \quad 1.5c_{al} & \quad 1.5c_{al} & \quad 1.5c_{al} \\
\hline \\
\downarrow c_{al} & \quad \downarrow s=3.0c_{al} \\
\end{align*}
\]

For the case where \(s \geq 3.0c_{al}\), there is no overlap.

\[
s(c) :=
\begin{cases}
3.0 \cdot c \\
1.5 \cdot c \\
1.0 \cdot c \\
0.5 \cdot c \\
0.0 \cdot c
\end{cases}
\]

\(A_n(c, s, n) := 2 \cdot (1.5 \cdot c) + s(c) \cdot (n - 1)\)

\(n\) is the number of bolts

For

\[
n := 2 \quad \Rightarrow A(c, s, n) \rightarrow 30\text{-deg}(c, \text{function}, 2)
\]

\[
\frac{A_\theta(c, s, n)}{A_0(c) \cdot n} = \begin{pmatrix} 1 \\ 0.75 \\ 0.67 \\ 0.58 \\ 0.5 \end{pmatrix}
\]

The ratios are normalized by factorizing out the number of bolts under consideration such that the result may be compared to the ratio for 2 or more bolts.
For a circular foundation, n is considered equal to infinity because the bolts are continuous; there is no end as there is for a straight edge.

\[n := 1 \cdot 10^{20} \quad \text{For } n = \text{infinity} \]

\[
\frac{A_q(c, s, n)}{A_0(c) \cdot n} = \begin{pmatrix}
1 \\
0.5 \\
0.33 \\
0.17 \\
0
\end{pmatrix}
\]

Therefore, to calculate the reduction factor for the parallel conversion multiplier, the ratio of the A_v/A_{ve} terms for 2 bolts and an infinite number of bolts will be calculated considering the proper ratio of s/c.

For the foundation under investigation, n is equal to infinity.

\[\frac{s_b}{\text{cover}} = 1.05 \quad s_{ratio_test}(c) := \frac{s_b}{\text{cover}} \cdot c \]

\[
\text{Group_Multiplier_Infinity} := \frac{A_q(c, s_{ratio_test}, n)}{A_0(c) \cdot n} \quad \text{Group_Multiplier_2_Bolts} := \frac{A_q(c, s_{ratio_test}, 2)}{A_0(c) \cdot 2}
\]

\[\text{Group_Multiplier_Infinity} = 0.35 \quad \text{Group_Multiplier_2_Bolts} = 0.67 \]

\[\frac{\text{Group_Multiplier_Infinity}}{\text{Group_Multiplier_2_Bolts}} = 0.52 \]

\[\psi_{reduction_s_bolt} := \frac{\text{Group_Multiplier_Infinity}}{\text{Group_Multiplier_2_Bolts}} \]

\[\psi_{reduction_s_bolt} = 0.52 \]

\[\psi_{parallel_new} := \psi_{parallel} \cdot \psi_{reduction_s_bolt} \]

\[\psi_{parallel_new} = 2.1 \]

\[V_{uc_parallel} := \psi_{parallel_new} \cdot V_{uc} \quad (2.17) \]

\[V_{uc_parallel} = 893988.63 \text{ N} \]

\[V_{uc_parallel} = 200.98 \text{ kip} \]

\[T_{n_breakout_\psi_{\alpha}V} := V_{uc_\alpha} \cdot (d_b + 2) \]

\[T_{n_breakout_\psi_{\parallel}V_{\parallel}} := V_{uc_\parallel} \cdot (d_b + 2) \]

\[T_{n_breakout_\psi_{\alpha}V} = 159.4 \text{ kip-ft} \]

\[T_{n_breakout_\psi_{\parallel}V_{\parallel}} = 167.5 \text{ kip-ft} \]
Summary of Failure Equations

\(T_{cr} = 131.06 \text{ kip-ft} \)
\(T_{basic} = 131.06 \text{ kip-ft} \)
\(T_{threshold} = 24.57 \text{ kip-ft} \)
\(T_{n_torsion} = 252.95 \text{ kip-ft} \)
\(T_{n_breakout_ACI} = 181.69 \text{ kip-ft} \)
\(T_{n_breakout_y\alpha V} = 159.4 \text{ kip-ft} \)
\(T_{n_breakout_y\parallel} = 167.48 \text{ kip-ft} \)

According to ACI 318-05 11.6.3.5, assuming the ultimate torsion exceeds the threshold torsion, the nominal torsional capacity is taken as the strength of the section.

For the design of the various components of the test specimen, the ACI Concrete Breakout Strength will be the maximum moment as it is the predicted failure mode. \(T_{breakout_ACI} < T_{n_torsion} \)

\[
M_{max} := T_{n_breakout_ACI} \quad M_{max} = 181.69 \text{ kip-ft}
\]

\[
V_{max} := M_{max} \div \text{Moment Arm} \quad V_{max} = 20.19 \text{ kip} \quad \text{Failure Load}
\]
Shaft Design

\[T_{n_torsion} = 252.95 \text{ kip}\cdot\text{ft} \quad M_{\text{max}_shaft} := V_{\text{max}} \cdot 36\text{in} \quad M_{\text{max}_shaft} = 60.56 \text{ kip}\cdot\text{ft} \]

Bar_Size_Hoop = 3 \quad Bar_Size_Long = 4

\[s_h = 2.5 \text{ in} \quad f_y := 60 \text{ksi} \]

\[f_y = 60 \text{ksi} \quad d_h = 27 \text{in} \]

