hsB 2hAB given above by Eqs. (5-22)-(5-24) is in the R.- --'-Wheeler gauge. We may transform this into the Lorenz gauge via [10] hS (z) s (rw) AB AB VA B VB A, where the gauge vector (A is given by =' 0, { (p/p) X' (1 + SEJK XJX ) + 2ppS'jX . This results in h z)dXAdXB AB 2p [(1+t SX'X) dT2 + ( P SjX'I X) 6KLdXKdXL] -4ppSjjdX'dXJ + 4/KPQ QIXPXIdTdXK 3p +O(pp2/R3). For completeness, the trace of hABz is given by and its trace-reversed form hs z) h ()dXAdXB (5-28) + O(pp2/R3), p S(lz) 1 0 OCD -S(l) =-'IAB J- 9AB9 2ICD is ' (1 + E1jX'X~1) dT2 4pS JdX'dXj 4t KPQ IXP I dTdXK 3p (5-29) which satisfies the Lorenz gauge condition [10] VAhSz) O(pp/7Z3) (5-25) (5-26) (5-27) (AB 2HAB) hs z) (^~~~ JAB (5-30)