HYDRAULICS AND STABILITY OF MULTIPLE INLET-BAY SYSTEMS: ST. ANDREW BAY, FLORIDA

By

MAMTA JAIN

A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2002
ACKNOWLEDGMENTS

The author would like to express her deepest and heartiest thanks to her advisor and chairman of the supervisory committee, Dr. Ashish Mehta, for his assistance, encouragement, moral support, guidance and patience throughout this study. Special thanks go to committee member Dr. Robert Dean for his help and advice in solving the hydraulic model equations. Gratitude and thanks are also extended to the other members of the committee, Dr. Robert Thieke and Dr. Andrew Kennedy, for their guidance and assistance. Thanks go to Dr. J. van de Kreeke for his help in solving the linearized lumped parameter model for the stability of inlets.

Assistance provided by Michael Dombrowski of Coastal Tech, for whom the hydrographic surveys were carried out, is sincerely acknowledged. Thanks go to Sidney Schofield and Vic Adams, for carrying out the fieldwork.

The author wishes to acknowledge the assistance of Kim Hunt, Becky Hudson, and the entire Coastal and Oceanographic Engineering Program faculty and staff for their encouragement and emotional support.

The author would like to thank her husband, Parag Singal, for his love, encouragement and support, and her parents and family for providing her with mind, body and soul.

Last, but not least, the author would like to thank the eternal and undying Almighty who provides the basis for everything and makes everything possible.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgments</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>xi</td>
</tr>
<tr>
<td>Abstract</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Problem Definition .. 1
1.2 Objective and Tasks .. 4
1.3 Thesis Outline ... 4

2 HYDRAULICS OF A MULTIPLE INLET BAY SYSTEM

2.1 Governing Equations of an Inlet-Bay System 5
 2.1.1 System Definition ... 5
 2.1.2 Energy Balance .. 6
 2.1.3 Continuity Equation .. 7
2.2 The Linearized Method ... 9
2.3 Multiple Inlet-Bay System .. 11
 2.3.1 Two Inlets and Two Bays with One Inlet Connected to Ocean 11
 2.3.2 Three Inlets and Two Bays with Two Inlets Connected to Ocean 16
 2.3.3 Three Inlets and Three Bays with One Inlet connected to Ocean 19
 2.3.4 Four Inlets and Three Bays with Two Inlets Connected to Ocean. ... 24

3 STABILITY OF MULTIPLE INLET-BAY SYSTEMS

3.1 Stability Problem Definition .. 29
3.2 Stability Criteria .. 29
 3.2.1 Stability Analysis for One-Inlet Bay System 30
 3.2.2 Stability of Two Inlets in a Bay 32
3.3 Stability Analysis with the Linearized Model 34
 3.3.1 Linearized lumped parameter model for N Inlets in a Bay 35
3.4 Application to St. Andrew Bay System... 40

4 APPLICATION TO ST. ANDREW BAY COMPLEX AND ENTRANCES42

4.1 Description of Study Area ... 42
4.2 Summary of Field Data ... 44
 4.2.1 Bathymetry .. 46
 4.2.2 Tides .. 48
 4.2.3 Current and Discharge ... 51
4.3 Tidal Prism .. 52

5 RESULTS AND DISCUSSION ..54

5.1 Introduction... 54
5.2 Hydraulics of St. Andrew Bay .. 54
 5.2.1 Solution of Equations .. 55
 5.2.1.1 One-inlet one-bay system ... 55
 5.2.1.2 Three inlets and three bays with one inlet connected to ocean 56
 5.2.1.3 Three inlets and three bays with two inlets connected to ocean 57
 5.2.2 Input Parameters .. 59
 5.2.3 Model Results and Comparison with Data ... 60
5.3 Stability Analysis .. 62
 5.3.1 Input Parameters .. 62
 5.3.2 Results and Discussion .. 63

6 CONCLUSIONS..73

6.1 Summary ... 73
6.2 Conclusions ... 74
6.3 Recommendations for Further Work ... 74

APPENDIX

A ALGORITHMS FOR MULTIPLE INLET-BAY HYDRAULICS..............................76

A.1 Introduction .. 76
A.2 Program-1 .. 76
A.3 Program-2 .. 77

B INLET HYDRAULICS RELATED DERIVATIONS ...80

B.1 Linearization of Damping Term ... 80
B.2 Shear Stress Dependence on Area .. 81
B.3 General Equation for hydraulic radius. ... 82
 B.3.1 Rectangular ... 83
 B.3.2 Triangular ... 83
B.4 Hydraulic Radius for Triangular Cross-Section .. 83
C CALCULATION OF BAY TIDE AND LINEAR DISCHARGE COEFFICIENTS...85

D CALCULATIONS FOR STABILITY ANALYSIS..89

D.1 Introduction.. 89
D.2 Calculations.. 89
 D.2.1 Equilibrium velocity... 89
 D.2.2 Constant for Triangular schematization.. 89
D.3 Relationship between Flow Curves and Stability of Two Inlets............................ 90
D.4 Matlab Programs.. 91
 D.4.1 Program-1... 91
 D.4.2 Program-2... 93

LIST OF REFERENCES...96

BIOGRAPHICAL SKETCH...98
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Cross-sectional areas of Johns Pass and Blind Pass in Boca Ciega Bay</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Cross-sectional areas of St. Andrew Bay Entrance and East Pass</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Cross-sectional areas of Pass Cavallo and Matagorda Inlet</td>
<td>3</td>
</tr>
<tr>
<td>4.1 Locations of St. Andrew Bay channel cross-sections</td>
<td>45</td>
</tr>
<tr>
<td>4.2 Locations of East Pass channel cross-sections</td>
<td>45</td>
</tr>
<tr>
<td>4.3 Cross-section area, mean depths and width</td>
<td>46</td>
</tr>
<tr>
<td>4.4 Tidal ranges in September 2001, December 2001 and March 2002</td>
<td>51</td>
</tr>
<tr>
<td>4.5 Phase lags between the stations and the ocean tide</td>
<td>51</td>
</tr>
<tr>
<td>4.6 Characteristic peak velocity and discharge values</td>
<td>52</td>
</tr>
<tr>
<td>4.7 Flood and ebb tidal prisms</td>
<td>53</td>
</tr>
<tr>
<td>5.1 List of input and output parameters for one-inlet one-bay model</td>
<td>55</td>
</tr>
<tr>
<td>5.2 List of input and output parameters for the three inlets and three bays model</td>
<td>56</td>
</tr>
<tr>
<td>5.3 List of Input and Output Parameters for the four inlets and three bays model</td>
<td>58</td>
</tr>
<tr>
<td>5.4 Input parameters for the hydraulic model</td>
<td>59</td>
</tr>
<tr>
<td>5.5 Model results and measurements</td>
<td>60</td>
</tr>
<tr>
<td>5.6 Input parameters for stability analysis</td>
<td>63</td>
</tr>
<tr>
<td>5.7 Effect of change in bay area and length of East Pass</td>
<td>65</td>
</tr>
<tr>
<td>5.8 Stability observations for St. Andrew Bay Entrance and East Pass</td>
<td>72</td>
</tr>
<tr>
<td>C.1 Weighted-average bay tide ranges and phase differences</td>
<td>85</td>
</tr>
<tr>
<td>C.2 Calculation of $(\eta_o - \eta_{B1}){max}$, $(\eta{B1} - \eta_{B2}){max}$ and $(\eta{B1} - \eta_{B3})_{max}$</td>
<td>87</td>
</tr>
</tbody>
</table>
D.1 Calculation of equilibrium velocity ...89
D.2 Calculation of a_i ..89
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>One bay and one inlet system</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Two bays and two inlets with one inlet connected to ocean</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Two bays and three inlets, two inlets are connected to ocean</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Three bays and three inlets with one inlet connecting to the ocean</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Three bays and four inlets, two inlets connect to ocean</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Closure curves</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Escoffier diagram</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>Closure surfaces</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>Equilibrium flow curve for Inlet 2</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>Possible configurations of equilibrium flow curves for a two-inlet bay system</td>
<td>34</td>
</tr>
<tr>
<td>3.6</td>
<td>Equilibrium flow curves for two inlets in a bay</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Map showing the three bays and two inlets and bathymetry of the study area</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Aerial view of St. Andrew Bay Entrance in 1993. Jetties are ~430 m apart</td>
<td>43</td>
</tr>
<tr>
<td>4.3</td>
<td>East Pass channel before it’s opening in December 2001</td>
<td>44</td>
</tr>
<tr>
<td>4.4</td>
<td>St. Andrew Bay Entrance bathymetry and current measurement cross-sections</td>
<td>46</td>
</tr>
<tr>
<td>4.5</td>
<td>Cross-section A in St. Andrew Bay Entrance</td>
<td>47</td>
</tr>
<tr>
<td>4.6</td>
<td>Cross-section F in East Pass measured by ADCP</td>
<td>47</td>
</tr>
<tr>
<td>4.7</td>
<td>Measured tide in Grand Lagoon on September 18-19, 2001</td>
<td>49</td>
</tr>
<tr>
<td>4.8</td>
<td>NOS predicted tide at St. Andrew Bay Entrance on September 18-19, 2001</td>
<td>49</td>
</tr>
<tr>
<td>4.9</td>
<td>NOS predicted tide in St. Andrew Bay Entrance on December 18-19, 2001</td>
<td>50</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

Symbols

$A_B, A_{B1}, A_{B2}, A_{B3}$
bay water surface areas at MSL

$A_c, A_{c1}, A_{c2}, A_{c3}, A_{c4}$
flow cross-sectional areas of inlets

a_o
ocean (Gulf) tide amplitude

$a_B, a_{B1}, a_{B2}, a_{B3}$
bay tide amplitudes

$\hat{a}_B, \hat{a}_{B1}, \hat{a}_{B2}, \hat{a}_{B3}$
dimensionless bay tide amplitudes

a_i
constant that relates hydraulic radius with area of triangular cross-section

a, b, c, A, B
constants defined to solve system of equations

B_i
dimensionless resistance factor

C, C_1, C_2, C_3, C_4
coefficients in linear relations of inlet hydraulics

$C_D, C_{DL1}, C_{DL2}, C_{DL3}, C_{DL4}$
linear discharge coefficients

C_K
prism correction coefficient of Keulegan

f
Darcy-Weisbach friction factor

F
friction coefficient

g
acceleration due to gravity

h_k
kineic head

i
subscript specifying the inlet under consideration

K
Keulegan coefficient of filling or repletion

k
bottom roughness
\(k_{en} \)
entrance loss coefficient

\(k_{ex} \)
exit loss coefficient

\(L_{c}, L_{1}, L_{2}, L_{3}, L_{4} \)
channel lengths

\(m \)
sum of entrance and exit losses.

\(P \)
tidal prism

\(Q, Q_{1}, Q_{2}, Q_{3}, Q_{4} \)
discharges through inlets

\(Q_{m} \)
peak discharge

\(R, R_{1}, R_{2}, R_{3}, R_{4} \)
hydraulic radii

\(R_{t} \)
bay tide range

\(R_{o} \)
ocean (Gulf) tide range

\(r_{1}, r_{2}, r_{3} \)
polar representation of the bay tides

\(T \)
tidal period

\(t \)
time

\(u \)
velocity

\(u_{B} \)
bay current velocity

\(u_{c}, u_{c1}, u_{c2}, u_{c3}, u_{c4} \)
velocities through inlets

\(u_{eqi} \)
equilibrium velocity of inlet

\(u_{max1}, u_{max2}, u_{max3}, u_{max4} \)
maximum velocities through inlets

\(u_{o} \)
ocean (Gulf) current velocity

\(X \)
distance between UF and NOS tide stations

\(\alpha_{o}, \alpha_{B} \)
velocity coefficients

\(\varepsilon_{B1}, \varepsilon_{B2}, \varepsilon_{B3} \)
high water (HW) or low water (LW) lags

\(\varepsilon_{v1}, \varepsilon_{v2}, \varepsilon_{v3}, \varepsilon_{v4} \)
inlet velocity lags
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>specific time when sea is at MSL</td>
</tr>
<tr>
<td>θ</td>
<td>dimensionless time</td>
</tr>
<tr>
<td>η</td>
<td>water elevation</td>
</tr>
<tr>
<td>η_o</td>
<td>ocean (Gulf) tide elevation with respect to MSL</td>
</tr>
<tr>
<td>$\eta_B, \eta_{B1}, \eta_{B2}, \eta_{B3}$</td>
<td>bay tide elevations with respect to MSL</td>
</tr>
<tr>
<td>$\hat{\eta}B, \hat{\eta}{B1}, \hat{\eta}{B2}, \hat{\eta}{B3}$</td>
<td>dimensionless bay tide elevations</td>
</tr>
<tr>
<td>$\hat{\tau}$</td>
<td>maximum bottom shear stress</td>
</tr>
<tr>
<td>$\hat{\tau}_{eq}$</td>
<td>equilibrium shear stress</td>
</tr>
</tbody>
</table>
Tidal inlets on sandy coasts are subject to the continuous changes in their geometry and as a result influence shorelines in the vicinity. Since engineering modifications carried out at one inlet can affect the long-term stability of others in the vicinity of the modified inlet, it is important to understand the stability of all inlets connecting a bay to the ocean. Inlet stability is related to the equilibrium between the inlet cross-sectional area and the hydraulic environment.

St. Andrew Bay on the Gulf of Mexico coast of Florida’s panhandle is part of a three-bay and two- (“ocean”) inlet complex. One of these inlets is St. Andrew Bay Entrance and the other is East Pass, both of which are connected to St. Andrew Bay on one side and the Gulf on the other. Historically, East Pass was the natural connection between the bay and the Gulf. In 1934, St. Andrew Bay Entrance was constructed 11 km west of East Pass to provide a direct access between the Gulf and Panama City. Due to the long-term effect of this opening of St. Andrew Bay Entrance, East Pass closed
naturally in 1998. A new East Pass was dredged open in December 2001, and the objective of the present study was to examine the hydraulics and stability of this system of two sandy ocean inlets connected to interconnected bays.

To study the system as a whole, a linearized hydraulic model was developed for a three-bay and four-inlet (two ocean and the other two connecting the bays) system and applied to the St. Andrew Bay system. To investigate the stability of the ocean inlets, the hydraulic stability criterion was extended to the two-ocean inlets and one (composite) bay system using the linearized lumped parameter model. The following conclusions are drawn from this analysis.

The linearized hydraulics model is shown to give good results—the amplitudes of velocities and bay tides are within ±5%. The percent error for St. Andrew Bay is almost zero, and for the other bays it is within ±20%.

The stability model gives the qualitative results. The bay area has a significant effect on the stability of the two inlets. At a bay area of 74 km² (the actual area of the composite bay), both inlets are shown to be unstable. Increasing the area by 22% to 90 km² stabilizes St. Andrew Bay Entrance, and by 42% to 105 km² stabilizes East Pass as well. Keeping the bay area at 105 km² and increasing the length of East Pass from 500 m to 2000 m destabilizes this inlet because as the length increases the dissipation in the channel increases as well.
CHAPTER 1
INTRODUCTION

1.1 Problem Definition

Tidal inlets are the relative short and narrow connections between bays or lagoons and the ocean or sea. Inlets on sandy coasts are subject to the continuous changes in their geometry. Predicting the adjustment of the inlet morphology after a storm event in particular, i.e., whether the inlet will close or will remain open, requires knowledge of the hydraulic and sedimentary processes in the vicinity of the inlet. These processes are governed by complex interactions of the tidal currents, waves, and sediment. In spite of recent advances in the description of flow field near the inlet and our understanding of sediment transport by waves and currents (Aubrey and Weishar 1988), it is still not possible to accurately predict the morphologic adjustment of the inlet to hydrodynamic forcing.

Inlet stability is dependent upon the cumulative result of the actions of two opposing factors, namely, a) the near-shore wave climate and associated littoral drift, and b) the flow regime through the inlet. Depending on the wave climate and the range of the tide, one of these two factors may dominate and cause either erosion or accumulation of the sand in the inlet. However, on a long-term basis, a stable inlet can be maintained only if the flow through the inlet has enough scouring capacity to encounter the obstruction against the flow due to sand accumulation, and to maintain the channel in the state of non-silting, non-scouring equilibrium. If such is not the case and waves dominate, then the accumulated sand will begin to constrict the inlet throat, thereby reducing the tidal
prism. The resulting unstable inlet may migrate or orient itself at an angle with the shoreline depending on the predominant direction of the littoral drift; the channel may elongate, thereby increasing the frictional resistance to the flow, and finally, a stage may be reached when perhaps a single storm could close the inlet in a matter of hours.