Required splice for #3 bars

\[\psi_t := 1.0 \quad \psi_c := 1.0 \quad \lambda := 1.0 \quad \text{ACI 318-05 12.2.2} \]

\[\text{Required_Splice_Hoop} := \frac{f_y \psi_t \psi_c \psi_s \lambda}{25 \sqrt{f_c \text{ psi}}} \left(\frac{\text{Bar_Size_Hoop}}{8 \text{in}} \right) \]

\[\text{Required_Splice_Hoop} = 12.14 \text{in} \]

Required splice between #4 bars and anchor bolts

\[\psi_s := 0.8 \quad \text{Use the simplification for the } (\psi + K_{th})/d_b \text{ term} \quad \text{eb_Ktr_term} := 2.5 \quad \text{ACI 318-05 12.2.3} \]

\[l_d := \frac{3 f_y \psi_t \psi_c \psi_s \lambda}{40 \sqrt{f_c \text{ psi}}} \left(\frac{\text{eb_Ktr_term}}{d_b} \right) \]

\[l_d = 26.7 \text{in} \]

Note: The yield strength in the field was used to determine the splice length to replicate the embedment in the field for the test setup.

Development length of #4 bars

\[\text{ACI 318-05 12.5} \]

\[l_{dh} := \frac{0.02 \psi_c \psi_s \lambda f_y}{\sqrt{f_c \text{ psi}}} \left(\frac{\text{Bar_Size_Long}}{8 \text{in}} \right) \]

\[l_{dh} = 8.09 \text{in} \]

Hook Length := 12 \left(\frac{\text{Bar_Size_Long}}{8 \text{in}} \right) \quad \text{Hook_Length} = 6 \text{in}
Flexural Capacity of Shaft Calculated using to ACI Stress Block

$$R := d_s + 2 \quad R = 15\text{in} \quad A_{\text{long_steel}} := \pi \left(\frac{\text{Bar_Size_Long_in} + 8}{2} \right)^2 \quad A_{\text{long_steel}} = 0.2\text{in}^2$$

$$f_y = 60\text{ksi} \quad \text{number_of_bars} := 24 \quad \text{number_bars_yielded} := 17 \quad A_c := \frac{\text{number_bars_yielded} \cdot A_{\text{long_steel}} f_y}{0.85 \cdot f_c} \quad A_c = 42.84\text{in}^2$$

$$A_{\text{circseg}}(h) := \left[R^2 \cdot \text{acos} \left(\frac{R - h}{R} \right) \right] - (R - h) \sqrt{2 \cdot R \cdot h - h^2} - A_c \quad h = 3.33\text{in}$$

$$\beta_1(f_c) := \begin{cases} 0.85 \text{ if } f_c < 4000\text{-psi} \\ 0.65 \text{ if } f_c > 8000\text{-psi} \\ 0.85 - 0.05 \cdot \left(\frac{f_c - 4000\text{-psi}}{1000\text{-psi}} \right) \end{cases} \quad ACI\ 10.2.7.3 \quad \beta_1(f_c) = 0.78$$

$$e := \frac{h}{\beta_1(f_c)} \quad c := \frac{e}{0.002} = 4.29\text{in} \quad y := 2.86\text{in}$$

The assumption was correct!

$$\begin{align*}
9.2502\text{in} \cdot A_{\text{long_steel}}^2 + 12.0237\text{in} \cdot A_{\text{long_steel}}^2 + 15\text{in} \cdot A_{\text{long_steel}}^2 \ldots \\
+ 17.9763\text{in} \cdot A_{\text{long_steel}}^2 + 20.7498\text{in} \cdot A_{\text{long_steel}}^2 + 23.1314\text{in} \cdot A_{\text{long_steel}}^2 \ldots \\
+ 25.0189\text{in} \cdot A_{\text{long_steel}}^2 + 26.1677\text{in} \cdot A_{\text{long_steel}}^2 + 26.5\text{in} \cdot A_{\text{long_steel}}
\end{align*}$$

$$d_{\text{bars}} := \frac{17 \cdot A_{\text{long_steel}}}{17 \cdot A_{\text{long_steel}}} \quad d_{\text{bars}} = 19.13\text{in} \quad \phi_{\text{flexure}} := 0.90$$

$$M_{n_Shaft} := \phi_{\text{flexure}} \cdot \text{number_bars_yielded} \cdot A_{\text{long_steel}} f_y \left(d_{\text{bars}} - \frac{h}{2} \right) \quad M_{n_Shaft} = 262.28\text{kip\cdotft}$$

$$\text{Check_Flexure_Shaft} := \begin{cases} "\text{Sufficient\ Strength}" \text{ if } M_{n_Shaft} \geq M_{\text{max_shaft}} \\ "\text{Insufficient\ Strength}" \text{ if } M_{n_Shaft} < M_{\text{max_shaft}} \end{cases} \quad \text{Check_Flexure_Shaft} = "\text{Sufficient\ Strength}"$$
Anchor Design

