and satisfy [28] d ) d 26, ( + 1)! dX2 (X) P2(X) +( )! dX dX 2f + 1 (f 1)! (5-101) In order to take advantage of this identity, we may rewrite Eqs. (5-97) and (5-98) as 2 +C t j 2' A ) f dX (1 2 2L + t) j2 A ) J 1dX (1 2(f ) 2 E 2(+ 1) ) 27x _1 g^T~A L 1 S2)F(, ) sin cos d 1 X2 dX ' (5-102) SG(e, ,) sin 0 sin d X2) Pe(X). 1 X2 dX ( (5-103) Now, we separate the variables in F(, 4) sin e cos 4/(1 X2) and G(, )) sin e sin 4/(1 X2) and expand them in dP,(X)/dX, F(O, 4) sin O cos 4 1 X2 G(H, 4) sin O sin 4 d n n Then, substituting Eqs. (5-104) and (5-105) into Eqs. (5-102) and (5-103), respec- tively, we obtain via Eq. (5-101), ^ 27 *27(^ ) (5-106) (5-107) 5 (ga)). From these we find our f-mode singular fields hSev and hs d, rt6' = -(6 (5-108) (5-109) AhSod and by combination hse h ieve iSod (5-110) dX(1 -1 hSod t6 ,,a (5-104) (5-105) hSev hSod t6 y a.- (9(4))> , ({(W )) + (+ ( ) ,