Stability criteria based on inlet hydraulics and sediment transport for single inlets have been proposed by, among others, O’Brien (1931), Escoffier (1940), O’Brien and Dean (1972), Bruun (1978) and Escoffier and Walton (1979). All criteria assume that sufficient sand is available to change the inlet channel geometry in response to the prevailing hydrodynamic conditions. These investigators found various stability parameters to describe the stability of the inlet. It should be noted, however, that while it is relatively easy to deal with the stability of single inlets, the problem becomes complex when, as is commonly the case, more than one inlet connect the ocean to a single bay or more than one interconnected bays. Some examples of such systems are as follows.

Three cases of the history of two inlets in a bay are worthy of citation. One case is that of Boca Ciega Bay on the Gulf coast of Florida, where the co-dependency of two inlets, Blind Pass and Johns Pass, appears to be reflected in the history of their cross-sectional areas. While Blind Pass has historically been narrowing due to shoaling, John’s Pass has been increasing in size, as shown in Table 1.1. As a result, Blind Pass now requires regular dredging for its maintenance while severe bed erosion has occurred at John’s Pass (Mehta, 1975; Becker and Ross, 2001).

Another example is that of St. Andrew Bay Entrance and the East Pass. As mentioned previously, East Pass used to be a large inlet and was the only natural connection between the Gulf of Mexico and the St. Andrew Bay. In 1934, St. Andrew
Bay entrance was constructed 11 km west of East Pass through the barrier island by the federal government to provide a direct access between the Gulf and Panama City. Table 1.2 gives the cross-sectional area of each inlet over time.

Table 1.1 Cross-sectional areas of Johns Pass and Blind Pass in Boca Ciega Bay

<table>
<thead>
<tr>
<th>Year</th>
<th>Area (m²)</th>
<th>Hydraulic Radius (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>John’s Pass</td>
<td>Blind Pass</td>
</tr>
<tr>
<td>1873</td>
<td>474</td>
<td>538</td>
</tr>
<tr>
<td>1883</td>
<td>432</td>
<td>496</td>
</tr>
<tr>
<td>1926</td>
<td>531</td>
<td>209</td>
</tr>
<tr>
<td>1941</td>
<td>636</td>
<td>225</td>
</tr>
<tr>
<td>1952</td>
<td>849</td>
<td>157</td>
</tr>
<tr>
<td>1974</td>
<td>883</td>
<td>411</td>
</tr>
<tr>
<td>1998</td>
<td>950</td>
<td>230</td>
</tr>
</tbody>
</table>

^d Estimated by assuming no change in channel width since 1974.

Table 1.2 Cross-sectional areas of St. Andrew Bay Entrance and East Pass

<table>
<thead>
<tr>
<th>Year</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>St. Andrew Bay Entrance</td>
</tr>
<tr>
<td>1934</td>
<td>1,835</td>
</tr>
<tr>
<td>1946</td>
<td>3,530</td>
</tr>
<tr>
<td>1983</td>
<td>3,943</td>
</tr>
<tr>
<td>1988</td>
<td>-</td>
</tr>
<tr>
<td>2001</td>
<td>5,210</td>
</tr>
</tbody>
</table>

The third example is that of Pass Cavallo and Matagorda Inlet connecting Matagorda Bay, Texas, to the Gulf. Stability analysis carried out by van de Kreeke (1985) on this system showed that Pass Cavallo is an unstable inlet, which is decreasing in cross-section, whereas Matagorda Inlet is increasing in size. The areas of cross-sections of the two inlets are listed in Table 1.3.

Table 1.3 Cross-sectional areas of Pass Cavallo and Matagorda Inlet

<table>
<thead>
<tr>
<th>Year</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pass Cavallo</td>
</tr>
<tr>
<td>1959</td>
<td>8,000</td>
</tr>
<tr>
<td>1970</td>
<td>7,500</td>
</tr>
</tbody>
</table>

The above sets of complex problems are dealt with in this study in a simplified manner, with the following objective and associated tasks.
1.2 Objective and Tasks

The main objective of this study is to examine the hydraulics and thence the stability of a system of two sandy ocean inlets connected to interconnected bays. The sequence of tasks carried out to achieve this goal is as follows:

1. Deriving the basic hydraulic equations using the linearized approach for a complex four inlets and three bays system.

2. Solving these equations, applying them to the St. Andrew Bay system, and comparing the results with those obtained from the hydrographic surveys.

3. Developing stability criteria using the basic Escoffier (1940) model for one inlet and one bay and then extending this model to the two inlets and a bay.

4. Carrying out stability analysis for N inlets and a bay using the linearized lumped parameter model of van de Kreeke (1990), and then applying it to the St. Andrew Bay system.

1.3 Thesis Outline

Chapter 2 describes the hydraulics of the multiple inlet-bay system. It progresses from the basic theory to the development of linearized models for simple and complex systems. Chapter 3 describes the stability of the system, including an approximate method to examine multiple inlets in a bay. Chapter 4 includes details of hydrographic surveys and summarizes the data. Chapter 5 discusses the input and output parameters required for the calculation. It also presents the results. All calculations are given in the appendices. Conclusions are made in Chapter 6, followed by a bibliography and a biographical sketch of the author.
CHAPTER 2
HYDRAULICS OF A MULTIPLE INLET BAY SYSTEM

2.1 Governing Equations of an Inlet-Bay System

2.1.1 System Definition

The governing equations for a simple inlet-bay system may be derived by considering the inlet connecting the ocean and the bay as shown in Figure 2.1.

Figure 2.1 One bay and one inlet system

These equations are derived subjected to the following assumptions.

1. The inlet and bay banks are vertical.
2. The range of tide is small as compare to the depth of water everywhere.
3. The bay surface remains horizontal at all times, i.e., the tide is “in phase” across the bay. That means the longest dimension of the bay be small compared to the travel time of tide through the bay.
4. The mean water level in the bay equals that in the ocean.
5. The acceleration of mass of water in the channel is negligible.
6. There is no fresh water inflow into the bay.
There is no flow stratification due to salinity.

Ocean tides are represented by a periodical function.

2.1.2 Energy Balance

Applying the energy balance between ocean and bay one gets

\[
\eta_o + \alpha_o \frac{u_o^2}{2g} = \eta_B + \alpha_B \frac{u_B^2}{2g} + \sum \Delta h
\]

(2.1)

where

- \(\eta_o \) = Ocean tide elevation with respect to mean sea level,
- \(\eta_B \) = Bay tide elevation with respect to mean sea level,
- \(u_o \) = Ocean current velocity,
- \(u_B \) = Bay current velocity,
- \(\alpha_o \) and \(\alpha_B \) = Coefficients greater than one which depend on the spatial distribution of \(u_o \) and \(u_B \), respectively,
- \(\sum \Delta h \) = Total head loss between the ocean and the bay, and
- \(g \) = acceleration due to gravity.

It is also assumed that ocean and bay are relatively deep; thus \(u_o \) and \(u_B \) are small enough to be neglected. Then Eq. (2.1) becomes

\[
\sum \Delta h = \eta_o - \eta_B
\]

(2.2)

There are generally two types of head losses. One includes concentrated or “minor losses” due to convergence and divergence of streamlines in the channel. The second type is gradual loss due to bottom friction in the channel. The entrance and exit losses may be written in terms of the velocity head \(\frac{u^2}{2g} \) in the channel, with the entrance loss coefficient \(k_{en} \) and the exit loss coefficient \(k_{ex} \), i.e.,
Entrance loss = \(k_{en} \frac{u_c^2}{2g} \) \hspace{1cm} (2.3)

Exit loss = \(k_{ex} \frac{u_c^2}{2g} \) \hspace{1cm} (2.4)

where \(u_c \) is the velocity through the inlet. Gradual energy losses per unit length depend on the channel roughness and are given in form of Darcy-Weisbach friction factor

Gradual loss = \(\frac{fL}{4R} \frac{u_c^2}{2g} \) \hspace{1cm} (2.5)

where

\(f = \) Darcy-Weisbach friction coefficient,

\(R = \) hydraulic radius of channel, and

\(L = \) Length of channel.

Substitution of Eqs. (2.3), (2.4) and (2.5) into (2.2) gives

\[\eta_o - \eta_B = \frac{u_c^2}{2g} \left(k_{en} + k_{ex} + \frac{fL}{4R} \right) \]

or

\[u_c = \sqrt{\frac{2g}{k_{en} + k_{ex} + \frac{fL}{4R}}} \sqrt{\eta_o - \eta_B \cdot \text{sign}(\eta_o - \eta_B)} \] \hspace{1cm} (2.6)

The \(\text{sign}(\eta_o - \eta_B) \) term must be included since the current reverses in direction every half tidal cycle.

2.1.3 Continuity Equation

The equation of continuity, which relates the inlet flow discharge to the rate of rise and fall of bay water level, is given as
\[Q = u_c A_c = \frac{d}{dt} (A_B \eta_B) \]

(2.8)

where

\[Q = \text{flow rate through the inlet,} \]

\[A_c = \text{Inlet flow cross-sectional area, and} \]

\[A_B = \text{bay surface area.} \]

Therefore Eq. (2.8) becomes

\[u_c = \frac{A_B}{A_c} \frac{d \eta_B}{dt} \]

(2.9)

Eliminating \(u_c \) between Eq. (2.7) and (2.9) leads to

\[\frac{d \eta_B}{dt} = \frac{A_c}{A_B} \sqrt{\frac{2g}{k_{en} + k_{ex} + \frac{fL}{4R}}} \sqrt{|\eta_o - \eta_B| \cdot \text{sign}(\eta_o - \eta_B)} \]

(2.10)

Next, we introduce the dimensionless quantities

\[\hat{\eta}_o = \frac{\eta_o}{a_o}; \quad \hat{\eta}_B = \frac{\eta_B}{a_o}; \quad \theta = \frac{2\pi t}{T} = \sigma t \]

(2.11)

where \(a_o = \text{ocean tide amplitude (one-half the ocean tidal range),} \ T = \text{tidal period and} \)

\(\sigma = \text{tidal (angular) frequency.} \) Substitution into Eq. (2.10) gives

\[\frac{d \hat{\eta}_B}{d \theta} = K \sqrt{|\hat{\eta}_o - \hat{\eta}_B| \cdot \text{sign}(\hat{\eta}_o - \hat{\eta}_B)} \]

(2.12)

where

\[K = \frac{T}{2\pi a_o} \frac{A_c}{A_B} \sqrt{\frac{2g a_o}{k_{en} + k_{ex} + \frac{fL}{4R}}} \]

(2.13)
in which K is referred to as the “coefficient of filling or repletion” (Keulegan, 1967). Keulegan solved the first order differential equation, Eq. (2.12), for $\dot{\eta}_B$ in terms of the repletion coefficient K and dimensionless time θ using numerical integration.

2.2 The Linearized Method

A linear method was suggested by Dean (1983) for solving Eq. (2.12). For this approach it was assumed that the velocity u_c in Eq. (2.7), is proportional to the head difference $(\eta_o - \eta_B)$ rather than the square root of the head difference, according to

$$u_c = \sqrt{\frac{2g}{a_o} C_{DL} (\eta_o - \eta_B)}$$ \hspace{1cm} (2.14)

where C_{DL} = “linear discharge coefficient.” This coefficient is defined as

$$C_{DL} = \frac{1}{\sqrt{k_{en} + k_{ec} + \frac{fL}{4R}}} \sqrt{\frac{a_o}{(\eta_o - \eta_B)_{\text{max}}}}$$ \hspace{1cm} (2.15)

where $(\eta_o - \eta_B)_{\text{max}}$ is the maximum head difference across the inlet. Now, combining Eqs. (2.14), (2.9) and (2.11), Eq. (2.12) can be written in terms of the linear relationship as

$$\dot{\eta}_o - \dot{\eta}_B = \sigma \left[\frac{d\dot{\eta}_B}{d\theta} \right]$$ \hspace{1cm} (2.16)

where

$$C = C_{DL} \frac{A_L}{A_B} \sqrt{\frac{2g}{a_o}}$$ \hspace{1cm} (2.17)

Under assumption (8) the ocean tide is assumed to be periodic. Because of the linear assumption the bay tide is also periodic, it can be written as

$$\dot{\eta}_o = \cos \theta$$ \hspace{1cm} (2.18)

$$\dot{\eta}_{B1} = \dot{a}_{B1} \cos(\theta - \varepsilon_{B1})$$ \hspace{1cm} (2.19)
where $\hat{a}_B = \frac{a_B}{a_o}$, $a_B = \text{one-half the bay tide range (i.e., bay tide amplitude)}$ and $\varepsilon_B = \text{lag between high water (HW) or low water (LW) in the ocean and the corresponding HW or LW in the bay}$.

Eq. (2.18) and Eq. (2.19) are next substituted into Eq. (2.16) and the following complex number technique is used to solve for a_B and ε_B:

1. Define the following constants:
 \[
 \sigma = a , \quad \hat{\eta}_o = \text{Re} \left(e^{i\omega} \right)
 \]

2. Let the following variables be represented in the polar form:
 \[
 \hat{\eta}_{B1} = \text{Re} \left(\hat{a}_{B1} e^{i(\theta - \varepsilon_{B1})} \right) = r_i
 \]

3. Therefore
 \[
 \frac{d\hat{\eta}_B}{d\theta} = ir_i
 \]

4. So the equations are reduced to
 \[
 1 = (1 + ai)r_i \quad \quad \quad (2.20)
 \]
 \[
 r_i = \frac{1}{1 + ai} ; \quad \text{Re}(r_i) = \frac{1}{1 + a^2} ; \quad \text{Im}(r_i) = -\frac{a}{1 + a^2}
 \]
 where
 \[
 \text{Re}(r_i) = \text{is the real part of the solution, and}
 \]
 \[
 \text{Im}(r_i) = \text{is the imaginary part of the solution.}
 \]

The magnitude of r_1 represents \hat{a}_{B1} and the phase lag ε_{B1} is represented by the angle of r_1:

\[
\hat{a}_{B1} = \frac{1}{\sqrt{1 + a^2}} \quad \quad \quad (2.21)
\]

\[
\varepsilon_{B1} = \tan^{-1} a \quad \quad \quad (2.22)
\]
The velocity u_{c1} through inlet 1 is therefore given by

$$u_{c1} = u_{\text{max}1} \cos(\theta - \varepsilon_{v1}) \quad (2.23)$$

where $u_{\text{max}1}$ is the maximum velocity through inlet 1, ε_{v1} is the phase lag between the velocity in inlet 1 and HW or LW in the ocean.

Substituting for η_o and η_{B1} from Eq. (2.18) and Eq. (2.19) in Eq. (2.14) and combining Eqs. (2.23) and (2.14) we get the required expression for $u_{\text{max}1}$. It should be noted that velocity is out of phase with respect to displacement by $\pi/2$. Therefore, $\varepsilon_{v1} = \varepsilon_{B1} - \pi/2$.

2.3 Multiple Inlet-Bay System.

2.3.1 Two Inlets and Two Bays with One Inlet Connected to Ocean

In the case of two bays with one inlet connecting to the ocean and the second connecting the bays as shown in Figure 2.2, the eight assumptions mentioned in section 2.1.1 and the linear relationship both hold. In a manner similar to that employed for a single inlet-bay case, the velocity relationship and the equation of continuity for two-bay system may be written with reference to the notation of Figure 2.2.