Check Bolt Flexure and Shear

\[V_{\text{max, anchor}} := \frac{M_{\text{max}}}{d_b} \cdot \frac{\text{No. Bolts}}{2} \]

\[M_{\text{max, anchor}} := \frac{V_{\text{max, anchor}} \cdot 0.5 \cdot d_o + 2\text{in}}{2} \]

\[S_{\text{bolt}} := \frac{\pi \left(\frac{d_o}{2} \right)^3}{4} \]

\[V_{\text{max, anchor}} = 18.17 \text{ kip} \quad M_{\text{max, anchor}} = 24.98 \text{ kip-in} \quad S_{\text{bolt}} = 0.33 \text{ in}^3 \]

\[f_{\text{bolt}} := M_{\text{max, anchor}} + S_{\text{bolt}} \quad f_{\text{bolt}} = 75.4 \text{ ksi} \quad A_{\text{se, bolt}} := 1.405 \text{ in}^2 \]

\[f_{\text{uta}} := \min \left(1.9 \cdot f_{y, \text{bolt}}, 125 \text{ksi} \right) \quad f_{\text{uta}} = 125 \text{ ksi} \quad V_{\text{bolt}} := A_{\text{se, bolt}} \cdot f_{\text{uta}} \]

Check_Bolt_Flexure :=

\[\begin{cases} \text{"Sufficient Strength"} & \text{if } f_{\text{bolt}} \leq f_{y, \text{bolt}} \\ \text{"Insufficient Strength"} & \text{if } f_{\text{bolt}} > f_{y, \text{bolt}} \end{cases} \]

\[\text{Check_Bolt_Flexure = "Sufficient Strength"} \]

Check_Bolt_Shear :=

\[\begin{cases} \text{"Sufficient Strength"} & \text{if } V_{\text{bolt}} \geq V_{\text{max, anchor}} \\ \text{"Insufficient Strength"} & \text{if } V_{\text{bolt}} < V_{\text{max, anchor}} \end{cases} \]

\[\text{Check_Bolt_Shear = "Sufficient Strength"} \]

Calculate the load that will cause the bolts to yield

\[M_{\text{bolt, yield}} := \frac{f_{y, \text{bolt}} \cdot S_{\text{bolt}} \cdot d_b \cdot \text{No. Bolts}}{0.5 \cdot d_o + 2\text{in}} \]

\[M_{\text{bolt, yield}} = 253.02 \text{ kip-ft} \]

\[P_{\text{bolt, yield}} := M_{\text{bolt, yield}} \div \text{Moment Arm} \]

\[P_{\text{bolt, yield}} = 28.11 \text{ kip} \]
Pipe Apparatus Design
Based on AISC LRFD Manual of Steel Construction-
LRFD Specification for Steel Hollow Structural Sections

Pipe Properties-HSS 16.000 x 0.500

Pipe Properties-HSS 16.000 x 0.500

\[t_{pipe} = 0.465 \quad A_{pipe} = 22.7 \text{in}^2 \quad D_t = 34.4 \quad W_{pipe} = 82.8 \frac{\text{lb}}{\text{ft}} \quad F_{y_{pipe}} = 42\text{ksi} \]

\[l_{pipe} = 685\text{in}^4 \quad s_{pipe} = 85.7\text{in}^3 \quad t_{pipe} = 5.49\text{in} \quad Z_{pipe} = 112\text{in}^3 \quad F_{u_{pipe}} = 58\text{ksi} \]

\[D_{pipe} = 16\text{in} \quad j_{pipe} = 1370\text{in}^4 \quad C_{pipe} = 171\text{in}^3 \quad E = 29000\text{ksi} \]

Design of Short Section- Applied Shear, Torsion, and Flexure

\[L_{Short_Pipe} = 15\text{in} \quad V_{max} = 20.19\text{kip} \quad M_{max} = 181.69\text{kip-ft Torsion} \]

\[M_{Flexure} = V_{max} \cdot L_{Short_Pipe} \quad M_{Flexure} = 25.23\text{kip-ft} \]

Design Flexural Strength

\[\phi_b = 0.90 \quad \lambda_{pipe} = D_t \quad \lambda_{p_{pipe}} = 0.0714 \cdot E + F_{y_{pipe}} \]

\[\lambda_{p_{pipe}} = 49.3 \quad \lambda_{pipe} = 34.4 \]

\[M_{d_{Short_Pipe}} = \text{if} (\lambda_{p_{pipe}} \geq \lambda_{pipe}, \phi_b \cdot F_{y_{pipe}} \cdot Z_{pipe}, "Equation Invalid") \]

\[M_{d_{Short_Pipe}} = 352.8\text{kip-ft} \]

\[\text{Check Flexure Short Pipe} := \]

\["Sufficient Strength" \quad \text{if} \quad M_{d_{Short_Pipe}} \geq M_{Flexure} \]

\["Insufficient Strength" \quad \text{if} \quad M_{d_{Short_Pipe}} < M_{Flexure} \]

\[\text{Check Flexure Short Pipe} = "Sufficient Strength" \]

