via Eqs. (B23)-(B25) together with (C1) and (C2). Then, the metric for the THZ coordinates takes the form o00 o o K L 1 o vK vL vM g(THZ) -+ R(FN)0 KL oXFNXFN + 3 (FN)0K L,M oFNFN FN +O(X4N/74), (C4) 2 1 g(THZ) 3 R(FN)0K L XFNAFN R(FN)0K L, Mo FN FNF ,3 *11 + KFNPFN 2KLXKFNX FN N + O(X N/F4), (C5) iJ 61 J 1 L 1 K L g(THZ) + 3 R(FN) K L o KNAX N + R(FN) K L,M oKFN FN FN 1lJ 2 2( KvX J) 2 Si vK vL SPFN + 0IKXFNFN -CL FN FN 3 3 3 1,I U K 2 5 ,(1 IKIILIXvJ) SK NPFN + 1 S KLXEFN NXFN 4 (1 19J)PXK 2 8 (I K|P| lIKIyILIyJ) PKB FNPFN PK LX FNXFNFN +O(XN /R4). (C6) It is clear from Eqs. (C1) and (C2) that the inverse transformation is identity at the linear order, XAN XA + O(X3/2). (C7) Then, our transformation factors, which are equivalent to the set of local tetrad vectors in the THZ coordinates, are simply o(B) (C8) The Riemann tensors and their derivatives evaluated at the location of the particle follow covariant transformation, R(FN)PQRS o R(THZ)ABCD oA C D (R)S(C9) R(FN) PQRS,U o R(THZ)ABCD,E o ) oQ) (R)V OS) OU), (C10)