Thus the following relationships are obtained:

$$u_{c1} = \sqrt{\frac{2g}{a_o}} C_{DL1} (\eta_o - \eta_{B1}) \quad (2.24)$$

$$Q_1 = u_{c1} A_{c1} = A_{B1} \frac{d\eta_{B1}}{dt} + A_{B2} \frac{d\eta_{B2}}{dt} \quad (2.25)$$

$$u_{c2} = \sqrt{\frac{2g}{a_{B1}}} C_{DL2} (\eta_{B1} - \eta_{B2}) \quad (2.26)$$

$$Q_2 = u_{c2} A_{c2} = A_{B2} \frac{d\eta_{B2}}{dt} \quad (2.27)$$
Figure 2.2 Two bays and two inlets with one inlet connected to ocean.

where

\[u_{c1}, u_{c2} = \text{velocities through the inlets 1 and 2,} \]
\[Q_1, Q_2 = \text{discharges through inlets 1 and 2,} \]
\[A_{c1}, A_{c2} = \text{inlet flow cross-sectional areas, and} \]
\[A_{B1}, A_{B2} = \text{bay water surface areas.} \]

\[C_{DL1} = \frac{1}{\sqrt{k_{en} + k_{ex} + \frac{fL_1}{4R_1}}} \sqrt{\frac{a_o}{(\eta_o - \eta_{B1})_{\text{max}}}} \quad (2.28) \]
\[C_{DL2} = \frac{1}{\sqrt{k_{en} + k_{ex} + \frac{fL_2}{4R_2}}} \sqrt{\frac{a_{B1}}{(\eta_{B1} - \eta_{B2})_{\text{max}}}} \quad (2.29) \]

where

\[L_1, L_2 = \text{inlet lengths, and} \]
\[R_1, R_2 = \text{hydraulic radii of the channels.} \]

Eliminating \(u_{c1} \) between Eq. (2.24) and Eq. (2.25) gives

\[\eta_o - \eta_{B1} = \frac{1}{C_1} \left[\frac{d\eta_{B1}}{dt} + \frac{A_{B2}}{A_{B1}} \frac{d\eta_{B2}}{dt} \right] \quad (2.30) \]

where
Combining Eq. (2.26) and Eq. (2.27) yields

$$\eta_{B1} - \eta_{B2} = \frac{1}{C_2} \left[\frac{d\eta_{B2}}{dt} \right]$$

(2.32)

where

$$C_2 = C_{DL2} \frac{A_{B2}}{a_{B1}}$$

(2.33)

The dimensionless ocean tide is given by Eq. (2.18), and the dimensionless tides in bays 1 and 2 now become

$$\hat{\eta}_{B1} = \hat{\eta}_{B1} \cos(\theta - \varepsilon_{B1})$$

(2.34)

$$\hat{\eta}_{B2} = \hat{\eta}_{B2} \cos(\theta - \varepsilon_{B2})$$

(2.35)

where

$$\hat{\eta}_{B1} = \frac{a_{B1}}{a_o}$$

$$\hat{\eta}_{B2} = \frac{a_{B2}}{a_o}$$

(2.30) and Eq. (2.32) can be expressed in the dimensionless form as
\[
\hat{n}_o - \hat{n}_{b1} = \frac{\sigma}{C_1} \left[\frac{d\hat{n}_{b1}}{d\theta} + \frac{A_{b2}}{A_{b1}} \frac{d\hat{n}_{b2}}{d\theta} \right]
\]
(2.36)

\[
\hat{n}_{b1} - \hat{n}_{b2} = \frac{\sigma}{C_2} \left[\frac{d\hat{n}_{b2}}{d\theta} \right]
\]
(2.37)

The above equations are solved by the matrix method assuming the variables to be complex numbers. The solution is obtained as follows:

1. Define the following constants
 \[
 \frac{\sigma}{C_1} = a, \quad \frac{\sigma}{C_2} = b, \quad \frac{A_{b2}}{A_{b1}} = A, \quad \hat{n}_o = \text{Re} \left(e^{i\theta} \right)
 \]

2. Let
 \[
 \hat{n}_{b1} = \text{Re} \left(\hat{a}_{b1} e^{i(\theta - \varepsilon_1)} \right) = r_1, \quad \hat{n}_{b2} = \text{Re} \left(\hat{a}_{b2} e^{i(\theta - \varepsilon_2)} \right) = r_2, \quad \frac{d\hat{n}_{b1}}{d\theta} = i r_1, \quad \frac{d\hat{n}_{b2}}{d\theta} = i r_2
 \]

3. So the equations are reduced to
 \[
 1 = (ai + 1)r_1 + AAr_2
 \]
 (2.38)
 \[
 0 = -r_1 + (bi + 1)r_2
 \]
 (2.39)

4. In the matrix form they become
 \[
 \begin{pmatrix}
 1 \\
 0
 \end{pmatrix}
 =
 \begin{pmatrix}
 r_1 \\
 r_2
 \end{pmatrix}
 \begin{pmatrix}
 ai + 1 & Aa \\
 -1 & bi + 1
 \end{pmatrix}
 \]
 (2.40)

5. The solution is
 \[
 r_1 = -i \frac{(b - i)}{X}
 \]
 (2.41)
 \[
 r_2 = \frac{-1}{X}
 \]
 (2.42)

where

\[
X = (ab - 1) - i(aA + a + b); \quad \overline{X} = (ab - 1) + i(aA + a + b)
\]
\[XX = (ab - 1)^2 + (aA + a + b)^2\]

\[
\text{Re}(r_1) = \frac{b(b + a + aA) - (ab - 1)}{XX} \quad ; \quad \text{Im}(r_1) = \frac{-b(ab - 1) - (a + b + aA)}{XX}
\]

\[
\text{Re}(r_2) = \frac{-(ab - 1)}{XX} \quad ; \quad \text{Im}(r_2) = \frac{-(a + b + aA)}{XX}
\]

The amplitudes \((\hat{a}_{b1} \text{ and } \hat{a}_{b2})\) of bays 1 and 2 are the magnitudes of the complex numbers \(r_1 \) and \(r_2 \) and the corresponding phase lags are the angles of the complex numbers:

\[
\hat{a}_{b1} = \sqrt{\text{Re}(r_1)^2 + \text{Im}(r_1)^2} \quad (2.43)
\]

\[
\varepsilon_{b1} = -\tan^{-1}\left(\frac{\text{Im}(r_1)}{\text{Re}(r_1)}\right) \quad (2.44)
\]

\[
\hat{a}_{b2} = \sqrt{\text{Re}(r_2)^2 + \text{Im}(r_2)^2} \quad (2.45)
\]

\[
\varepsilon_{b2} = -\tan^{-1}\left(\frac{\text{Im}(r_2)}{\text{Re}(r_2)}\right) \quad (2.46)
\]

The velocities \(u_{c1} \) and \(u_{c2} \) through inlets 1 and 2, respectively, are therefore given by

\[
u_{c1} = u_{\text{max}1} \cos(\theta - \varepsilon_{c1}) \quad (2.47)
\]

\[
u_{c2} = u_{\text{max}2} \cos(\theta - \varepsilon_{c2}) \quad (2.48)
\]

where \(u_{\text{max}1} \) and \(u_{\text{max}2} \) are the maximum velocities through inlets 1 and 2, respectively, \(\varepsilon_{c1} \) and \(\varepsilon_{c2} \) are the phase lags between the velocity in inlet 1 and HW or LW in the ocean, and in inlet 2 and HW or LW in the ocean.

Substituting for \(\eta_o \) and \(\eta_{B1} \) from Eqs. (2.18) and (2.34) in Eq. (2.24) and combining Eqs. (2.47) and (2.24) we get the required expression for \(u_{\text{max}1} \). Similarly we
can obtain the expression for \(u_{\text{max}2} \). It should be noted that velocity is out of phase with respect to displacement by \(\pi/2 \). Therefore, \(\varepsilon_{v1} = \varepsilon_{B1} - \pi/2 \) and \(\varepsilon_{v2} = \varepsilon_{B2} - \pi/2 \).

2.3.2 Three Inlets and Two Bays with Two Inlets Connected to Ocean

The inlet bay system is defined in Figure 2.3. In this system two bays are connected to each other with inlets 2 and inlet 3 and 1 connects bay 1 to the ocean.

![Figure 2.3 Two bays and three inlets, two inlets are connected to ocean.](image)

The velocity in inlets 1 and 2 is given by Eq. (2.24) and Eq. (2.26) respectively.

The velocity in inlet 3 is given by Eq. (2.49):

\[
 u_{e3} = \sqrt{\frac{2g}{a_o}} C_{DL3} (\eta_o - \eta_{B1}) \tag{2.49}
\]

where \(u_{e3} \) = velocity through the inlet 3 and

\[
 C_{DL3} = \frac{1}{\sqrt{k_{en} + k_{ex} + \frac{fL_{3}}{4R_3}}} \sqrt{a_o} \tag{2.50}
\]

where

\(L_3 \) = inlet 3 length, and

\(R_3 \) = hydraulic radius of inlet 3 channel.

The governing equations of continuity are
\[Q_1 + Q_3 = u_{c1} A_{c1} + u_{c3} A_{c3} = A_{b1} \frac{d\eta_{b1}}{dt} + A_{b2} \frac{d\eta_{b2}}{dt} \]
\[(2.51) \]

\[Q_2 = u_{c2} A_{c2} = A_{b2} \frac{d\eta_{b2}}{dt} \]
\[(2.52) \]

where

- \(Q_1, Q_2, Q_3 \) = discharges through inlets 1, 2 and 3,
- \(A_{c1}, A_{c2}, A_{c3} \) = flow cross-sectional areas at inlets 1, 2 and 3, and
- \(A_{b1}, A_{b2} \) = bay water surface areas.

Substituting for the velocity expressions in the above equations we obtain

\[\eta_o - \eta_{b1} = \frac{1}{C_1 + C_3} \left[\frac{d\eta_{b1}}{dt} + \frac{A_{b2}}{A_{b1}} \frac{d\eta_{b2}}{dt} \right] \]
\[(2.53) \]

\[\eta_{b1} - \eta_{b2} = \frac{1}{C_2} \left[\frac{d\eta_{b2}}{dt} \right] \]
\[(2.54) \]

where \(C_1 \) and \(C_2 \) are expressed by Eqs. (2.31) and (2.33), and

\[C_3 = C_{DL3} \frac{A_{c3}}{A_{b1}} \sqrt{\frac{2g}{a_o}} \]
\[(2.55) \]

Stating Eqs. (2.53) and (2.54) in the dimensionless form we obtain

\[\hat{\eta}_o - \hat{\eta}_{b1} = \frac{\sigma}{C_1 + C_3} \left[\frac{d\hat{\eta}_{b1}}{d\theta} + \frac{A_{b2}}{A_{b1}} \frac{d\hat{\eta}_{b2}}{d\theta} \right] \]
\[(2.56) \]

\[\hat{\eta}_{b1} - \hat{\eta}_{b2} = \frac{\sigma}{C_2} \left[\frac{d\hat{\eta}_{b2}}{d\theta} \right] \]
\[(2.57) \]

where \(\hat{\eta}_o, \hat{\eta}_{b1} \) and \(\hat{\eta}_{b2} \) are defined in Eqs. (2.18), (2.34) and (2.35), respectively. The solution of the system of Eqs. (2.56) and (2.57) is given below.
Define the following constants
\[
\frac{\sigma}{C_1 + C_3} = a, \quad \frac{\sigma}{C_2} = b, \quad \frac{A_{b_2}}{A_{b_1}} = A, \quad \hat{\eta}_o = \text{Re}(e^{i\theta})
\]

Let
\[
\hat{\eta}_{b_1} = \text{Re}\left(e^{i(\theta - \epsilon_{b_1})}\right) = r_1, \quad \hat{\eta}_{b_2} = \text{Re}\left(e^{i(\theta - \epsilon_{b_2})}\right) = r_2; \quad \frac{d\hat{\eta}_{b_1}}{d\theta} = ir_1, \quad \frac{d\hat{\eta}_{b_2}}{d\theta} = ir_2
\]

So the equations are reduced to
\[
1 = (ai + 1)r_1 + aAir_2 \quad (2.58)
\]
\[
0 = -r_1 + (bi + 1)r_2 \quad (2.59)
\]

Solve these equations by the matrix method.
\[
\begin{pmatrix}
1 \\
0
\end{pmatrix} =
\begin{pmatrix}
r_1 \\
r_2
\end{pmatrix} =
\begin{pmatrix}
ai + 1 & aAi \\
-1 & bi + 1
\end{pmatrix}
\]

Solving the above equations yields
\[
r_1 = -i(b - i)X \quad (2.61)
\]
\[
r_2 = \frac{-1}{X} \quad (2.62)
\]

\[
X = (ab - 1) - i(aA + a + b); \quad \bar{X} = (ab - 1) + i(aA + a + b)
\]

\[
X\bar{X} = (ab - 1)^2 + (aA + a + b)^2
\]

\[
\text{Re}(r_1) = \frac{b(b + a + aA) - (ab - 1)}{X\bar{X}}; \quad \text{Im}(r_1) = \frac{-b(ab - 1) - (a + b + aA)}{X\bar{X}}
\]
\[
\text{Re}(r_2) = \frac{-ab - 1}{X\bar{X}}; \quad \text{Im}(r_2) = \frac{-(a + b + aA)}{X\bar{X}}
\]

The amplitudes \((\hat{a}_{b_1} \text{ and } \hat{a}_{b_2})\) of bays 1 and 2 are the magnitudes of the complex numbers \(r_1\) and \(r_2\) and the phase lags are the corresponding angles:
\[
\hat{a}_{b1} = \sqrt{\text{Re}(r_1)^2 + \text{Im}(r_1)^2}
\] (2.63)

\[
\varepsilon_{b1} = -\tan^{-1}\left(\frac{\text{Im}(r_1)}{\text{Re}(r_1)}\right)
\] (2.64)

\[
\hat{a}_{b2} = \sqrt{\text{Re}(r_2)^2 + \text{Im}(r_2)^2}
\] (2.65)

\[
\varepsilon_{b2} = -\tan^{-1}\left(\frac{\text{Im}(r_2)}{\text{Re}(r_2)}\right)
\] (2.66)

The velocities \(u_{c1}\) and \(u_{c2}\) through inlets 1 and 2, respectively, are given by Eqs. (2.47) and (2.48), and \(u_{c3}\) through inlet 3 is obtained from

\[
u_{c3} = u_{\text{max}3} \cos(\theta - \varepsilon_{v3})
\] (2.67)

where \(u_{\text{max}3}\) is the maximum velocity through inlet 3 and \(\varepsilon_{v3}\) is the phase lag between velocity in inlet 3 and HW or LW in the ocean. Substituting for \(\eta_o\) and \(\eta_{B1}\) from Eqs. (2.18) and (2.34) into Eq. (2.49) and combining Eqs. (2.49) and (2.67) we get the required expression for \(u_{\text{max}3}\). Then the phase lag \(\varepsilon_{v3} = \varepsilon_{B1} - \pi/2\).

2.3.3 Three Inlets and Three Bays with One Inlet connected to Ocean.

This inlet bay system as defined in Figure 2.4 has three interconnected bays with inlets 2 and 4, while inlet 1 connects bay 1 to the ocean. The velocities in inlets 1 and 2 are given by Eqs. (2.24) and (2.26), respectively. The velocity in inlet 4 is given by Eq. (2.68):

\[
u_{c4} = \sqrt{\frac{2g}{a_{B1}}} C_{DL4} (\eta_{B1} - \eta_{B3})
\] (2.68)

where \(u_{c4} = \) velocity through the inlet 4 and
\[
C_{DL4} = \frac{1}{\sqrt{k_{en} + k_{ex} + \frac{L_4}{4R_4}}} \sqrt{\frac{a_{B_1}}{(\eta_{B_1} - \eta_{B_3})_{\max}}}
\]

with \(L_4\) = inlet length and \(R_4\) = hydraulic radius of inlet 4 channel.

The governing continuity equations are

\[
Q_1 = u_{c1} A_{c1} = A_{B_1} \frac{d\eta_{B_1}}{dt} + A_{B_2} \frac{d\eta_{B_2}}{dt} + A_{B_3} \frac{d\eta_{B_3}}{dt} \quad (2.69)
\]

\[
Q_2 = u_{c2} A_{c2} = A_{B_2} \frac{d\eta_{B_2}}{dt} \quad (2.70)
\]

\[
Q_4 = u_{c4} A_{c4} = A_{B_3} \frac{d\eta_{B_3}}{dt} \quad (2.71)
\]

\(Q_1, Q_2, Q_4\) = discharges through inlets 1, 2 and 4

\(A_{c1}, A_{c2}, A_{c4}\) = flow cross-sectional areas at inlets 1, 2 and 4.

\(A_{B1}, A_{B2}, A_{B3}\) = bay water surface areas.