Design Shear Strength

\[\phi_v = 0.9 \]

\[F_{cr} := \max \left(\frac{1.60 \cdot E}{5 \left(\frac{L_{Short_Pipe}}{D_{pipe}} \right)^{\frac{5}{2}}}, \frac{0.78E}{3 \left(\frac{D_t}{D_{pipe}} \right)^{\frac{3}{2}}} \right) \quad F_{cr} = 575.22\text{ksi} \]

\[F_{cr} := \min (0.6 \cdot F_{y_{pipe}}, F_{cr}) \quad F_{cr} = 25.2\text{ksi} \]

\[V_{d_{Short_Pipe}} := \phi_v \cdot F_{cr} \cdot A_{pipe} + 2 \quad V_{d_{Short_Pipe}} = 257.42\text{kip} \]

\[\text{Check Shear Short Pipe} := \]

\["Sufficient Strength" \quad \text{if} \quad V_{d_{Short_Pipe}} \geq V_{max} \]

\["Insufficient Strength" \quad \text{if} \quad V_{d_{Short_Pipe}} < V_{max} \]

\[\text{Check Shear Short Pipe} = "Sufficient Strength" \]
Design Torsional Strength

\[\phi_T := 0.90 \quad T_{d,\text{pipe}} := \phi_T F_{cr} C_{\text{pipe}} \]

\[T_{d,\text{pipe}} = 323.19 \text{ kip-ft} \]

\[\text{Check Torsion Short Pipe := } \begin{cases} \text{"Sufficient Strength" if } T_{d,\text{pipe}} \geq M_{\text{max}} \\ \text{"Insufficient Strength" if } T_{d,\text{pipe}} < M_{\text{max}} \end{cases} \]

\[\text{Check Torsion Short Pipe = "Sufficient Strength"} \]

Check Interaction

\[\text{Interaction Short Pipe := } \left(\frac{M_{\text{Flexure}}}{M_{d,\text{Short Pipe}}} \right) + \left(\frac{V_{\text{max}}}{V_{d,\text{Short Pipe}}} + \frac{M_{\text{max}}}{T_{d,\text{pipe}}} \right)^2 \]

\[\text{Interaction Short Pipe = 0.48} \]

\[\text{Check Interaction Short Pipe := } \begin{cases} \text{"Sufficient Strength" if } \text{Interaction Short Pipe} \leq 1 \\ \text{"Insufficient Strength" if } \text{Interaction Short Pipe} > 1 \end{cases} \]

\[\text{Check Interaction Short Pipe = "Sufficient Strength"} \]

Design of Long Section - Applied Shear and Flexure

\[L_{\text{Long Pipe}} := 9 \text{ ft} \quad V_{\text{max}} = 20.19 \text{ kip} \quad M_{\text{max}} = 181.69 \text{ kip-ft} \]

Design Flexural Strength

\[M_{d,\text{Long Pipe}} := \text{if}(\lambda_{p,\text{pipe}} \geq \lambda_{\text{pipe}}, \phi_b F_{y,\text{pipe}} Z_{\text{pipe}}, \text{"Equation Invalid"}) \]

\[M_{d,\text{Long Pipe}} = 352.8 \text{ kip-ft} \]

\[\text{Check Flexure Long Pipe := } \begin{cases} \text{"Sufficient Strength" if } M_{d,\text{Long Pipe}} \geq M_{\text{max}} \\ \text{"Insufficient Strength" if } M_{d,\text{Long Pipe}} < M_{\text{max}} \end{cases} \]

\[\text{Check Flexure Long Pipe = "Sufficient Strength"} \]

Design Shear Strength

\[V_{d,\text{Long Pipe}} := \phi_v F_{cr} A_{\text{pipe}} \div 2 \]

\[V_{d,\text{Long Pipe}} = 257.42 \text{ kip} \]

\[\text{Check Shear Long Pipe := } \begin{cases} \text{"Sufficient Strength" if } V_{d,\text{Long Pipe}} \geq V_{\text{max}} \\ \text{"Insufficient Strength" if } V_{d,\text{Long Pipe}} < V_{\text{max}} \end{cases} \]

\[\text{Check Shear Long Pipe = "Sufficient Strength"} \]
Check Interaction

\[
\text{Interaction}_{\text{Long Pipe}} := \left(\frac{M_{\text{max}}}{M_{d_{\text{Long管}}}\text{}} \right) + \left(\frac{V_{\text{max}}}{V_{d_{\text{Long管}}}\text{}} \right)^2
\]

\[
\text{Interaction}_{\text{Long Pipe}} = 0.52
\]

Check Interaction Long Pipe :=
- "Sufficient Strength" if Interaction Long Pipe ≤ 1
- "Insufficient Strength" if Interaction Long Pipe > 1

Check Interaction Long Pipe = "Sufficient Strength"

Weight of Pipe Apparatus

\[
W_{\text{pipe app}} := W_{\text{pipe Short Pipe}} + W_{\text{pipe Long Pipe}} + \frac{490 \text{ lbf}}{\text{ft}^3} \cdot \pi \left(\frac{24\text{in}}{2} \right)^2 \cdot 1\text{in} + 26\text{in} \cdot 20\text{in} \cdot 0.5\text{in} \cdot 490 \text{ lbf} \text{ ft}^3
\]

Base Plate Weld Plate

\[
W_{\text{pipe app}} = 1.05 \text{ kip}
\]

This weight must be subtracted from the applied load to account for overcoming the weight of the pipe before the bolts were loaded. Will be used to normalize the test results.
Concrete Block Design

Reinforcement

Two different methods were employed to check the reinforcement in the block:
A) Strut-and-Tie Model
B) Beam Theory

A) Design by Strut-and-Tie Model ACI 318-05 Appendix A

\[M_{\text{max}} = 181.69 \text{ kip-ft} \quad d := 6\text{ft} + 8\text{in} \quad R := \frac{M_{\text{max}}}{d} \quad R = 27.25 \text{ kip} \]

