In order to take advantage of this identity, we may rewrite Eqs. (5-145) as S ev hSod o a, sm and (5-146) S2+ 1 2 d 1 H2}2 2-+ jtJ2II dX (t X2)2 2(f- 1)(f + t)( + 2) o 27 f, ) F(O, 4) cos(24) d2 x PX X2 (X), (5-150) 1 X2 dX2 _2f+ 1 2+ J 1 dX (t X2)2 2(- X)(f + 1)( + 2) o 2 x- ) G(e, )) sin(2 _) d2 x P (X ) (5-151) 1 X2 dX2 Now, we separate the variables in F(O, 4) cos(24)/(1 X2) and G(H, 4) sin(24)/(1 X2) and expand them in d2P(X)/dX2, F(e, 4) cos(24) 1 X2 G(O, 4) sin(24) 1 X2 d2 dX2 d2 Sn ) dX2 P(X). n Then, substituting Eqs. (5-152) and (5-153) into Eqs. (5-150) and (5-151), respec- tively, we obtain via Eq. (5-149), hSev hSod O0 Xa,__a t "o S 2W d () ( 2bx(u) #ri^) (5-154) (5-155) 5 (ga)). However, Trace race in Eq. (5-127) must be treated as a scalar according to Eq. (5-130). As we did previously, we first rotate the coordinates (0, () ,- ( D, ) in the expression of hTrace so that horace ,) (h0+csc2 Ohs) (0, 4). (5-156) ST2 .... (e6_( o~ c (5-152) (5-153)