Substituting the velocity expressions in the above equations we obtain

\[
\eta_o - \eta_{B_1} = \frac{1}{C_1} \left[\frac{d\eta_{B_1}}{dt} + \frac{A_{B_2}}{A_{B_1}} \frac{d\eta_{B_2}}{dt} + \frac{A_{B_3}}{A_{B_1}} \frac{d\eta_{B_3}}{dt} \right] \quad (2.72)
\]

\[
\eta_{B_1} - \eta_{B_2} = \frac{1}{C_2} \left[\frac{d\eta_{B_2}}{dt} \right] \quad (2.73)
\]

\[
\eta_{B_1} - \eta_{B_3} = \frac{1}{C_4} \left[\frac{d\eta_{B_3}}{dt} \right] \quad (2.74)
\]

where \(C_1\) and \(C_2\) are as expressed by Eqs. (2.31) and (2.33), and

\[
C_4 = C_{DL4} \frac{A_{c4}}{A_{B_3}} \sqrt{\frac{2g}{a_{B_1}}} \quad (2.75)
\]
Stating the above equations in the dimensionless form the desired solution is obtained by solving the following three equations:

\[
\begin{align*}
\hat{\eta}_o - \hat{\eta}_{B1} &= \frac{\sigma}{C_1} \left[\frac{d\hat{\eta}_{B1}}{d\theta} + \frac{A_{B2}}{A_{B1}} \frac{d\hat{\eta}_{B2}}{d\theta} + \frac{A_{B3}}{A_{B1}} \frac{d\hat{\eta}_{B3}}{d\theta} \right] \\
\hat{\eta}_{B1} - \hat{\eta}_{B2} &= \frac{\sigma}{C_2} \left[\frac{d\hat{\eta}_{B2}}{d\theta} \right] \\
\hat{\eta}_{B1} - \hat{\eta}_{B3} &= \frac{\sigma}{C_4} \left[\frac{d\hat{\eta}_{B3}}{d\theta} \right]
\end{align*}
\]

where \(\hat{\eta}_o\), \(\hat{\eta}_{B1}\) and \(\hat{\eta}_{B2}\) are defined by Eqs. (2.18), (2.34) and (2.35), respectively, and \(\hat{\eta}_{B3}\) is

\[
\hat{\eta}_{B3} = \hat{a}_{B3} \cos(\theta - \varepsilon_{B3})
\]

As before the above equations are solved by using complex numbers as follows:
1 Define the following constants

\[
\frac{\sigma}{C_1} = a, \quad \frac{\sigma}{C_2} = b, \quad \frac{\sigma}{C_4} = c, \quad \frac{A_{b_2}}{A_{b_1}} = A, \quad \frac{A_{b_3}}{A_{b_1}} = B, \quad \hat{\eta}_o = \text{Re}(e^{i\theta})
\]

2 Let

\[
\hat{\eta}_{b_1} = \text{Re}(e^{i(\theta-\varepsilon_{b_1})}) = r_1, \quad \hat{\eta}_{b_2} = \text{Re}(e^{i(\theta-\varepsilon_{b_2})}) = r_2, \quad \hat{\eta}_{b_3} = \text{Re}(e^{i(\theta-\varepsilon_{b_3})}) = r_3,
\]

\[
\frac{d\hat{\eta}_{b_1}}{d\theta} = ir_1, \quad \frac{d\hat{\eta}_{b_2}}{d\theta} = ir_2, \quad \frac{d\hat{\eta}_{b_3}}{d\theta} = ir_3.
\]

3 So the equations are reduced to

\[
1 = (ai + 1)r_1 + aAi r_2 + aB r_3 \tag{2.80}
\]

\[
0 = -r_1 + (bi + 1)r_2 + 0r_3 \tag{2.81}
\]

\[
0 = -r_1 + 0r_2 + (ci + 1)r_3 \tag{2.82}
\]

4 Solving the equations by matrix method:

\[
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix} =
\begin{pmatrix}
r_1 \\
r_2 \\
r_3
\end{pmatrix}
= \begin{pmatrix}
ai + 1 & aAi & aB \\
-1 & bi + 1 & 0 \\
-1 & 0 & ci + 1
\end{pmatrix}
\]

yields

\[
r_1 = \frac{(c-i)(b-i)}{X} \tag{2.84}
\]

\[
r_2 = \frac{-i(c-i)}{X} \tag{2.85}
\]

\[
r_3 = \frac{-i(b-i)}{X} \tag{2.86}
\]

\[
X = (ac + ab + bc + aBb + aAc - 1) + i(-aA + abc - a - b - c - aB)
\]

\[
\bar{X} = (ac + ab + bc + aBb + aAc - 1) - i(-aA + abc - a - b - c - aB)
\]

\[
XX = (ac + ab + bc + aBb + aAc - 1)^2 + (-aA + abc - a - b - c - aB)^2
\]
\[
\text{Re}(r_1) = \frac{b^2 \left(1 + aBc + c^2 \right) + c^2 \left(1 + aAb \right) + a(bA + Bc) + 1}{XX}
\]
\[
\text{Im}(r_1) = \frac{-a \left(1 + A + B + b^2 + c^2 + b^2c^2 + Bbc + Ac^2 + Bb^2 - bcB \right)}{XX}
\]
\[
\text{Re}(r_2) = \frac{-ab - aBb + aBc + 1 + c^2 - abc^2}{XX}
\]
\[
\text{Im}(r_2) = \frac{-(a + b + aA + aB + aBbc + ac^2 + bc^2 + aAc^2)}{XX}
\]
\[
\text{Re}(r_3) = \frac{-ac - aAc + abA - ab^2c + b^2 + 1}{XX}
\]
\[
\text{Im}(r_3) = \frac{-(a + c + aA + aB + abcA + ab^2 + cb^2 + aBb^2)}{XX}
\]

The amplitudes \(\hat{a}_{b1}, \hat{a}_{b2}, \) and \(\hat{a}_{b3} \) of bay 1, bays 2 and 3 are the magnitudes of the complex numbers \(r_1, r_2 \) and \(r_3 \), and the corresponding phase lags are the angles of the complex numbers:

\[
\hat{a}_{b1} = \sqrt{\text{Re}(r_1)^2 + \text{Im}(r_1)^2}
\]
\[
\varepsilon_{b1} = -\tan^{-1}\left(\frac{\text{Im}(r_1)}{\text{Re}(r_1)}\right)
\]
\[
\hat{a}_{b2} = \sqrt{\text{Re}(r_2)^2 + \text{Im}(r_2)^2}
\]
\[
\varepsilon_{b2} = -\tan^{-1}\left(\frac{\text{Im}(r_2)}{\text{Re}(r_2)}\right)
\]
\[
\hat{a}_{b3} = \sqrt{\text{Re}(r_3)^2 + \text{Im}(r_3)^2}
\]
\[
\varepsilon_{b3} = -\tan^{-1}\left(\frac{\text{Im}(r_3)}{\text{Re}(r_3)}\right)
\]
The velocities \(u_{c1} \) and \(u_{c2} \) through inlets 1 and 2, respectively, are given by Eqs. (2.47) and (2.48), and \(u_{c4} \) through inlet 4 is given by

\[
\begin{align*}
 u_{c4} &= u_{\text{max}4} \cos(\theta - \varepsilon_{v4}) \\
\end{align*}
\]

(2.93)

where \(u_{\text{max}4} \) is the maximum velocity through inlet 4 and \(\varepsilon_{v4} \) is the corresponding phase lags between this velocity and HW or LW in the ocean. Substituting for \(\eta_{B1} \) and \(\eta_{B3} \) from Eqs. (2.34) and (2.79) into Eq. (2.68) and combining Eqs. (2.93) and (2.68) we get the desired expression for \(u_{\text{max}4} \). Phase lag \(\varepsilon_{v4} = \varepsilon_{B3} - \pi/2 \).

2.3.4 Four Inlets and Three Bays with Two Inlets Connected to Ocean.

This system as defined in Figure 2.5 has three interconnected bays with inlets 2 and 4, while and inlets 1 and 3 connect bay 1 to the ocean. The velocities in inlets 1, 2, 3 and 4 are given by Eqs. (2.24), (2.26), (2.49) and (2.68), respectively.

The governing continuity equations are written as follows.

\[
\begin{align*}
 Q_1 + Q_3 &= u_{c1} A_{c1} + u_{c3} A_{c3} = A_{B1} \frac{d\eta_{B1}}{dt} + A_{B2} \frac{d\eta_{B2}}{dt} + A_{B3} \frac{d\eta_{B3}}{dt} \\
 Q_2 &= u_{c2} A_{c2} = A_{B2} \frac{d\eta_{B2}}{dt} \\
 Q_4 &= u_{c4} A_{c4} = A_{B3} \frac{d\eta_{B3}}{dt} \\
\end{align*}
\]

(2.94)

(2.95)

(2.96)

Next, substituting the velocity expressions in the above equations yields

\[
\begin{align*}
 \eta_o - \eta_{B1} &= \frac{1}{C_1 + C_3} \left[\frac{d\eta_{B1}}{dt} + A_{B2} \frac{d\eta_{B2}}{dt} + A_{B3} \frac{d\eta_{B3}}{dt} \right] \\
\end{align*}
\]

(2.97)

\[
\begin{align*}
 \eta_{B1} - \eta_{B2} &= \frac{1}{C_2} \left[\frac{d\eta_{B2}}{dt} \right] \\
\end{align*}
\]

(2.98)
Figure 2.5 Three bays and four inlets, two inlets connect to ocean.

\[
\eta_{B1} - \eta_{B3} = \frac{1}{C_4} \left[\frac{d\eta_{B1}}{dt} \right]
\]

(2.99)

where \(C_1, C_2, C_3 \) and \(C_4 \) are as expressed by Eqs. (2.31), (2.33), (2.55) and (2.75), respectively.

Now we may state the above equations in the dimensionless form as

\[
\hat{\eta}_o - \hat{\eta}_{B1} = \frac{\sigma}{C_1 + C_3} \left[\frac{d\hat{\eta}_{B1}}{d\theta} + \frac{A_{B2}}{A_{B1}} \frac{d\hat{\eta}_{B2}}{d\theta} + \frac{A_{B3}}{A_{B1}} \frac{d\hat{\eta}_{B3}}{d\theta} \right]
\]

(2.100)

\[
\hat{\eta}_{B1} - \hat{\eta}_{B2} = \frac{\sigma}{C_2} \left[\frac{d\hat{\eta}_{B2}}{d\theta} \right]
\]

(2.101)

\[
\hat{\eta}_{B1} - \hat{\eta}_{B3} = \frac{\sigma}{C_4} \left[\frac{d\hat{\eta}_{B3}}{d\theta} \right]
\]

(2.102)

where \(\hat{\eta}_o, \hat{\eta}_{B1}, \hat{\eta}_{B2} \) and \(\hat{\eta}_{B3} \) are defined by Eqs. (2.18), (2.34), (2.35) and (2.79), respectively. These equations are solved as follows:
1 Define the following constants

\[\frac{\sigma}{C_1 + C_3} = a, \quad \frac{\sigma}{C_2} = b, \quad \frac{\sigma}{C_4} = c, \quad \frac{A_{B2}}{A_{B1}} = A, \quad \frac{A_{B3}}{A_{B1}} = B, \quad \hat{\eta}_o = \text{Re}(e^{\iota \theta}) \]

2 Let

\[\hat{\eta}_{B1} = \text{Re}(e^{i(\theta - \varepsilon_{a1})}) = r_1, \quad \hat{\eta}_{B2} = \text{Re}(e^{i(\theta - \varepsilon_{a2})}) = r_2, \quad \eta_{B3} = \text{Re}(e^{i(\theta - \varepsilon_{a3})}) = r_3, \]

\[\frac{d\hat{\eta}_{B1}}{d\theta} = ir_1, \quad \frac{d\hat{\eta}_{B2}}{d\theta} = ir_2, \quad \frac{d\hat{\eta}_{B3}}{d\theta} = ir_3 \]

3 So the equations are reduced to

\[1 = (ai + 1)r_1 + aAir_2 + aBir_3 \quad (2.103) \]

\[0 = -r_1 + (bi + 1)r_2 + 0r_3 \quad (2.104) \]

\[0 = -r_1 + 0r_2 + (ci + 1)r_3 \quad (2.105) \]

4 Solve these equations by matrix method:

\[\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} = \begin{pmatrix} ai + 1 & aAi & aBi \\ -1 & bi + 1 & 0 \\ -1 & 0 & ci + 1 \end{pmatrix} \]

(2.106)

5 Thus we obtain

\[r_1 = \frac{(c-i)(b-i)}{X} \quad (2.107) \]

\[r_2 = \frac{-i(c-i)}{X} \quad (2.108) \]

\[r_3 = \frac{-i(b-i)}{X} \quad (2.109) \]

\[X = (ac + ab + bc + aBb + aAc - 1) + i(-aA + abc - a - b - c - aB) \]

\[\bar{X} = (ac + ab + bc + aBb + aAc - 1) - i(-aA + abc - a - b - c - aB) \]
\[XX = (ac + ab + bc + aBb + aAc - 1)^2 + (-aA + abc - a - b - c - aB)^2 \]

\[
\text{Re}(r_1) = \frac{b^2 (1 + aBc + c^2) + c^2 (1 + aAb) + a(bA + Bc) + 1}{XX}
\]

\[
\text{Im}(r_1) = \frac{-a(1 + A + B + b^2 + c^2 + b^2 c^2 + Bbc + Aec^2 + Bb^2 - bcB)}{XX}
\]

\[
\text{Re}(r_2) = \frac{-ab - aBb + aBc + 1 + c^2 - abc^2}{XX}
\]

\[
\text{Im}(r_2) = \frac{-(a + b + aA + ab + aBbc + ac^2 + bc^2 + aAc^2)}{XX}
\]

\[
\text{Re}(r_3) = \frac{-ac - aAc + ab^2 c + b^2 + 1}{XX}
\]

\[
\text{Im}(r_3) = \frac{-(a + c + aA + aB + abcA + ab^2 + cb^2 + aBb^2)}{XX}
\]

The amplitudes \(\hat{a}_{b1}, \hat{a}_{b2}, \) and \(\hat{a}_{b3} \) of bays 1, 2 and 3 are the magnitudes of the complex numbers \(r_1, r_2 \) and \(r_3 \), and the corresponding phase lags are the angles of the complex numbers:

\[
\hat{a}_{b1} = \sqrt{\text{Re}(r_1)^2 + \text{Im}(r_1)^2} \quad (2.110)
\]

\[
\hat{a}_{b2} = \sqrt{\text{Re}(r_2)^2 + \text{Im}(r_2)^2} \quad (2.112)
\]

\[
\hat{a}_{b3} = \sqrt{\text{Re}(r_3)^2 + \text{Im}(r_3)^2} \quad (2.114)
\]

\[
\varepsilon_{b1} = -\tan^{-1}\left(\frac{\text{Im}(r_1)}{\text{Re}(r_1)}\right) \quad (2.111)
\]

\[
\varepsilon_{b2} = -\tan^{-1}\left(\frac{\text{Im}(r_2)}{\text{Re}(r_2)}\right) \quad (2.113)
\]
\[\varepsilon_{h3} = -\tan^{-1}\left(\frac{\text{Im}(r_3)}{\text{Re}(r_3)}\right) \]

(2.115)

Then the velocities \(u_{c1}, u_{c2}, u_{c3} \) and \(u_{c4} \) are given by Eqs. (2.47), (2.48), (2.67) and (2.93), respectively.
3.1 Stability Problem Definition

An inlet is considered stable when after a small change the cross-sectional area returns to its equilibrium value. Each inlet is subject to two opposing forces, the waves on one hand, which tend to push sand into the inlet, and the tidal current on the other hand, which tries to carry sand out of the channel back to the sea or the bay. The size of the inlet and its stability are determined by the relative strengths of these two opposing forces.

3.2 Stability Criteria

Inlet stability as considered here basically deals with the equilibrium between the inlet cross-section area and the hydraulic environment. The pertinent parameters are the actual tide-maximum bottom shear stress $\hat{\tau}$ and the equilibrium shear stress $\hat{\tau}_{eq}$. The equilibrium shear stress is defined as the bottom stress induced by the tidal current required to flush-out sediment carried into the inlet. When $\hat{\tau}$ equals $\hat{\tau}_{eq}$ the inlet is considered to be in equilibrium. When $\hat{\tau}$ is larger than $\hat{\tau}_{eq}$ the inlet is in the scouring mode, and when $\hat{\tau}$ is smaller $\hat{\tau}_{eq}$ the inlet is in the shoaling mode. The value of equilibrium shear stress depends on the waves and associated littoral drift and sediment. Considering inlets at equilibrium on various coasts, Bruun (1978) found the value of equilibrium stress in fairly narrow range:

$$3.5 Pa < \hat{\tau}_{eq} < 5.5 Pa$$
The value of actual shear stress is obtained from

\[\tau = \rho F u_{\text{max}} | u_{\text{max}} | \]

(3.1)

where \(F \) is the friction coefficient, a function of bottom roughness, \(k \), \(u_{\text{max}} \) is the maximum tidal velocity in the inlet, a function of area and length of the inlet, as discussed in Chapter 2 and \(\rho \) is the fluid density. Therefore, \(\hat{\tau} \) can be written as a function of following form

\[\hat{\tau} = f (A, L, k, m) \]

where \(m \) is the sum of entrance and exit losses. The plotted function \(\hat{\tau}(A) \) is called a closure curve, as shown in Figure 3.1. It is clear from the calculation shown in the Appendix B that \(\hat{\tau} \) is a strong function of \(A \) and a weak function of \(L, m, k \). The strong dependence of \(\hat{\tau} \) on \(A \) explains why inlets adjust to changes in the hydraulic environment primarily via a change in the cross-sectional area.