NODE A

\[\theta := \arctan \left(\frac{5}{d + \text{ft}} \right) \quad \theta = 0.64 \]

\[C := \frac{R}{\sin(\theta)} \quad C = 45.42 \text{ kip} \]

\[T := C \cdot \cos(\theta) \quad T = 36.34 \text{ kip} \]
Check Reinforcement

- No_Bars_Block_Reinforcement := 3
- Block_Reinforcement_Bar_No := 8
- \(f_y \) Block Reinfornce := 60ksi

\[
A_{\text{Block Reinforcement}} := \frac{\text{No B_{ars Block Reinforcement}} \cdot \pi \left(\frac{\text{Block Reinforcement Bar No}}{2} + 8 \right)^2}{\text{in}^2}
\]

\[A_{\text{Block Reinforcement}} = 2.36 \text{ in}^2\]

Check Reinforcement_A :=
- "Sufficient Strength" if \(A_{\text{Block Reinforcement}} \cdot f_y \text{ Block Reinforcement} \geq T \)
- "Insufficient Strength" if \(A_{\text{Block Reinforcement}} \cdot f_y \text{ Block Reinforcement} < T \)

Check Reinforcement_A = "Sufficient Strength"

B) Beam Theory

- \(V_{\text{block}} := R \cdot V_{\text{block}} = 27.25 \text{ kip} \)
- \(M := R \cdot (3 \text{ ft} + 4 \text{ in}) \)
- \(M = 90.84 \text{ kip} \cdot \text{ft} \)
Check Shear

Check_Shear_B := "Sufficient Strength" if \(A_{\text{Block Reinforcement}} f_y \) Block Reinforcement \(\geq V_{\text{block}} \)
"Insufficient Strength" if \(A_{\text{Block Reinforcement}} f_y \) Block Reinforcement \(\leq V_{\text{block}} \)

Check_Shear_B = "Sufficient Strength"

Check Flexure

\[b := 30\,\text{in} \]
\[h := 6\,\text{ft} \]
\[d := 5.5\,\text{ft} \]

Locate the neutral axis, \(c \), such that \(C=T \)

\[T := A_{\text{Block Reinforcement}} f_y \text{ Block Reinforcement} \quad T = 141.37\,\text{kip} \]
\[C1(a) := C(a) - 1 \quad a := \sqrt[3]{C1(a)} \quad a := 1.01\,\text{m} \]

\[\beta_1(f_c) := \begin{cases} 0.85 & \text{if } f_c < 4000\,-\text{psi} \\ 0.65 & \text{if } f_c > 8000\,-\text{psi} \\ 0.85 - 0.05 \left(\frac{f_c - 4000\,-\text{psi}}{1000\,-\text{psi}} \right) \end{cases} \quad \text{ACI 10.2.7.3} \]

\[\beta_1(f_c) = 0.78 \quad \beta := \beta_1(f_c) \quad \beta = 0.78 \]

\[c := \frac{a}{\beta} \quad \text{ACI 10.2.7.1} \quad c = 16.14\,\text{in} \]

Calculate the nominal moment capacity, \(M_n \)

Capacity Reduction Factor

\[M_{n_{\text{Block}}} := T \left(d - \frac{a}{2} \right) \quad \text{ACI 9.3.2, ACI 10.3.4, ACI 10.9.3} \quad M_{n_{\text{Block}}} = 771.6\,\text{kip-ft} \]

Check_Flexure_B := "Sufficient Strength" if \(M_{n_{\text{Block}}} \geq M \)
"Insufficient Strength" if \(M_{n_{\text{Block}}} < M \)

Check_Flexure_B = "Sufficient Strength"
Required Hook Length for a #8 Bar

\[
\text{Hook No. 8} := 12 \left(\frac{\text{Block Reinforcement Bar No.}}{8} \right) \quad \text{ACI R12.5} \quad \text{Hook No. 8 = 12 in}
\]

Summary of Concrete Block Design Reinforcement

- \text{Block Reinforcement Bar No.} = 8
- \text{No Bars Block Reinforcement} = 3 \quad \text{3 bars on top and bottom}
- \text{Check Reinforcement A} = "Sufficient Strength"
- \text{Check Shear B} = "Sufficient Strength"
- \text{Check Flexure B} = "Sufficient Strength"
Calculate the Load, R_1, that the tie-down must resist in this direction

$W_1 := (30\text{in}) \cdot (6\text{ft}) \cdot (10\text{ft}) \cdot 150 \frac{\text{lbf}}{\text{ft}^3}$

$W_1 = 22.5 \text{kip}$

$W_2 := \pi \left(\frac{d_8}{2} \right)^2 \cdot (36\text{in}) \cdot 150 \frac{\text{lbf}}{\text{ft}^3}$

$W_2 = 2.21 \text{kip}$

Note: The weight of the pipe apparatus was not accounted for because V_{max} cancels it out. The test results will be normalized to account for the weight of the pipe.

