acceleration, instantaneous time and average acceleration. For any layer the force equation is 2K ((Lmax- Li) +dmin) cos O i 2Wts cos (90- 0 i) cos 0 i 2- 2 (Mp (.5C+j)) + (.5C+j) Ff (2.16) dt2 As mentioned above with regards to equation (2.4) the structure is non-linear and hence a simulation technique is adopted to determine the velocity and time at every instant of position. The instantaneous time, velocity and acceleration for all positions is then determined. At position Xo = Xd to (Xo)= 0 Vo (Xo) = 0 S= 2K((Lmax-Lxd)+d)coSxd -(.5C+ j)F 2 cos0-0xd)COS d, Ao (Xo) - M (.5C+j) At position X1 = Xo + .01 2K((Lmax -Lx)+dmn)cosxi -(.5C+ j)Ff -2W cos0-0, )coso, Ai (Xi) = M (.5C+j) Aiv (Xi)= .5(Ao (Xo) + A, (Xi)) S( (X )+ (V0 (X0 )2 +.04A1 (X1)) 2AV(X,) V1 (Xi) = Vo (Xo) + Aiv (X1) tj (X1) At position X2 = X1 + .01 2K((Lmax -Lx2) +dmn) coS,2 -(.5C+ j)Ff 2W cosO- 02) coSO, A2 (X2)(.5Cj) M (.5C+ j)