3.2.1 Stability Analysis for One-Inlet Bay System

Making use of the Escoffier (1940) diagram, Figure 3.2, one can study the response of the inlet to change in area. In the Figure, \(A_I \) and \(A_{II} \) both represent equilibrium flow areas, with \(A_I \) representing unstable equilibrium and \(A_{II} \) representing stable equilibrium. If the inlet cross-sectional area \(A \) were reduced but remained larger than \(A_I \), the actual shear stress would be larger than the equilibrium shear stress and \(A \) would return to the value \(A_{II} \). If the cross-sectional area were reduced below \(A_I \), the shear stress would become lower than its equilibrium value and the inlet would close. If \(A \) became larger than \(A_{II} \), the actual shear stress would become larger than equilibrium value and \(A \) would return to \(A_{II} \). Note that the equilibrium condition only exists if the line \(\hat{\tau} = \hat{\tau}_{eq} \) intersects the closure curve \(\hat{\tau} = \hat{\tau}(A) \).
Figure 3.1 Closure curves (source: van de Kreeke, 1985)

Figure 3.2 Escoffier diagram (source: van de Kreeke, 1985)
The equilibrium interval for the stable cross-section, A_{II}, ranges from A_I to infinity.

3.2.2 Stability of Two Inlets in a Bay

Similar to a single inlet, it can be shown that shear stresses $\hat{\tau}_1$ and $\hat{\tau}_2$ for two inlets in a bay strongly depend on A_1 and A_2 and are weak functions of $(L_1, k_1, m_1, L_2, k_2, m_2)$. The functions $\hat{\tau}_1(A_1, A_2)$ and $\hat{\tau}_2(A_1, A_2)$ are referred to as a closure surfaces. The shape of $\hat{\tau}_2(A_1, A_2)$ is qualitatively illustrated in Figure 3.3. For a constant A_1, the curve $\hat{\tau}_1(A_1)$ is similar to the closure curve shown in Figure 3.1. The value of $\hat{\tau}_2$ decreases with increasing A_1.

With the help of a closure surface in Figure 3.3, the loci of (A_1, A_2) for which $\hat{\tau}_2 = \hat{\tau}_{eq}$, $\hat{\tau}_2 = \hat{\tau}_{eq} + 1$, $\hat{\tau}_2 = \hat{\tau}_{eq} - 1$ are plotted in Figure 3.4. The locus of $\hat{\tau}_2 = \hat{\tau}_{eq}$ is referred to as the equilibrium flow curve for Inlet 2. Using the same reasoning as for a single inlet and assuming that the cross-sectional area of Inlet 1 is constant, it follows that if $A_2 = A_I$, Inlet 2 will shoal and close; if $A_2 = A_{II}$, Inlet 2 will scour until the cross-sectional area attains a value A_s, and if $A_2 = A_{III}$, Inlet 2 will shoal until the cross-sectional area attains the value A_s.

The locus of (A_1, A_2) for which Inlet 2 has a stable equilibrium flow area is the enhanced (by a thicker line) part of the equilibrium flow curve for Inlet 2. Similarly, the locus of (A_1, A_2) for which Inlet 1 has a stable equilibrium flow area is the enhanced part of the equilibrium flow curve for Inlet 1. The condition for the existence of stable equilibrium flow areas for both Inlet 1 and Inlet 2 is that the enhanced parts of the equilibrium flow curves intersect. The common equilibrium interval of the two is
Figure 3.3 Closure surfaces (source: van de Kreeke, 1985)

Figure 3.4 Equilibrium flow curve for Inlet 2 (source: van de Kreeke, 1985)
Figure 3.5 Possible configurations of equilibrium flow curves for a two-inlet bay system. Stable equilibrium flow area is represented by \bullet and unstable equilibrium is represented by \circ. The hatched area in (a) represents the domain of the stable equilibrium flow area (source: van de Kreeke, 1990).

3.3 Stability Analysis with the Linearized Model

Due to the complex nature of sediment transport by waves and currents it is difficult to carry out an accurate analysis of the stability of single or multiple inlet
systems. We will therefore attempt to carry out an approximate analysis based on the van de Kreeke (1990) linearized lumped parameter model.

The justification for use of simple model is that for purpose of this study the stability analysis serves to illustrate a concept rather than to provide exact numerical results. Accurate numerical values can only be obtained by using a full-fledged two-dimension tidal model to describe the hydrodynamics of the bay.

3.3.1 Linearized lumped parameter model for \(N \) Inlets in a Bay

The basic assumptions of the Linearized lumped parameter model are as follows:

1. The linearized model assumes that the ocean tide and the velocity are simple harmonic functions.

2. The water level in the bay fluctuates uniformly and the bay surface area remains constant.

3. Hydrostatic pressure, and shear stress distribution along the wetted perimeter of the inlet cross-section is uniform.

4. For a given bay area and inlet characteristics, the tidal amplitude and/or tidal frequency must be sufficiently large for equilibrium to exist. Similarly, larger the littoral drift due to waves, larger the equilibrium shear stress required to balance it and therefore the equilibrium velocity, the larger the required bay surface area, tidal amplitude and the tidal frequency or, in other words, Eq. (3.17) and Eq. (3.19) must be satisfied for the existence of equilibrium areas.

5. There is no fresh water discharge in the bays.

6. In a shallow bay the effect of dissipation of tidal energy cannot be ignored, especially if the bay is large.

Inlet flow dynamics of the flow in the inlets are governed by the longitudinal pressure gradient and the bottom shear stress, van de Kreeke (1967),

\[
0 = -\frac{1}{\rho} \frac{\partial p}{\partial x} - \frac{\tau}{\rho h}
\]

(3.2)

in which \(p \) is the pressure, \(\rho \) is the water density, \(h \) is the depth and \(\tau \) is the bottom shear stress. This stress is related to the depth mean velocity \(u \)
\[\tau = \rho F u |u| \]

(3.3)

where \(F = f/8 \), is the friction coefficient. Integration of Eq. (3.2) (with respect to the longitudinal \(x \)-coordinate) between the ocean and the bay yields (van de Kreeke 1988).

\[u_i |u_i| = \frac{2gR_i}{m_i R_i + 2F_i L_i} (\eta_o - \eta_B) \]

(3.4)

In Eq. (3.4), \(u_i \) refers to the cross-sectional mean velocity of the \(i \)th inlet, \(g \) is the acceleration due to gravity, \(m_i \) is the sum of exit and entrance losses, \(R_i \) is the hydraulic radius of the inlet, \(L_i \) is the length of the inlet, \(\eta_o \) is the ocean tide, and \(\eta_B \) is the bay tide. The velocity \(u_i \) is positive when going from ocean to bay.

Assuming the bay surface area to fluctuate uniformly, flow continuity can be expressed as

\[\sum_{i=1}^{N} u_i A_i = A_B \frac{d\eta_B}{dt} \]

(3.5)

in which \(A_i \) is the cross-sectional area, \(A_B \) is the bay surface area and \(t \) is time.

Considering \(u_i \) to be a simple harmonic function of \(t \), Eq. (3.4) is linearized as shown in Appendix B to yield

\[\frac{8}{3\pi} u_{\text{max}} u_i = \frac{2gR_i}{m_i R_i + 2F_i L_i} (\eta_o - \eta_B) \]

(3.6)

in which \(u_{\text{max}} \) is the amplitude of the current velocity in the \(i \)th inlet. It follows from Eq. (3.5) and Eq. (3.6) that for a simple harmonic ocean tide (in complex notation)

\[\eta_o(t) = a_o e^{j\omega t} \]

(3.7)

and assuming \(A_i \) and \(A_B \) to be constant, we obtain

\[u_i = u_{\text{max}} e^{j(\sigma t + \epsilon_i)} \]

(3.8)
where the phase angle ε_v is considered to be the same for all inlets. Differentiating Eq. (3.6) with respect to t, eliminating $d\eta_B/dt$ between Eq. (3.5) and Eq. (3.6), and making use of the expressions for u_i and η_o yields an equation for u_i and ε_v

$$\sum_{i=1}^{N} u_{max,i}A_i + \frac{1}{2g} \frac{8}{3\pi} A_B B_i u_{max,i}^2 j\sigma = A_B a_o j\sigma e^{-j\varepsilon_v},$$

(3.9)

in which the dimensionless resistance factor B_i is defined as

$$B_i = \left[\frac{R_i}{m_i R_i + 2 F_i L_i} \right]^{-1}$$

(3.10)

where B_i is the function of A_i. Now, equating the real and imaginary parts of Eq. (3.9) and eliminating the phase angle ε_v yields the equation for $u_{max i}$

$$\left[\frac{1}{2g} \right]^2 \frac{8}{3\pi} [A_B \sigma]^2 B_i^2 u_{max,i}^4 = [A_B a_o \sigma]^2 - \left[\sum_{i=1}^{N} u_{max,i} A_i \right]^2$$

(3.11)

For equilibrium flow $\hat{\tau}_i = \hat{\tau}_{eqi}$. Using linearized version in Eq. (3.6) and Eq. (3.3), the equilibrium velocity can be written as

$$u_{eqi} = \sqrt{\frac{\tau_{eqi}}{8/3\pi \rho F_i}}$$

(3.12)

where the approximate value of $\hat{\tau}_{eqi}$ can be taken from Mehta and Christensen (1983).

For equilibrium flow areas $u_{max i} = u_{max eqi}$, substituting this value Eq. (3.11) becomes:

$$\left[\frac{1}{2g} \right]^2 \frac{8}{3\pi} [A_B \sigma]^2 B_i^2 u_{max, eqi}^4 = [A_B a_o \sigma]^2 - \left[\sum_{i=1}^{N} u_{max, eqi} A_i \right]^2$$

(3.13)

When the maximum tidal velocity in all the inlets equals the corresponding equilibrium value, i.e., $u_{max i} = u_{max eq_i}$ for $i = 1, 2, \ldots, N$, the difference between the bay and the ocean tides becomes constant. So from Eq. (3.4) it follows that
\[B_i u_{\text{max,eqi}}^2 = B_2 u_{\text{max,eq2}}^2 = \cdots = B_i u_{\text{max,eqi}}^2 = B_N u_{\text{max,eqN}}^2 \]

(3.14)

Eq. (3.13) and Eq. (3.14) constitute a set of \(N \) simultaneous equations with \(N \) unknowns \([A_1, A_2, \ldots, A_N]\). In general, more than one set of equilibrium flow areas \([A_1, A_2, \ldots, A_N]\) will satisfy these equations. Since the dimensionless resistance factor \(B_i \) is a function of \(A_i \). Therefore, whether for a given ocean tide \((a, \sigma)\) and bay surface area \((A_B)\), Eq. (3.13) and Eq. (3.14) yield sets of solutions \([A_1, A_2, \ldots, A_N]\) that are real and positive depends on the particular form of \(R_i = f(A_i) \).

The function \(R_i = f(A_i) \) plays an important role in the hydrodynamic efficiency of an inlet. For a given head difference, exit and entrance loss coefficients, friction factor and inlet length, the maximum tidal velocity increases with the increasing value of \(R \), see Eq. (3.4).

Therefore, larger the value of \(R \), for a given value of \(A \), larger the discharge. For a rectangular channel, \(R_i = \frac{A_i}{W_i} \), and for triangular channel \(R_i = a_i \sqrt{A_i} \) (See Appendix B).

Analytical solutions to equation Eq. (3.13) and Eq. (3.14) can be found by restricting attention to the friction-dominated flow in the inlets, i.e. \(m = 0 \)

From Eq. (3.10) with \(m = 0 \), we obtain

\[B_i = \frac{2F_iL_i}{R_i} \]

(3.15)

For rectangular inlets, substituting \(R_i = \frac{A_i}{W_i} \) in Eq. (3.15) and then in Eq. (3.13) and Eq. (3.14) we get
\[
\frac{A_i^2}{(F_i L_i W_i u^2_{eqi})^2} = \frac{(A_B a_o \sigma)^2 \pm \sqrt{(A_B a_o \sigma)^4 - 4 \left(\frac{8}{3\pi} \right)^2 \left(\frac{1}{2g} \right)^2 (A_B \sigma)^2 \left(F_i L_i W_i u^3_{eqi} + \ldots + F_N L_N W_N u^3_{eqN} \right)^2}}{2 \left(F_i L_i W_i u^3_{eqi} + \ldots + F_N L_N W_N u^3_{eqN} \right)^2}
\] (3.16)

When any \(A_i\) (from Eq. (3.16)) is known, the cross-sectional areas of the other inlets follow from Eq. (3.14), with \(B_i\) given by Eq. (3.15), provided that

\[
A_B \sigma a_o^2 > 2 \left(\frac{8}{3\pi} \right) \left(\frac{1}{2g} \right) (F_i L_i W_i u^3_{eqi} + \ldots + F_N L_N W_N u^3_{eqN})
\] (3.17)

This is a quadratic equation in \(A_i^2\) for which we have two sets of real and positive roots and two sets of complex roots.

For the triangular cross-section, \(R_i = a_i \sqrt{A_i}\), substituting this in Eq. (3.13) and Eq. (3.14) we get,

\[
\left[u_{eq1} \left(\frac{F_i L_i a_i}{F_i L_i a_i} \right)^2 + \ldots + u_{eqN} \left(\frac{F_N L_N a_i}{F_N L_N a_N} \right)^2 \right] A_i^3 - \left(A_B a_o \sigma \right)^2 A_i + \left(\frac{8}{3\pi} \right)^2 \left(A_B \sigma \right)^2 \left(\frac{F_i L_i}{a_i g} \right)^2 u_{eqi}^4 = 0
\] (3.18)

in which sets of \(A_i\) are given by Eq. (3.18) (as we have two real and positive solution for \(A_i\)). When any \(A_i\) is known, the cross-sectional areas of the other \((N-1)\) inlets follow from Eq. (3.14) with \(B_i\) given by Eq. (3.15). One root of Eq. (3.18) is always negative. The other two are real and positive roots provided that

\[
A_B \sigma a_o^2 > \frac{3 \sqrt{3}}{2} \left(\frac{8}{3\pi} \right)^2 \left[u_{eq1}^5 \left(\frac{F_i L_i}{a_i g} \right)^2 + \ldots + u_{eqN}^5 \left(\frac{F_N L_N}{a_N g} \right)^2 \right]
\] (3.19)
The above stability concept, when applied to a multiple-bay inlet system, becomes complicated because the loci of the set of the values \([A_1, A_2, ..., A_N]\) for which the tidal maximum of the bottom shear stress equals the equilibrium stress, are rather complicated surfaces and make it difficult to determine whether inlets are in a scouring mode or shoaling mode. With some simplifying assumptions, the stability analysis for a multiple-inlet system can be reduced to that for a two-inlet system. This is considered next in the context of the St. Andrew Bay system.

3.4 Application to St. Andrew Bay System

In the above model if \(N=2\), the model can be applied to the two inlet system. The equilibrium flow curves for Inlet 1 and Inlet 2 are calculated from Eq. (3.11) with \(u=u_{eq}\). The equilibrium flow areas are given by the solution of Eq. (3.16) for rectangular inlet and Eq. (3.18) for triangular cross-section. Figure 3.6 illustrates the equilibrium flow curve. A line can be drawn passing from the intersection of two equilibrium flow areas. Above the line \(B_1 > B_2\) and therefore \(u_1 < u_2\). Figure 3.6 can be elaborated as follows:

1. When the point defined by the actual cross-sectional areas \([A_1, A_2]\) is located in the vertically hatched zone or anywhere outside the curves, (Zone-1), both inlets close.
2. When the point is located in the crosshatched zone, (Zone-2), Inlet 1 will remain open and Inlet 2 will close.
3. When the point is located in the diagonally hatched zone, (Zone-3), Inlet 1 will close and Inlet 2 will remain open.
4. Finally, when the point is located in the blank zone, (Zone-4), one inlet will close and the other will remain open. However, in this case which one closes depends on the relative rates of scouring and or/shoaling.
The St. Andrew Bay system is similar to the case of two inlets in a bay. In reality there are three interconnected bays, but only one is connected with the Gulf. So there is no forcing due to ocean tide from the other two bays. Thus, all the bays collectively behave as if there is only one bay connected by two inlets. So the linear model for \(N \) inlets can be applied to the St. Andrew system, where \(N = 2 \). The development of equilibrium curves for this case is discussed in Chapter 5.