Sum of the Moments Around Point B

$R_1 := \frac{W_2 \left(\frac{36\text{in}}{2} + 30\text{in} \right) + W_1 \cdot (15\text{in}) - V_{\text{max}} \cdot (36\text{in} + 17.5\text{in} + 30\text{in})}{30\text{in}}$

$R_1 = 41.4 \text{kip}$
Calculate the Load, \(R_2 \), that the tie-down must resist in this direction

\[
R_2 := \frac{V_{\text{max}}(9' + 3' + 4\text{ in}) - (W_1 + W_2)(3' + 4\text{ in})}{6\text{ ft} + 8\text{ in}}
\]

\(R_2 = 24.99 \text{ kip} \)

Total Load that each tie-down must resist

\[
R := \frac{R_1}{2} + R_2
\]

\(R = 45.69 \text{ kip} \)

Check that the load is less than the capacity of the floor

Floor Capacity := 100kip

Check_Floor_Capacity := if(Floor_Capacity \geq R, "Capacity OK", "Capacity Exceeded")

Check_Floor_Capacity = "Capacity OK"

Check Bearing Strength of Concrete

Assume the load bears on 1 in. of concrete across the length of the block

\[
A_{\text{bearing}} := 10\text{ ft} \cdot 1\text{ in} \quad A_{\text{bearing}} = 120 \text{ in}^2 \quad \phi_{\text{bearing}} := 0.65
\]

Bearing Strength := \(\phi_{\text{bearing}} \cdot f_c \cdot A_{\text{bearing}} \)

Bearing Strength = 364.65 kip

Check_Bearing_Capacity := if(Bearing Strength \geq 2 \cdot R, "Sufficient Strength", "Insufficient Strength")

Check_Bearing_Capacity = "Sufficient Strength"
2 C12x30 Channels - 1.75" space between

$$P_{app} := R$$ $$P_{app} = 45.69 \text{ kip}$$

$$I_x := 162 \text{ in}^4$$ $$S_x := 27.0 \text{ in}^3$$ $$r_x := 4.29 \text{ in}$$ $$Z_x := 33.8 \text{ in}^3$$ $$F_y := 50 \text{ ksi}$$

$$A := 8.81 \text{ in}^2$$ $$I_y := 5.12 \text{ in}^4$$ $$t_y := 0.762 \text{ in}$$ $$x_{bar} := 0.674 \text{ in}$$ $$E := 29000 \text{ ksi}$$

$$t_w := 0.510 \text{ in}$$ $$b := 3.17 \text{ in}$$ $$t_f := 0.501 \text{ in}$$ $$h := 12 \text{ in}$$

Flexural Capacity of Channels

$$M_{n _tiedown} := F_y (2 \cdot Z_x)$$ $$M_{n _tiedown} = 281.67 \text{ kip} \cdot \text{ft}$$

Check_Flexure_Channels := if($$M_{n _tiedown} \geq M_{max _tiedown}$$,"Capacity OK", "Capacity Exceeded")

Check_Flexure_Channels = "Capacity OK"

Buckling Check

Treat as 2 Separate Channels

$$\lambda_f := b_f \div (2 \cdot t_f)$$ $$\lambda_f = 3.16$$ $$\lambda_w := h \div t_w$$ $$\lambda_w = 23.53$$

$$\lambda_{pf} := 0.38 \cdot \sqrt{\frac{E}{F_y}}$$ $$\lambda_{pf} = 9.15$$ $$\lambda_{pw} := 3.76 \cdot \sqrt{\frac{E}{F_y}}$$ $$\lambda_{pw} = 90.55$$

Check_Flange_Compact := if($$\lambda_{pf} \leq \lambda_{pf}$$,"Flange is Compact", "Flange is Not Compact")

Check_Web_Compact := if($$\lambda_{pw} \geq \lambda_{w}$$,"Web is Compact", "Web is Not Compact")

Check_Flange_Compact = "Flange is Compact" Check_Web_Compact = "Web is Compact"

Bracing Check

$$L_b := 2 \text{ ft}$$ $$I_p := 1.76 \cdot r_y \cdot \sqrt{E \div F_y}$$ $$I_p = 2.69 \text{ ft}$$

Bracing_Check := if($$I_p > L_b$$,"Braced", "Unbraced")

Bracing_Check = "Braced"
Treat as 1 unit

\[I_{y_unit} = 2\left[I_y + A\cdot(x_bar + (1.75\text{in} + 2))\right]^2 \]
\[I_{y_unit} = 52.52 \text{ in}^4 \]
\[I_{y_unit} = 2.44 \text{ in} \]
\[I_{p_unit} = 1.76\cdot I_{y_unit}\sqrt{E + F_y} \]
\[I_{p_unit} = 8.62 \text{ ft} \]
\[b_f_unit = 2\cdot b_f + 1.75\text{in} \]
\[b_f_unit = 8.09 \text{ in} \]
\[t_w_unit = 2\cdot t_w + 1.75\text{in} \]
\[t_w_unit = 2.77 \text{ in} \]
\[\lambda_f_unit = b_f_unit + (2\cdot t_f) \]
\[\lambda_f_unit = 8.07 \]
\[\lambda_w_unit = h \div t_w_unit \]
\[\lambda_w_unit = 4.33 \]

Check_Flange_Compact_Unit := if(\(\lambda_{pf} > \lambda_{f_unit}\), "Flange is Compact", "Flange is Not Compact")

Check_Web_Compact_Unit := if(\(\lambda_{pw} > \lambda_{w_unit}\), "Web is Compact", "Web is Not Compact")

Check_Flange_Compact_Unit = "Flange is Compact" Check_Web_Compact_Unit = "Web is Compact"

Bracing_Check_Unit := if(\(I_{p_unit} > I_b\), "Braced", "Unbraced")

Bracing_Check_Unit = "Braced"

Weld Design

\[V_{\text{weld}} := \max(R_L, R_R) \text{ V}_{\text{weld}} = 30.46 \text{ kip} \]

This shear must be transferred from the plate through the channels.

