condensation of the pendant triethoxysilane groups under acidic conditions, which resulted in the formation of a two-dimensional PB network containing PEO pores with controllable sizes. With a view toward drug detoxification therapy, the encapsulation abilities of oil core- silica shell nanocapsules and molecularly imprinted nanoparticles were also investigated by electrochemical (cyclic voltammetry) and optical (fluorescence and UV-vis spectroscopies) techniques. The core-shell nanocapsules were shown to efficiently remove large amounts of organic molecules present in aqueous solutions, with the silica shell acting analogously to a chromatographing layer. The molecularly imprinted nanoparticles were prepared by the non- covalent approach and by miniemulsion polymerization. Binding studies on the molecularly imprinted nanoparticles in aqueous solutions under physiological pH conditions indicated that, in the absence of specific imprinting, the uptake of toxic drugs was mainly driven by non-specific hydrophobic interactions. As demonstrated with the use of the antidepressant amitriptyline, in the presence of specific imprinting the uptake significantly increased as the amount of specific binding sites was increased.