Figure 3.6 Equilibrium flow curves for two inlets in a bay (source: van de Kreeke, 1990)
4.1 Description of Study Area

St. Andrew Bay is located in Bay County on the Gulf of Mexico coast of Florida’s panhandle. It is part of a three-bay and two-inlet complex. One of these inlets is St. Andrew Bay Entrance and the other is East Pass, which are connected to St. Andrew Bay on one side and the Gulf on the other. The other two bays are West Bay and the East Bay, which connect to St. Andrew Bay, as shown in the Figure 4.1. Note that West Bay also includes a portion called North Bay. Prior to 1934, East Pass was the natural connection between St. Andrew Bay and the Gulf. In 1934, St. Andrew Bay Entrance (Figure 4.2) was constructed 11 km west of East Pass through the barrier island by the federal government to provide a direct access between the Gulf and Panama City. The entrance has since been maintained by the U.S Army Corps of Engineers (USACE), Mobile District. The St. Andrew Bay State Recreational Area is located on both sides of this entrance, which has two jetties 430 m apart to prevent the closure of the inlet.

The interior shoreline of the entrance has continually eroded since it’s opening. An environmentally sensitive fresh water lake located in the St. Andrew Bay State Recreational Area is vulnerable to the shoreline erosion and USACE has placed dredged soil to mitigate shoreline erosion.

East Pass finally closed in the 1998, due to the long-term effect of the opening of St. Andrew Entrance. In December 2001, a new East Pass was opened (Figure 4.3), and the effect of this new inlet is presently being monitored over the entire system.
Figure 4.1 Map showing the three bays and two inlets and bathymetry of the study area. Dots show location of tide stations.

Figure 4.2 Aerial view of St. Andrew Bay Entrance in 1993. Jetties are ~430 m apart.
4.2 Summary of Field Data

Three hydrographic surveys were done by the University of Florida’s Department of Civil and Coastal Engineering in the years 2001 and 2002. Figure 4.4 shows the bathymetry of St. Andrew Bay Entrance and the different cross-sections measured during the surveys. Cross-sections A-1, A-2 and B-1, B-2 were measured in September 2001, A’-1, A’-2, B’-1, B’-2, C’-1, C’-2, in December 2001, and D-1, D-2 in March 2002. Flow discharges, vertical velocity profiles and tide were also recorded. The tide gage (in the September 2001 survey only) was located in waters (Grand Lagoon) close to the entrance channel. The discharge and velocity data was measured with a vessel-mounted Acoustic Doppler Current Profiler, or ADCP (Workhorse 1200 kHz, RD Instruments, San Diego, CA), and the tide with an ultrasonic recorder (Model #220, Infinities USA, Daytona Beach, FL). The coordinates of the cross-section end-points are given in Table 4.1.
Table 4.1 Locations of St. Andrew Bay channel cross-sections

<table>
<thead>
<tr>
<th>Section</th>
<th>Side</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Northing</th>
<th>Easting</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A-1</td>
<td>30 07.70</td>
<td>-85 43.36</td>
<td>412452.62</td>
<td>1613441.90</td>
<td>09/18/01</td>
</tr>
<tr>
<td>A</td>
<td>A-2</td>
<td>30.07.44</td>
<td>-85 43.28</td>
<td>410875.80</td>
<td>1613857.60</td>
<td>09/18/01</td>
</tr>
<tr>
<td>B</td>
<td>B-1</td>
<td>30 07.35</td>
<td>-85 43.91</td>
<td>410315.83</td>
<td>1610524.00</td>
<td>09/18/01</td>
</tr>
<tr>
<td>B</td>
<td>B-2</td>
<td>30 07.17</td>
<td>-85 43.71</td>
<td>409240.00</td>
<td>1611584.60</td>
<td>09/18/01</td>
</tr>
<tr>
<td>A’</td>
<td>A’-1</td>
<td>30 07.18</td>
<td>-85 43.72</td>
<td>409256.63</td>
<td>1611563.75</td>
<td>12/18/01</td>
</tr>
<tr>
<td>A’</td>
<td>A’-2</td>
<td>30 07.40</td>
<td>-85 43.91</td>
<td>410626.10</td>
<td>1610534.09</td>
<td>12/18/01</td>
</tr>
<tr>
<td>B’</td>
<td>B’-1</td>
<td>30 07.43</td>
<td>-85 43.30</td>
<td>410766.60</td>
<td>1613757.91</td>
<td>12/18/01</td>
</tr>
<tr>
<td>B’</td>
<td>B’-2</td>
<td>30 07.68</td>
<td>-85 43.44</td>
<td>412309.71</td>
<td>1613034.11</td>
<td>12/18/01</td>
</tr>
<tr>
<td>C’</td>
<td>C’-1</td>
<td>30 07.06</td>
<td>-85 43.90</td>
<td>408542.02</td>
<td>1610606.43</td>
<td>12/18/01</td>
</tr>
<tr>
<td>C’</td>
<td>C’-2</td>
<td>30 07.27</td>
<td>-85 44.01</td>
<td>409822.96</td>
<td>1610030.59</td>
<td>12/18/01</td>
</tr>
<tr>
<td>D</td>
<td>D-1</td>
<td>30 07.65</td>
<td>-85 43.58</td>
<td>412134.85</td>
<td>1612294.58</td>
<td>03/28/02</td>
</tr>
<tr>
<td>D</td>
<td>D-2</td>
<td>30 07.65</td>
<td>-85 43.58</td>
<td>412134.85</td>
<td>1612294.58</td>
<td>03/28/02</td>
</tr>
</tbody>
</table>

Measurements were also taken at the new East Pass after it’s reopening in December 2001. The locations of the East Pass cross-section coordinate end points are given in Table 4.2. Flow cross-section and vertical velocity profiles were measured along cross-section E in December 2001 and F in March 2002.

Table 4.2 Locations of East Pass channel cross-sections

<table>
<thead>
<tr>
<th>Section</th>
<th>Side</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Northing</th>
<th>Easting</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E-1</td>
<td>30 03.78</td>
<td>-85 37.07</td>
<td>388325.56</td>
<td>1646376.03</td>
<td>12/19/01</td>
</tr>
<tr>
<td>E</td>
<td>E-2</td>
<td>30 03.79</td>
<td>-85 37.12</td>
<td>388371.27</td>
<td>1646103.36</td>
<td>12/19/01</td>
</tr>
<tr>
<td>F</td>
<td>F-1</td>
<td>30 03.78</td>
<td>-85 37.07</td>
<td>388325.55</td>
<td>1646376.03</td>
<td>03/27/02</td>
</tr>
<tr>
<td>F</td>
<td>F-2</td>
<td>30 03.79</td>
<td>-85 37.12</td>
<td>388371.26</td>
<td>1646103.35</td>
<td>03/27/02</td>
</tr>
</tbody>
</table>
4.2.1 Bathymetry

The bathymetry of the study area is shown in Figure 4.1. During the hydrographic surveys the bottom depth was measured by the ADCP at all cross-sections shown in Figure 4.4. These have been compared with a bathymetric survey of 2000. Figures 4.5 and 4.6 are example of measurements along cross-sections A and F, respectively. The trends in the two sets of depths are qualitatively (although not entirely) comparable.

Areas, mean depths and widths are summarized in Table 4.3.

Table 4.3 Cross-section area, mean depths and width

<table>
<thead>
<tr>
<th>Section</th>
<th>Cross-section Area (m²)</th>
<th>Width (m)</th>
<th>Mean Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6250</td>
<td>493</td>
<td>11.0</td>
</tr>
<tr>
<td>B</td>
<td>6600</td>
<td>457</td>
<td>10.6</td>
</tr>
<tr>
<td>A’</td>
<td>5210</td>
<td>525</td>
<td>10.0</td>
</tr>
<tr>
<td>B’</td>
<td>5640</td>
<td>544</td>
<td>11.0</td>
</tr>
<tr>
<td>C’</td>
<td>5220</td>
<td>425</td>
<td>11.5</td>
</tr>
<tr>
<td>D</td>
<td>5970</td>
<td>528</td>
<td>11.9</td>
</tr>
<tr>
<td>E</td>
<td>255</td>
<td>109</td>
<td>3.0</td>
</tr>
<tr>
<td>F</td>
<td>300</td>
<td>85</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Figure 4.5 Cross-section A in St. Andrew Bay Entrance measured and compared with 2000 bathymetry. Distance is measured from point A-1. The datum is mean tide level (source: Jain and Mehta, 2001)

Figure 4.6 Cross-section F in East Pass measured by ADCP. Distance is measured from point F-1. The datum is mean tide level (source: Jain and Mehta, 2002)
4.2.2 Tides

As noted, tide was measured in September 2001 in Grand Lagoon close to the entrance channel, at Lat: 30 07.9667, Long: -85 43.6667. Tide variation in the channel was compared with the predicted National Ocean Service (NOS) tide at St. Andrew Bay channel with reference station at Pensacola after applying the correction factors for the range and the lag. The measured tide is shown in Figure 4.7 and the corresponding NOS tide in Figure 4.8. Both show general similarities, although the measured one should be deemed more accurate. The data indicate a weak semi-diurnal signature with a range variation of 0.11 to 0.18 m. In the month of December and March no tides were measured, only the NOS tides were reported using the tide at Pensacola; see Figure 4.9 and Figure 4.10.

For East Pass the same tide was assumed as for St. Andrew Bay Entrance. Five other NOS stations are also located in the study area as shown in Figure 4.1. The ranges of tides for September 2001, December 2001 and March 2002 at these stations are given in the Table 4.4. These tides were found by applying correction factors for the range and for the lag (see Appendix C). The Gulf tidal range, \(2a_o\), was obtained by applying an amplitude correction factor to the tide measured at the Grand Lagoon gauge (see calculations in Appendix C). Semi-diurnal tides were reported in September 2001 with the tidal period of 12.42 h. The tides in December 2001 were of mixed nature with a period of approximately 18 h. In contrast, diurnal tides were reported in March 2002 with the period of 25.82 h. The approximate tide level in each bay was then found by weighted-averaging the tide over the number of stations in that bay. The phase lag between the tides of all the stations were calculated by plotting all the tides in Figure 4.10, and the results are summarized in Table 4.5.
Figure 4.7 Measured tide in Grand Lagoon on September 18-19, 2001. The datum is MLLW (source: Jain and Mehta, 2001)

Figure 4.8 NOS predicted tide at St. Andrew Bay Entrance on September 18-19, 2001; reference station is Pensacola. The datum is MLLW.
Figure 4.9 NOS predicted tide in St. Andrew Bay Entrance on December 18-19, 2001; reference station is Pensacola. The datum is MLLW.

Figure 4.10 Tide at all selected NOS stations in March 2002.
Table 4.4 Tidal ranges in September 2001, December 2001 and March 2002.

<table>
<thead>
<tr>
<th>S No</th>
<th>Station Name</th>
<th>September Range (m)</th>
<th>December Range (m)</th>
<th>March Range (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gulf of Mexico (“Ocean” tide)</td>
<td>0.216</td>
<td>0.572</td>
<td>0.425</td>
</tr>
<tr>
<td>2</td>
<td>Laird Bayou, East Bay</td>
<td>0.236</td>
<td>0.624</td>
<td>0.465</td>
</tr>
<tr>
<td>3</td>
<td>Parker, East Bay</td>
<td>0.236</td>
<td>0.624</td>
<td>0.465</td>
</tr>
<tr>
<td>4</td>
<td>Lynn Haven North Bay</td>
<td>0.236</td>
<td>0.624</td>
<td>0.465</td>
</tr>
<tr>
<td>5</td>
<td>Panama City, St. Andrew Bay</td>
<td>0.203</td>
<td>0.535</td>
<td>0.397</td>
</tr>
<tr>
<td>6</td>
<td>Channel Entrance, St. Andrew Bay</td>
<td>0.197</td>
<td>0.520</td>
<td>0.386</td>
</tr>
<tr>
<td>7</td>
<td>West Bay Creek</td>
<td>0.236</td>
<td>0.624</td>
<td>0.465</td>
</tr>
</tbody>
</table>

Table 4.5 Phase lags between the stations and the ocean tide.

<table>
<thead>
<tr>
<th>S No</th>
<th>Stations</th>
<th>Time Lag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gulf of Mexico (“Ocean” tide)</td>
<td>0 h</td>
</tr>
<tr>
<td>2</td>
<td>Laird Bayou, East Bay</td>
<td>+ 2 h</td>
</tr>
<tr>
<td>3</td>
<td>Parker, East Bay</td>
<td>+ 2 h</td>
</tr>
<tr>
<td>4</td>
<td>Lynn Haven North Bay</td>
<td>+ 2 h</td>
</tr>
<tr>
<td>5</td>
<td>Panama City, St. Andrew Bay</td>
<td>+ 1 h</td>
</tr>
<tr>
<td>6</td>
<td>Channel Entrance, St. Andrew Bay</td>
<td>+ 1 min</td>
</tr>
<tr>
<td>7</td>
<td>West Bay Creek</td>
<td>+ 3 h</td>
</tr>
</tbody>
</table>

4.2.3 Current and Discharge

Currents and discharges were measured with the ADCP at all the six cross-sections in St. Andrew Bay Entrance (Figure 4.4) and at two cross-sections in East Pass (Figure 4.3). The detailed velocity and discharge curves are shown in Jain and Mehta (2001), Jain et al. (2002) and Jain and Mehta (2002). The measurements are summarized in the Table 4.6.

From Table 4.6 it is observed that the average peak velocity in St. Andrew Bay channel was approximately 0.63 m/s (at or close to the throat section) and at East Pass it was approximately 0.50 m/s. The peak discharge value at St. Andrew was 4200 m3/s and at East Pass it was 139 m3/s.
Table 4.6 Characteristic peak velocity and discharge values

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Velocity (m/s)</th>
<th>Discharge (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak Flood</td>
<td>Peak Ebb</td>
</tr>
<tr>
<td>Cross-section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.63</td>
<td>-0.62</td>
</tr>
<tr>
<td>B</td>
<td>0.45</td>
<td>-0.34</td>
</tr>
<tr>
<td>A'</td>
<td>0.68</td>
<td>-0.69</td>
</tr>
<tr>
<td>B'</td>
<td>0.69</td>
<td>-0.66</td>
</tr>
<tr>
<td>C'</td>
<td>0.67</td>
<td>-0.77</td>
</tr>
<tr>
<td>D</td>
<td>0.42</td>
<td>-0.49</td>
</tr>
<tr>
<td>E</td>
<td>0.51</td>
<td>-0.49</td>
</tr>
<tr>
<td>F</td>
<td>0.43</td>
<td>-0.38</td>
</tr>
</tbody>
</table>

4.3 Tidal Prism

Tidal prism is the volume of water that enters the bay during flood flow. Tidal prism for St. Andrew Bay system was calculated using the approximate formula

$$P = \frac{Q_m T}{\pi C_K}$$

(4.1)

where Q_m is the peak discharge (Table 4.6), T is the tidal period (12.42 hrs for September 2001, 18 hrs for December 2001 and 25.82 hrs for March 2002) and the coefficient $C_K = 0.86$ (Keulegan, 1967). This tidal prism was compared with the O’Brien (1969) relationship of Eq. (4.2), where A_c is the throat area, P the tidal prism on the spring range for sandy inlets in equilibrium, and a and b are the constants:

$$A_c = aP^b$$

(4.2)

For inlets with two jetties, $a = 7.49 \times 10^{-4}$ and $b = 0.86$ (Jarrett, 1976). And for inlets without jetty (East Pass), $a = 3.83 \times 10^{-5}$ and $b = 1.03$. The values of the tidal prism are summarized in Table 4.7. Spring ranges are reported in Table 4.4.