\[t_{\text{plate}} := 0.5\text{ in} \]
\[b_{\text{plate}} := 5\text{ in} \]

\[Q := \left(t_{\text{plate}}\cdot b_{\text{plate}}\right)\cdot\left(t_{\text{plate}} + 2\right) + \left(h + 2\right) \]

Plate area multiplied by distance to the neutral axis

\[Q = 15.62 \text{ in}^3 \]

\[I_{\text{weld}} := 2\cdot I_x + 2\left(t_{\text{plate}}\cdot b_{\text{plate}}\right)\cdot\left(t_{\text{plate}} + 2\right) + \left(h + 2\right) + \frac{1}{12}\cdot b_{\text{plate}}\cdot t_{\text{plate}}^3 \]
\[I_{\text{weld}} = 519.42 \text{ in}^4 \]

\[\text{Required Load Per Foot} := \frac{V_{\text{weld}} \cdot Q}{I_{\text{weld}}} \]

\[\text{Required Load Per Foot} = 11 \frac{\text{kip}}{\text{ft}} \]

Use a 3/8" weld

\[\text{Weld Size} := \frac{3}{8} \text{ in} \]
\[\text{F}_{\text{electrode}} := 70\text{ksi} \]
\[F_W := 0.6 \cdot \text{F}_{\text{electrode}} \]
\[F_W = 42 \text{ksi} \]
\[\phi_{\text{weld}} := 0.75 \]
\[\text{Throat} := 0.707 \cdot \text{Weld Size} \]

\[\phi_{\text{weld}} F_W \text{Throat} \]

\[\text{Required Length Per Foot} := \frac{\text{Required Load Per Foot}}{\phi_{\text{weld}} F_W \text{Throat}} \]

\[\text{Required Length Per Foot} = 1.32 \text{ in/ft} \]

Specify 2" per foot of weld
Failure Load Calculation

\[f_c := 6230 \text{ psi} \quad \text{cover} := \frac{d_s - d_b}{2} \quad \text{Bolt Cover} \quad \text{cover} = 5 \text{ in} \]

\[c_{a1} := \left(\frac{d_b}{2} \right)^2 + 3.25 \left(\frac{d_s}{2} \right)^2 - \left(\frac{d_b}{2} \right)^2 - \left(\frac{d_b}{2} \right) \]

\[(3-2) \quad c_{a1} = 3.85 \text{ in} \]

Cover for the calculation of the anchor strength

\[A_{vco} = 4.5c_{a1}^2 \]

\[\text{chord} = 2r \sin \frac{A'}{2} \]

\[A := \frac{360}{\text{No. Bolts}} \]

\[A = 30 \text{ deg} \]

\[\text{chord_group} := 2 \cdot \frac{d_s}{2} \cdot \sin \left(\frac{A}{2} \right) \]

\[\text{chord_group} = 7.76 \text{ in} \]

\[A_{\text{min_group}} := 2 \cdot \sin \left(\frac{3.0 \cdot c_{a1}}{d_s} \right) \]

\[A_{\text{min_group}} = 45.24 \text{ deg} \]

If \(A \) is greater than \(A_{\text{min_group}} \) then there is no group effect

\[A_{Vc} := \text{No. Bolts} \cdot \text{chord_group} \cdot 1.5c_{a1} \]

\[A_{Vc} = 537.55 \text{ in}^2 \]

\[A_{Vco} := 4.5c_{a1}^2 \]

\[A_{Vco} = 66.57 \text{ in}^2 \]
Check_Group_Effect :=

\[
\begin{align*}
&\text{"Group Effect- Analysis is Valid" if } A < A_{\text{min_group}} \\
&\text{"Analysis Invalid" if } A > A_{\text{min_group}}
\end{align*}
\]

Check_Group_Effect = "Group Effect- Analysis is Valid"

ACI 318-05-D.6.2

\[l_c := 8 \cdot d_o \]

\[V_b := 13 \left(\frac{c}{d_o} \right)^{0.2} \cdot \frac{d_o}{\text{in}} \cdot \frac{f'_c}{\text{psi}} \cdot \frac{c_{\text{nl}}}{\text{in}}^{1.5} \cdot \text{lbf} \] \hspace{1cm} (2-11) \hspace{1cm} V_b = 14.37 \text{ kip}

\[\psi_{cV} := 1.4 \hspace{1cm} \text{ACI 318-05- D.6.2.7} \]

1.0 for cracked concrete with no supplementary reinforcement or reinforcement smaller than a No. 4 bar
1.2 for cracked concrete with edge reinforcement of a No. 4 bar or greater
1.4 for uncracked concrete or with edge reinforcement of a No. 4 bar or greater enclosed within stirrups spaced no more than 4 in. apart

\[\psi_{ecV} := 1.0 \hspace{1cm} \text{ACI 318-05- D.6.2.5} \hspace{1cm} \psi_{edV} := 1.0 \hspace{1cm} \text{ACI 318-05- D.6.2.6} \]

All anchors are loaded in shear in the same direction

\[V_{\text{cbg}} := \frac{A_{V_c}}{A_{Vco}} \cdot \psi_{ecV} \cdot \psi_{edV} \cdot V_b \] \hspace{1cm} (2-12) \hspace{1cm} V_{\text{cbg}} = 116.02 \text{ kip}

\[V_{\text{cbg_parallel}} := 2 \cdot V_{\text{cbg}} \hspace{1cm} \text{V}_{\text{cbg_parallel}} = 218.03 \text{ kip} \]

\[T_{\text{n_breakout_ACI}} := V_{\text{cbg_parallel}} \left(d_b + 2 \right) \] \hspace{1cm} (3-3) \hspace{1cm} T_{\text{n_breakout_ACI}} = 193.37 \text{ kip\-ft}
Retrofit Design

