%Constants: x (1)= 0; a (1)= 0; t(1) =0; v (1)=0; % Initial conditions: x(2) = xd; a(2) = ((((( 6 k (h ((( x (2) A2)+(L A2)) A.5) + dely) (cos (( atan ( L / x(2)))))) )- ( 3 *wp jj )-(6 *ws (jj- 1)))- (3 wts (sin (((2 atan (L /x(2))))))))/ ((3 * mc jj ) + ( 6 (mbs + mts) (jj 1)))); t(2) =0.0001; av (2) a (2)/ 2; v (2) =av(2)* t (2); T(1) =0; T(2) =0; for i = 3 :(((L xd ) /.01) + 1) x(i) =x(i- 1)+.01; a (i) = ((((( 2 k ( h (((x (i) A2) + (L A2)) .5) + dely) ( cos (( atan (L / x (i)))))) ) ( 1 wp jj )-(2 *ws *(jj- 1)))- ( wts ( sin (((2 atan (L/ x (i)))))))) / (( 1 mc* jj) + ( 2 (mbs + mts) *(jj- 1)))); av (i) = (a (i- 1) + a(i))/ 2; t(i) =(-v(i 1)+((v(i 1)) 2 + ( 4 av (i) (x (i) x ( i 1))))A .5)/(2 av (i)); v(i) =v(i- 1)+ av (i) t (i); T(i) = T (i- 1)+t(i); end %Approximation method mint = min (t (i)); X = T (i) / mint; mingt = GT / X;