and the scalar potentials Fev and Fod must satisfy the differential equations according to Eq. (5-57) along with Eq. (5-52), Vb (V2Fev) + CV (V2Fod) + R (V6lev + Cb od) v g F(rabRT.) , (5-131) where R is the scalar curvature of the geometry ab. However, one can also decompose Fev and Fod into spherical harmonic components, Fev = Fev m(o,), (5-132) &m Fod F Ymr(0, ). (5-133) &m Then, we may solve the differential equations (5-131) in terms of spherical harmon- ics via Eqs. (5-132) and (5-133), and obtain L(f + 1)FvO VgY2m(0, ) e( + 1)RF db OV nm, b) im im +RE ^ [FiVYm(O, 0) + FRdm Y O, )] &m = Va (b 2-abFTrce (5-134) To single out each expression of Fm and Fd, we contract Eq. (5-134) with Vb and .v we contract Eq. (5-t34) with Vg and bdVd, respectively, and obtain S[ +)2 + F]vtv (0, ) V Fa abFT e (5-135) f [( + 1)2 R ( + 1)] R yny(O, ) T bddV"a Fa- rabTF (5-136) Integrating Eqs. (5-135) and (5-136) over dQ-,, (0, ), we further obtain Fem 1 i dQ Ve,' (T 1 y*em/ (0( Fe 2( + 1)2 2( + 1) Fab,- 2a a'b'Tcer Y e ') (5-137)