u = vf(Z) (A4) Z = x2 + px3 (A5) where p and v, are constants to be determined and f is an arbitrary function of Z [14-15]. Substituting into Eqs. A1-A3, we obtain r, = r, df/dZ (A6) D,kvk =0 (A8) where ( = (Cyk2 + k3)k (A9) Dk =C2k2 + p(2k3 +3k2) + 23k3 (A10) For a non-trivial solution of vi, it follows from Eq. A8. that the determinant of Dik must vanish. Therefore, Dk = 0 (All) where Dll = c1212 + p(c,213 +1312)+ pc1313 = 6 + C55 D,2 = 1222 + p(c223 + 1322)+ C1323 =p(c46 +C25) D13 = C1232 + p(C1233 + C1332)+ p2C1333 = C46 +P235 D21 = c212 + (2213 + 2312 )+ P2313 = p(c46 + 25) D22 = C2+22 + P(C2223 + c322)+ p c2323 = C22 + P2c44 (Al2) D23 = c2232 + C33 + c33)+ p2C2333 = P(C2 + 44) D1 = C3212 + p(3213 + 3312)+ p 3313 = 46 2 35 D32 = c322 +p(32 + c + C3322) + p2c3323 = p(c23 + C44)