It should be noted that the prism values from the O’Brien relationship are mere estimates.
<table>
<thead>
<tr>
<th>Cross-sections</th>
<th>Quantity</th>
<th>Prism (m3) from peak discharge</th>
<th>Prism (m3) from O’Brien</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Flood</td>
<td>Ebb</td>
</tr>
<tr>
<td>A</td>
<td>7.0x10^7</td>
<td>6.0x10^7</td>
<td>11.4x10^7</td>
</tr>
<tr>
<td>A’</td>
<td>8.6x10^7</td>
<td>9.4x10^7</td>
<td>09.0x10^7</td>
</tr>
<tr>
<td>D</td>
<td>8.6x10^7</td>
<td>9.4x10^7</td>
<td>10.0x10^7</td>
</tr>
<tr>
<td>E</td>
<td>3.3x10^6</td>
<td>3.9x10^6</td>
<td>03.8x10^6</td>
</tr>
<tr>
<td>F</td>
<td>3.9x10^6</td>
<td>3.5x10^6</td>
<td>03.6x10^6</td>
</tr>
</tbody>
</table>
CHAPTER 5
RESULTS AND DISCUSSION

5.1 Introduction

There are two aspects of this chapter, one dealing with the hydraulics of the St. Andrew Bay system and the other with its stability. The linearized approach developed in Chapter 2 is used to examine the hydraulics of St. Andrew Bay under different conditions. The model is run as one-inlet/one-bay system for both September 2001 and March 2002. It is also run as a three-inlets/three-bays system in September 2001 when East Pass was closed, and as a three-bays/four-inlets system when East Pass was open in March 2002. Hydraulic parameters related to tides and currents thus obtained are then compared with values from the hydrographic surveys done in September 2001 and March 2002.

In contrast to hydraulics, the (linearized lumped parameter model) inlet stability model developed in Chapter 3 is applied only to St. Andrew Bay. A qualitative approach is developed to discuss the results and graphs have been plotted to show stability variation.

5.2 Hydraulics of St. Andrew Bay

The solution of equations for the linear model, derived in Chapter 2, forms the basis of calculation of the hydraulic parameters characterizing the system. One begins with the basic model of one-inlet (St. Andrew Bay Entrance) and one-bay (St. Andrew Bay) system, when East Pass was closed. As noted the model is then extended to the complete system of three bays (St. Andrew Bay, East Bay and North + West Bays) and
three inlets when East Pass was closed in September 2001, and finally as three bays and four inlets when East Pass was open in March 2002.

5.2.1 Solution of Equations

The solutions of the relevant hydraulic equations are given in Chapter 2. A Matlab program (see Appendix A) was developed to solve the one-inlet bay system as well as the multiple-inlet bay system. The input and output parameters for each system are listed in the tabular form.

5.2.1.1 One-inlet one-bay system

The one-inlet one-bay system is based on solving Eq. (5.1):

\[\hat{\eta}_o - \hat{\eta}_b = \frac{\sigma}{C} \left[\frac{d\hat{\eta}_b}{d\theta} \right] \]

(5.1)

The required input and output parameters for this case are given in Table 5.1.

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_o)</td>
<td>Ocean tide amplitude (Gulf of Mexico)</td>
</tr>
<tr>
<td>(T)</td>
<td>Time period of tide</td>
</tr>
<tr>
<td>(a_{B1})</td>
<td>Bay 1 tide amplitude (St. Andrew Bay)</td>
</tr>
<tr>
<td>(A_{B1})</td>
<td>Bay 1 surface area</td>
</tr>
<tr>
<td>(L_1)</td>
<td>Length of inlet 1 (St. Andrew Bay Entrance)</td>
</tr>
<tr>
<td>(R_1)</td>
<td>Hydraulic radius of inlet 1</td>
</tr>
<tr>
<td>(A_{c1})</td>
<td>Inlet 1 cross-section area</td>
</tr>
<tr>
<td>(k)</td>
<td>Entrance and exit losses</td>
</tr>
<tr>
<td>(f)</td>
<td>Friction factor</td>
</tr>
<tr>
<td>((\eta_o - \eta_{B1})_{max})</td>
<td>Maximum ocean-bay tide difference</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta_{B1})</td>
<td>Bay 1 tide</td>
</tr>
<tr>
<td>(a_{B1})</td>
<td>Bay 1 tide amplitude</td>
</tr>
<tr>
<td>(\varepsilon_{B1})</td>
<td>Phase difference between bay 1 and ocean tides</td>
</tr>
<tr>
<td>(u_{max1})</td>
<td>Maximum velocity through Inlet 1</td>
</tr>
<tr>
<td>(\varepsilon_{v1})</td>
<td>Phase difference between velocity in Inlet1 and ocean tide</td>
</tr>
<tr>
<td>((\eta_o - \eta_{B1})_{max})</td>
<td>Maximum ocean-bay tide difference</td>
</tr>
</tbody>
</table>
5.2.1.2 Three inlets and three bays with one inlet connected to ocean

This system is based on solving Eq. (5.2), Eq. (5.3) and Eq. (5.4):

\[
\hat{\eta}_o - \hat{\eta}_{B1} = \frac{\sigma}{C_1} \left[\frac{d\hat{\eta}_{B1}}{d\theta} + \frac{A_{B2}}{A_{B1}} \frac{d\hat{\eta}_{B2}}{d\theta} + \frac{A_{B3}}{A_{B1}} \frac{d\hat{\eta}_{B3}}{d\theta} \right] \quad (5.2)
\]

\[
\hat{\eta}_{B1} - \hat{\eta}_{B2} = \frac{\sigma}{C_2} \frac{d\hat{\eta}_{B2}}{d\theta} \quad (5.3)
\]

\[
\hat{\eta}_{B1} - \hat{\eta}_{B3} = \frac{\sigma}{C_4} \frac{d\hat{\eta}_{B3}}{d\theta} \quad (5.4)
\]

The required input and output parameters for this case are given in Table 5.2

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_o)</td>
<td>Ocean Tide amplitude (Gulf of Mexico)</td>
</tr>
<tr>
<td>(T)</td>
<td>Time period of the tide</td>
</tr>
<tr>
<td>(a_{B1})</td>
<td>Bay 1 tide amplitude (St. Andrew Bay)</td>
</tr>
<tr>
<td>(a_{B2})</td>
<td>Bay 2 tide amplitude (East Bay)</td>
</tr>
<tr>
<td>(a_{B3})</td>
<td>Bay 3 tide amplitude (West Bay)</td>
</tr>
<tr>
<td>(A_{B1})</td>
<td>Bay 1 surface area</td>
</tr>
<tr>
<td>(A_{B2})</td>
<td>Bay 2 surface area</td>
</tr>
<tr>
<td>(A_{B3})</td>
<td>Bay 3 surface area</td>
</tr>
<tr>
<td>(L_1)</td>
<td>Length of inlet 1 (St. Andrew Bay Entrance)</td>
</tr>
<tr>
<td>(R_1)</td>
<td>Hydraulic radius of inlet 1</td>
</tr>
<tr>
<td>(A_{c1})</td>
<td>Inlet 1 cross-section area</td>
</tr>
<tr>
<td>(L_2)</td>
<td>Length of inlet 2 (connecting East Bay and St. Andrew Bay)</td>
</tr>
<tr>
<td>(R_2)</td>
<td>Hydraulic radius of inlet 2</td>
</tr>
<tr>
<td>(A_{c2})</td>
<td>Inlet 2 cross-section area</td>
</tr>
<tr>
<td>(L_4)</td>
<td>Length of inlet 4 (connecting West Bay and St. Andrew Bay)</td>
</tr>
<tr>
<td>(R_4)</td>
<td>Hydraulic radius of inlet 4</td>
</tr>
<tr>
<td>(A_{c4})</td>
<td>Inlet 4 cross-section area</td>
</tr>
<tr>
<td>(k)</td>
<td>Entrance and exit losses</td>
</tr>
<tr>
<td>(f)</td>
<td>Friction factor</td>
</tr>
<tr>
<td>(\eta_o - \eta_{B1})_{max}</td>
<td>Maximum ocean-bay tide difference</td>
</tr>
<tr>
<td>(\eta_{B1} - \eta_{B2})_{max}</td>
<td>Maximum Bay 1 and Bay 2 tide difference</td>
</tr>
<tr>
<td>(\eta_{B1} - \eta_{B3})_{max}</td>
<td>Maximum Bay 1 and Bay 3 tide difference</td>
</tr>
<tr>
<td>Output Parameters</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>η_{B1}</td>
<td>Bay 1 tide</td>
</tr>
<tr>
<td>a_{B1}</td>
<td>Bay 1 tide amplitude</td>
</tr>
<tr>
<td>ε_{B1}</td>
<td>Phase lag between bay 1 and ocean tide</td>
</tr>
<tr>
<td>η_{B2}</td>
<td>Bay 2 tide</td>
</tr>
<tr>
<td>a_{B2}</td>
<td>Bay 2 tide amplitude</td>
</tr>
<tr>
<td>ε_{B2}</td>
<td>Phase lag between bay 2 and ocean tide</td>
</tr>
<tr>
<td>η_{B3}</td>
<td>Bay 3 tide</td>
</tr>
<tr>
<td>a_{B3}</td>
<td>Bay 3 tide amplitude</td>
</tr>
<tr>
<td>ε_{B3}</td>
<td>Phase lag between bay 3 and ocean tide</td>
</tr>
<tr>
<td>u_{max1}</td>
<td>Maximum velocity through Inlet 1</td>
</tr>
<tr>
<td>ε_{1}</td>
<td>Phase difference between velocity of Inlet 1 and the ocean tide</td>
</tr>
<tr>
<td>u_{max2}</td>
<td>Maximum velocity through Inlet 2</td>
</tr>
<tr>
<td>ε_{2}</td>
<td>Phase difference between velocity of Inlet 2 and the ocean tide</td>
</tr>
<tr>
<td>u_{max4}</td>
<td>Maximum velocity through inlet 4</td>
</tr>
<tr>
<td>ε_{4}</td>
<td>Phase difference between velocity of Inlet 4 and the ocean tide</td>
</tr>
<tr>
<td>$(\eta_o - \eta_{B1})_{max}$</td>
<td>Maximum ocean-bay tide difference</td>
</tr>
<tr>
<td>$(\eta_{B1} - \eta_{B2})_{max}$</td>
<td>Maximum Bay 1 and Bay 2 tide difference</td>
</tr>
<tr>
<td>$(\eta_{B1} - \eta_{B3})_{max}$</td>
<td>Maximum Bay 1 and Bay 3 tide difference</td>
</tr>
</tbody>
</table>

5.2.1.3 Three inlets and three bays with two inlets connected to ocean

This system is based on solving Eq. (5.5), Eq. (5.6) and Eq. (5.7):

1. \[
\hat{\eta}_o - \hat{\eta}_{B1} = \frac{\sigma}{C_1 + C_3} \left[\frac{d\hat{\eta}_{B1}}{d\theta} + A_{B1} \frac{d\hat{\eta}_{B2}}{d\theta} + A_{B3} \frac{d\hat{\eta}_{B3}}{d\theta} \right] \tag{5.5}
\]

2. \[
\hat{\eta}_{B1} - \hat{\eta}_{B2} = \frac{\sigma}{C_2} \left[\frac{d\hat{\eta}_{B2}}{d\theta} \right] \tag{5.6}
\]

3. \[
\hat{\eta}_{B1} - \hat{\eta}_{B3} = \frac{\sigma}{C_4} \left[\frac{d\hat{\eta}_{B3}}{d\theta} \right] \tag{5.7}
\]

The required input and output parameters for this case are given in Table 5.3.
Table 5.3 List of Input and Output Parameters for the four inlets and three bays model.

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_o</td>
<td>Ocean Tide Amplitude (Gulf of Mexico)</td>
</tr>
<tr>
<td>T</td>
<td>Time period of the tide</td>
</tr>
<tr>
<td>a_{B1}</td>
<td>Bay 1 tide amplitude (St. Andrew Bay)</td>
</tr>
<tr>
<td>a_{B2}</td>
<td>Bay 2 tide amplitude (East Bay)</td>
</tr>
<tr>
<td>a_{B3}</td>
<td>Bay 3 tide amplitude (West Bay)</td>
</tr>
<tr>
<td>A_{B1}</td>
<td>Bay 1 surface area</td>
</tr>
<tr>
<td>A_{B2}</td>
<td>Bay 2 surface area</td>
</tr>
<tr>
<td>A_{B3}</td>
<td>Bay 3 surface area</td>
</tr>
<tr>
<td>L_1</td>
<td>Length of inlet 1 (St. Andrew Bay Entrance)</td>
</tr>
<tr>
<td>R_1</td>
<td>Radius of inlet 1</td>
</tr>
<tr>
<td>A_{c1}</td>
<td>Inlet 1 cross-section area</td>
</tr>
<tr>
<td>L_2</td>
<td>Length of inlet 2 (connecting East Bay and St. Andrew Bay)</td>
</tr>
<tr>
<td>R_2</td>
<td>Radius of inlet 2</td>
</tr>
<tr>
<td>A_{c2}</td>
<td>Inlet 2 cross-section area</td>
</tr>
<tr>
<td>L_3</td>
<td>Length of inlet 3 (East Pass)</td>
</tr>
<tr>
<td>R_3</td>
<td>Radius of inlet 3</td>
</tr>
<tr>
<td>A_{c3}</td>
<td>Inlet 3 cross-section area</td>
</tr>
<tr>
<td>L_4</td>
<td>Length of inlet 4 (connecting West Bay and St. Andrew Bay)</td>
</tr>
<tr>
<td>R_4</td>
<td>Radius of inlet 4</td>
</tr>
<tr>
<td>A_{c4}</td>
<td>Inlet 4 cross-section area</td>
</tr>
<tr>
<td>k</td>
<td>Entrance and exit losses</td>
</tr>
<tr>
<td>f</td>
<td>Friction factor</td>
</tr>
<tr>
<td>$(\eta_o - \eta_{B1})_{max}$</td>
<td>Maximum ocean-bay tide difference</td>
</tr>
<tr>
<td>$(\eta_{B1} - \eta_{B2})_{max}$</td>
<td>Maximum Bay 1 and Bay 2 tide difference</td>
</tr>
<tr>
<td>$(\eta_{B1} - \eta_{B3})_{max}$</td>
<td>Maximum Bay 1 and Bay 3 tide difference</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_{B1}</td>
<td>Bay 1 tide</td>
</tr>
<tr>
<td>a_{B1}</td>
<td>Bay 1 tide amplitude</td>
</tr>
<tr>
<td>ϵ_{B1}</td>
<td>Phase lag between bay 1 and ocean tide</td>
</tr>
<tr>
<td>η_{B2}</td>
<td>Bay 2 tide</td>
</tr>
<tr>
<td>a_{B2}</td>
<td>Bay 2 tide amplitude</td>
</tr>
<tr>
<td>ϵ_{B2}</td>
<td>Phase lag between bay 2 and ocean tide</td>
</tr>
<tr>
<td>η_{B3}</td>
<td>Bay 3 tide</td>
</tr>
<tr>
<td>a_{B3}</td>
<td>Bay 3 tide amplitude</td>
</tr>
<tr>
<td>ϵ_{B3}</td>
<td>Phase lag between bay 3 and ocean tide</td>
</tr>
<tr>
<td>u_{max1}</td>
<td>Maximum velocity through Inlet 1</td>
</tr>
<tr>
<td>ϵ_{v1}</td>
<td>Phase difference between velocity of Inlet 1 and the ocean tide</td>
</tr>
<tr>
<td>u_{max2}</td>
<td>Maximum velocity through Inlet 2</td>
</tr>
</tbody>
</table>
Table 5.3 Continued

<table>
<thead>
<tr>
<th>Output Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_{v2}</td>
<td>Phase difference between velocity of Inlet 2 and the ocean tide</td>
</tr>
<tr>
<td>u_{max3}</td>
<td>Maximum velocity through Inlet 3</td>
</tr>
<tr>
<td>ε_{v3}</td>
<td>Phase difference between velocity of Inlet 3 and the ocean tide</td>
</tr>
<tr>
<td>u_{max4}</td>
<td>Maximum velocity through Inlet 4</td>
</tr>
<tr>
<td>ε_{v4}</td>
<td>Phase difference between velocity of Inlet 4 and the ocean tide</td>
</tr>
<tr>
<td>$(\eta_o - \eta_{B1})_{max}$</td>
<td>Maximum ocean-bay tide difference</td>
</tr>
<tr>
<td>$(\eta_{B1} - \eta_{B2})_{max}$</td>
<td>Maximum Bay 1 and Bay 2 tide difference</td>
</tr>
<tr>
<td>$(\eta_{B1} - \eta_{B3})_{max}$</td>
<td>Maximum Bay 1 and Bay 3 tide difference</td>
</tr>
</tbody>
</table>

5.2.2 Input Parameters

Table 5.4 provides the input values for all the three cases of the model as described in Section 5.2.