CFRP Properties
- $t_{CFRP} = 0.02$ in
- $f_{n_{CFRP}} = 91.1$ ksi
- $w_{CFRP} = 12$ in

Thickness of Wrap
Tensile Strength of CFRP
Width of CFRP Sheet

Consider the twelve inch roll is only effective down to $1.5\times$cover

$w_{eff_{CFRP}} := 1.5\times$cover
$w_{eff_{CFRP}} = 7.5$ in

$$F_{\text{bolt}}(T_i) := \frac{T_i}{d_b \cdot \frac{\text{No. Bolts}}{2}} + 2$$

$$F_{\text{edge}}(T_i) := \frac{\text{No. Bolts}}{d_s \cdot 2} \cdot F_{\text{bolt}}(T_i)$$

$$T_{\text{Edge}}(T_i) := F_{\text{edge}}(T_i) \cdot \frac{d_b}{2}$$

$\psi_f := 0.95$
$\phi := 0.75$

ACI 440.2R Table 10.1
ACI 318-05 9.3.2.3

$$T_{\text{Layers Wrap Required}}(T_i) := \frac{T_{\text{Edge}}(T_i)}{t_{CFRP} \cdot f_{n_{CFRP}} \cdot w_{CFRP} \cdot \phi \cdot \psi_f}$$

The amount required will be calculated based on the concrete breakout strength as the intent is to return the specimen to that strength

Amount of CFRP to Apply := Layers_Wrap_Required($T_{n_{breakout_ACI}}$)

Amount of CFRP to Apply = 1.58

Round up to achieve a full layer

Layers of CFRP to Apply := ceil(Amount of CFRP to Apply)

Layers of CFRP to Apply = 2

Three layers of the Sika Wrap were applied to the specimen

Calculate the corresponding failure torsion

Layers_CFRP := 3

$$\text{CFRP_Eff_Tensile_Strength} := \text{Layers_CFRP} \cdot \left(t_{CFRP} \cdot f_{n_{CFRP}} \cdot w_{CFRP} \cdot \phi \cdot \psi_f\right)$$

$$T_{\text{Eff_CFRP}} := \text{CFRP_Eff_Tensile_Strength} \cdot 2 \cdot \pi \cdot d_b$$

$T_{\text{Eff_CFRP}} = 229.41$ kip-ft

If the full 12 inches of the wrap were considered effective, the maximum load would be:

Layers_CFRP := 3

$$\text{CFRP_Max_Tensile_Strength} := \text{Layers_CFRP} \cdot \left(t_{CFRP} \cdot f_{n_{CFRP}} \cdot w_{CFRP} \cdot \phi \cdot \psi_f\right)$$

$$T_{\text{Max_CFRP}} := \text{CFRP_Max_Tensile_Strength} \cdot 2 \cdot \pi \cdot d_b$$

$T_{\text{Max_CFRP}} = 367.05$ kip-ft
APPENDIX C
INITIAL TEST DATA

Figure C-1. Applied Torsion vs. Rotation Plot

Figure C-2. Bolt Strain Comparison Plot
Figure C-3. Applied Torsion vs. Strain Plots for each bolt location
Figure C-3. Continued
APPENDIX D
RETROFIT TEST DATA

Figure D-1. Applied Torsion vs. Rotation Plot

Figure D-2. Bolt Strain Comparison Plot
Figure D-3. Applied Torsion vs. Strain Plots for each bolt location
Figure D-3. Continued
LIST OF REFERENCES

Institute of Electrical and Electronics Engineers (IEEE). (1997). “National electrical safety code (NESC).” Piscataway, N.J.

BIOGRAPHICAL SKETCH

Kathleen M. Halcovage is the daughter of George F. Halcovage, Jr. and Barbara M. Halcovage. She was born in Pottsville, Pennsylvania on November 10, 1983. She is the second oldest of five children. Kathleen graduated from Nativity B.V.M. High School in 2001 where she was the class valedictorian. She received a Presidential Scholarship to continue her education at Villanova University in Villanova, Pennsylvania. While attending Villanova University, she spent a semester abroad studying at the University of Sheffield in Sheffield, England. She was selected to the Tau Beta Pi Engineering Honor Society, the Chi Epsilon Civil Engineering Honor Society, the Phi Kappa Phi All-Discipline Honor Society, the Delta Epsilon Sigma All-Discipline Catholic Honor Society, and Who’s Who in American Colleges and Universities.

Kathleen graduated Summa Cum Laude from Villanova University in May 2005. She received a Bachelor of Science (B.S.) in civil engineering degree with a business minor. At graduation, she was honored with the Department of Civil and Environmental Engineering Faculty Award Medallion and the Dean Robert D. Lynch Award, which recognizes the scholastic achievements of an outstanding new graduate of the Villanova College of Engineering.

Upon graduating, she entered the University of Florida in Gainesville, FL to continue her studies in structural engineering. During her tenure at Florida, she worked as a Graduate Assistant on a research project sponsored by the Florida Department of Transportation. She will graduate with a Master of Engineering (M.E.) degree in May 2007.