hsB 2hAB given above by Eqs. (5-22)-(5-24) is in the R.- --'-Wheeler gauge.
We may transform this into the Lorenz gauge via [10]
hS (z) s (rw)
AB AB
VA B VB A,
where the gauge vector (A is given by
=' 0,
{ (p/p) X' (1 + SEJK XJX ) + 2ppS'jX .
This results in
h z)dXAdXB
AB
2p [(1+t SX'X) dT2 + (
P
SjX'I X) 6KLdXKdXL]
-4ppSjjdX'dXJ + 4/KPQ QIXPXIdTdXK
3p
+O(pp2/R3).
For completeness, the trace of hABz is given by
and its trace-reversed form hs z)
h ()dXAdXB
(5-28)
+ O(pp2/R3),
p
S(lz) 1 0 OCD -S(l)
=-'IAB J- 9AB9 2ICD is
' (1 + E1jX'X~1) dT2 4pS JdX'dXj
4t KPQ IXP I dTdXK
3p
(5-29)
which satisfies the Lorenz gauge condition [10]
VAhSz) O(pp/7Z3)
(5-25)
(5-26)
(5-27)
(AB 2HAB) hs z)
(^~~~ JAB
(5-30)