in Eq. (4-100). Also, from Eqs. (4-93) and (4-95) we derive 1 HABCD =2 (ABC, D + BAC,D ), (B12) HABCDE ( ABC, DE + BAC,DE) (B13) 6 oC 0 where FABC 7IAF Bc. Then, substituting Eqs. (B3), (B4), (Bl1), (B12) and (B13) into Eqs. (B8)-(B10), and exploiting the facts that rABn(j 0 and that hABB = 0, we obtain 0 0 A,60 A C D 0D K rL g(FN) -R- ACDB o0 i (K)I (L)XFN FN 1 AA0BC iD iE XK L M R ACDB, E U0 7o(K) 7o(L) o(M) FNXFNAFN 9(FN) RACDB U 0 n o(K) o(L) FNXFN 1 j Ai(I)B C 0D iE xK xL xM + RACDB, E o0 o(K) o(L) O(M)XFNXFNXFN +O(X4/NR4), (B15) I I 1 ACDB o (I)Ain(J)BC iD XK XL 9(FN) 3 ACDB 0 o(K) o(L) FNX FN 1 D ii o(I)A (J)B C 0D iE vK vL vM -6 ACDB, E o o o(K) o(L) o(M)XFNXFNXFN +O(XN/NR4), (B16) where the identities used are RABCD 0 ABD,C ABC,D (B17) 0 0 0 RABCD,E { ABD,CE ABC, DE (B8) 0 0 0 The local tetrad vectors Ap A A( p A A(3) where P (0,1, 2, 3) is the label for each vector of the tetrad, essentially yield the inverse-Lorentz boost between the Fermi normal frame and the static inertial frame via Eqs. (B1) and