1. The amplitude in each bay is found by applying a weighting factor proportional to the tide station contribution to the total bay area.

2. Initial values are assumed for $(\eta_o - \eta_{B1})_{max}$, $(\eta_{B1} - \eta_{B2})_{max}$, $(\eta_{B1} - \eta_{B3})_{max}$ for the initial calculation. The September 2001 tide showed a semidiurnal signal, with a period of 12.42 h. The tide in March 2002 showed diurnal signature with a period of 25.82 h. The model was run three times for three different cases as described in Section 5.2. Details regarding all input parameters are found in Jain and Mehta (2002), and are also summarized in Chapter 4. Table 5.4 gives values of all input parameters required for the model.

Table 5.4 Input parameters for the hydraulic model.

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Values</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sept 2001</td>
<td>March 2002</td>
</tr>
<tr>
<td>a_o</td>
<td>0.109 m</td>
<td>0.212 m</td>
</tr>
<tr>
<td>T</td>
<td>12.42 h</td>
<td>25.82 h</td>
</tr>
<tr>
<td>a_{B1}</td>
<td>0.103 m</td>
<td>0.201 m</td>
</tr>
<tr>
<td>a_{B2}</td>
<td>0.115 m</td>
<td>0.226 m</td>
</tr>
<tr>
<td>a_{B3}</td>
<td>0.118 m</td>
<td>0.233 m</td>
</tr>
<tr>
<td>A_{B1}</td>
<td>74 km2</td>
<td></td>
</tr>
<tr>
<td>A_{B2}</td>
<td>54 km2</td>
<td></td>
</tr>
<tr>
<td>A_{B3}</td>
<td>155 km2</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.4 (continued)

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Values</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_1</td>
<td>1340 m</td>
<td></td>
</tr>
<tr>
<td>R_1</td>
<td>10 m</td>
<td></td>
</tr>
<tr>
<td>A_{c1}</td>
<td>6300 m2</td>
<td></td>
</tr>
<tr>
<td>L_2</td>
<td>1000 m</td>
<td></td>
</tr>
<tr>
<td>R_2</td>
<td>9 m</td>
<td></td>
</tr>
<tr>
<td>A_{c2}</td>
<td>1.9×10^9 m2</td>
<td>From the USGS topographic maps. A_{c2}, A_{c3}, A_{c4} are zero for one inlet bay case</td>
</tr>
<tr>
<td>L_4</td>
<td>1000 m</td>
<td></td>
</tr>
<tr>
<td>R_4</td>
<td>12 m</td>
<td></td>
</tr>
<tr>
<td>A_{c4}</td>
<td>9.7×10^7 m2</td>
<td>Measured in survey. A_{c3} is zero for three-bays and three-inlets case.</td>
</tr>
<tr>
<td>L_3</td>
<td>400 m</td>
<td></td>
</tr>
<tr>
<td>R_3</td>
<td>3 m</td>
<td></td>
</tr>
<tr>
<td>A_{c3}</td>
<td>255 m2</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>$(\eta_0 - \eta_{B1})_{max}$</td>
<td>0.037 0.036</td>
<td>Assumed initial values. Calculations are shown in appendix C</td>
</tr>
<tr>
<td>$(\eta_{B1} - \eta_{B2})_{max}$</td>
<td>0.060 0.063</td>
<td></td>
</tr>
<tr>
<td>$(\eta_{B1} - \eta_{B3})_{max}$</td>
<td>0.099 0.998</td>
<td></td>
</tr>
</tbody>
</table>

5.2.3 Model Results and Comparison with Data

Model results are given in Table 5.5.

Table 5.5 Model results and measurements.

<table>
<thead>
<tr>
<th>Output parameters</th>
<th>One Inlet One Bay System, September 2001</th>
<th>Three Bay - Three Inlets System, September 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{B1}</td>
<td>0.10 m</td>
<td>0.10 m</td>
</tr>
<tr>
<td>ε_{B1}</td>
<td>0.36 rad</td>
<td>0.34 rad</td>
</tr>
<tr>
<td>$u_{c1,max}$</td>
<td>0.65 m/s</td>
<td>0.63 m/s</td>
</tr>
<tr>
<td>ε_{B1}</td>
<td>-1.20 rad</td>
<td>-1.22 rad</td>
</tr>
<tr>
<td>$(\eta_0 - \eta_{B1})_{max}$</td>
<td>0.038 0.036</td>
<td>Assumed initial values. Calculations are shown in appendix C</td>
</tr>
<tr>
<td>a_{B2}</td>
<td>0.10 m</td>
<td>0.11 m</td>
</tr>
<tr>
<td>ε_{B2}</td>
<td>0.37 rad</td>
<td>0.91 rad</td>
</tr>
<tr>
<td>a_{B3}</td>
<td>0.10 m</td>
<td>0.12 m</td>
</tr>
<tr>
<td>ε_{B3}</td>
<td>0.54 rad</td>
<td>1.26 rad</td>
</tr>
</tbody>
</table>
It is evident from Table 5.5 that the linear model gives good results. The percent error decreases if the system is modeled as a three-bay system, which is actually the case. Velocity and tide amplitudes are within reasonably small error limits. The phase differences between ocean (Gulf) and bay tides from data are very approximate as they
are calculated based on weighted-average tides at selected stations. Moreover, there are very few stations to yield a good value of tide for a bay. Note that the input values for \((\eta_o - \eta_{B1})_{\text{max}}, (\eta_{B1} - \eta_{B2})_{\text{max}} (\eta_{B1} - \eta_{B3})_{\text{max}}\) is also approximate. Sample calculation for \((\eta_o - \eta_{B1})_{\text{max}}, (\eta_{B1} - \eta_{B2})_{\text{max}} (\eta_{B1} - \eta_{B3})_{\text{max}}\) is given in Appendix C.

5.3 Stability Analysis

The stability analysis developed in Chapter 3 is now applied to St. Andrew Bay system. This analysis is done for a two-inlet bay system using van de Kreeke’s (1990) linearized lumped parameter model. The two inlets, to which the model is applied, are St. Andrew Bay Entrance and the new East Pass opened in December 2002. Calculations related to stability are given in Appendix D. A Matlab program (Appendix D) has also been developed for doing the analysis and generating equilibrium flow curves for the two inlets. There are two programs, one for rectangular channel cross-section and another for triangular channel cross-sections.

5.3.1 Input Parameters

Input parameters required for the Matlab program (Appendix D) are listed in Table 5.6. Since the objective was to study the effect of bay area on the stability because the results are sensitive to it, it is held constant for a particular set of calculation, but is varied for generating different sets of equilibrium flow curves. Similarly the length of East Pass, believed to have an uncertain value due to the complex bay shoreline and bathymetry in that region is also varied to study its effect on the system.
Table 5.6 Input parameters for stability analysis.

<table>
<thead>
<tr>
<th>Input Parameters for December 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_o</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>A_B</td>
</tr>
<tr>
<td>Inlet 1</td>
</tr>
<tr>
<td>u_{eq1}</td>
</tr>
<tr>
<td>W_1</td>
</tr>
<tr>
<td>L_1</td>
</tr>
<tr>
<td>a_1</td>
</tr>
<tr>
<td>F_1</td>
</tr>
<tr>
<td>Inlet 2</td>
</tr>
<tr>
<td>u_{eq2}</td>
</tr>
<tr>
<td>W_2</td>
</tr>
<tr>
<td>L_2</td>
</tr>
<tr>
<td>a_2</td>
</tr>
<tr>
<td>F_2</td>
</tr>
</tbody>
</table>

5.3.2 Results and Discussion

As noted, it is found that two inlets can never be unconditionally stable simultaneously in one bay. The bay area has a large effect on the stability of the inlets. Table 5.7 summarizes this effect. It is clear that with a small increase in bay area the inlets become stable. This is also demonstrated with the help of equilibrium flow curve in the Figure 5.1, Figure 5.2 and Figure 5.3 for rectangular cross-section and Figure 5.7 and Figure 5.9 for triangular cross-section. The cross-sectional area pair during December 2001 (Table 4.3) [5210, 255] is shown by the dot. Figure 5.1 and Figure 5.7 have small bay areas, and the dot lies outside the equilibrium flow curve indicating that both inlets are unstable. As the bay area increases St. Andrew becomes stable (Figure 5.2 and Figure 5.7), and a further increase in bay area also stabilizes East Pass (Figure 5.3 and Figure 5.9). However, in reality we cannot increase the bay area beyond a reasonable limit, because then the basic assumption of bay tide fluctuating evenly in the bay does not hold.
Moreover, in a shallow bay the effect of dissipation of tidal energy cannot be ignored, especially if the bay is large. Also as per Figure 3.5 two inlets are not stable simultaneously.

An increase in the length of East Pass has a destabilizing effect on that inlet as shown in the Table 5.7. Note also that for a rectangular cross-section (Figure 5.3) with the length of East Pass of 500m, this inlet is stable, whereas with a length of 2000 m (Figure 5.6) the inlet is instable. This is because as the length increases the dissipation increases. Friction dominated losses, \(F = 0.004, R = 3m \left(\frac{2FL}{R} \right) \) for East Pass with 500 m length is 1.33, whereas that for 2000 m length it is 5.33. The same cases occur in Figure 5.9 and Figure 5.12.

The other effects on the stability model are the approximation in the cross-section of the inlet. It is clear that triangular cross-section is a better approximation than rectangular section, because with the same parameters for rectangular cross-section in Figure 5.6, East Pass is predicted to be unstable whereas in Figure 5.12 for triangular cross-section, East Pass is stable even though barely, which is not believed to be the case for this newly opened inlet.

Table 5.8 gives the qualitative indication of the stability. The various zones mentioned in the Table 5.8 are described in Section 3.4 and Figure 3.6. It is clear from these results that St. Andrew is a stable inlet (for a realistic bay area) as opposed to East Pass. This is also evident from the Figure 3.5, which shows that two inlets cannot be stable simultaneously, because we for unconditional stability, need four real points of intersection of equilibrium flow curve and none of the solutions (neither rectangular cross-section nor triangular cross-section) gives four real solution.
The model does not yield an analytic solution for a more realistic parabolic cross-section. Another weakness is due to the assumptions made in Chapter 3 including a bay area in which the tide is spatially always in-phase, and simple a harmonic function for tide. These assumptions are not always satisfied.

Table 5.7 Effect of change in bay area and length of East Pass.

<table>
<thead>
<tr>
<th>Rectangular cross-section</th>
<th></th>
<th></th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run No.</td>
<td>Bay area (km²)</td>
<td>East Pass Length (m)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>74</td>
<td>500</td>
<td>Both inlets unstable (Figure 5.1)</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>500</td>
<td>St. Andrew becomes stable (Figure 5.2)</td>
</tr>
<tr>
<td>3</td>
<td>105</td>
<td>500</td>
<td>St. Andrew stable, East Pass barely stable (Figure 5.3) *</td>
</tr>
<tr>
<td>4</td>
<td>74</td>
<td>2000</td>
<td>Both inlets unstable (Figure 5.4)</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>2000</td>
<td>St. Andrew barely stable (Figure 5.5)</td>
</tr>
<tr>
<td>6</td>
<td>105</td>
<td>2000</td>
<td>St. Andrew stable, East Pass unstable (Figure 5.6)</td>
</tr>
<tr>
<td>Triangular cross-section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>74</td>
<td>500</td>
<td>Both inlets unstable Figure (5.7)</td>
</tr>
<tr>
<td>8</td>
<td>90</td>
<td>500</td>
<td>St. Andrew becomes stable (Figure 5.8)</td>
</tr>
<tr>
<td>9</td>
<td>105</td>
<td>500</td>
<td>Both inlets stable (Figure 5.9) *</td>
</tr>
<tr>
<td>10</td>
<td>74</td>
<td>2000</td>
<td>Both inlets unstable (Figure 5.10)</td>
</tr>
<tr>
<td>11</td>
<td>90</td>
<td>2000</td>
<td>St. Andrew stable (Figure 5.11)</td>
</tr>
<tr>
<td>12</td>
<td>105</td>
<td>2000</td>
<td>St. Andrew stable, East Pass just stable (Figure 5.12)</td>
</tr>
</tbody>
</table>

* Two inlets cannot be simultaneously stable, because according to Figure 3.5, for unconditional stability we need four real points of intersection of equilibrium flow curve, which is not possible in either rectangular cross-section solution nor triangular cross-section solution.
Figure 5.1 Equilibrium flow curves for rectangular cross-sections, Run No. 1.

Figure 5.2 Equilibrium flow curves for rectangular cross-sections, Run No. 2.
Figure 5.3 Equilibrium flow curves for rectangular cross-sections, Run No. 3.

Figure 5.4 Equilibrium flow curves for rectangular cross-sections, Run No. 4.
Figure 5.5 Equilibrium flow curves for rectangular cross-sections, Run No. 5.

Figure 5.6 Equilibrium flow curves for rectangular cross-sections, Run No. 6.
Figure 5.7 Equilibrium flow curves for triangular cross-sections, Run No. 7.

Figure 5.8 Equilibrium flow curves for triangular cross-sections, Run No. 8.
Figure 5.9 Equilibrium flow curves for triangular cross-sections, Run No. 9.

Figure 5.10 Equilibrium flow curves for triangular cross-sections, Run No. 10
Figure 5.11 Equilibrium flow curves for triangular cross-sections, Run No. 11.

Figure 5.12 Equilibrium flow curves for triangular cross-sections, Run No. 12.
Table 5.8 Stability observations for St. Andrew Bay Entrance and East Pass.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Placement of cross-sectional area pair ([A_1, A_2]), (black dot)</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 5.1</td>
<td>Zone-1</td>
<td>Both inlets are unstable</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Zone-2</td>
<td>St. Andrew Bay Entrance is stable</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Zone-4</td>
<td>Only one is stable i.e. St. Andrew(^a)</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Zone-1</td>
<td>Both inlets are unstable</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Zone-2</td>
<td>St. Andrew Bay Entrance is stable</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Zone-2</td>
<td>St. Andrew Bay Entrance is stable</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>Zone-1</td>
<td>Both inlets are unstable</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>Zone-2</td>
<td>St. Andrew Bay Entrance is stable</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>Zone-4</td>
<td>Only one is stable i.e. St. Andrew(^a)</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Zone-1</td>
<td>Both inlets are unstable</td>
</tr>
<tr>
<td>Figure 5.11</td>
<td>Zone-2</td>
<td>St. Andrew Bay Entrance is stable</td>
</tr>
<tr>
<td>Figure 5.12</td>
<td>Zone-4</td>
<td>Only one is stable i.e. St. Andrew(^a)</td>
</tr>
</tbody>
</table>

\(^a\) As per Figure 3.6, it is clear that even in Zone-4 only one inlet is stable, this is further clarified from Figure 3.5, which shows that only one inlet can be stable at one time.
CHAPTER 6
CONCLUSIONS

6.1 Summary

St. Andrew Bay, which is a composite of three interconnected bays (St. Andrew Bay proper, West Bay + North Bay and East Bay) is located in Bay County on the Gulf of Mexico coast of Florida’s panhandle. It is part of a three-bay and two-inlet complex. One of these inlets is St. Andrew Bay Entrance and the other is East Pass, which are both connected to St. Andrew Bay on one side and the Gulf on the other. Prior to 1934, East Pass was the natural connection between St. Andrew Bay and the Gulf. In 1934, St. Andrew Bay Entrance (Figure 4.2) was constructed 11 km west of East Pass through the barrier island to provide a direct access between the Gulf and Panama City. The interior shoreline of the entrance has continually eroded since it’s opening. East Pass was closed in 1998, which is believed to be due to the opening of the St. Andrew Bay Entrance.

In December 2001, a new East Pass was opened (Figure 4.3), and the effect of this new inlet is presently being monitored over the entire system. Accordingly, the objective of the present work was to examine the hydraulics of the newly formed two- (“ocean”) inlet/three-bay system and its hydraulic stability, especially as it relates to East Pass.

The first aspect of the tasks performed to meet this objective was the development of equations for the linearized hydraulic model for the system of three bays and four inlets (two ocean and two between bays), and solving and applying them to the St. Andrew Bay system. The second aspect was the development of the ocean inlet stability criteria using the Escoffier (1940) model for one inlet and one bay and extending this
model to the two ocean inlets and a bay. Stability analysis for the St. Andrew Bay system was then carried out using the linearized lumped parameter model of van de Kreeke (1990).

6.2 Conclusions

The following are the main conclusions of this study:

1. If the system is modeled as a three-bay system as compared to a one-bay system, the error in the phase difference, ε_{B1}, decreases from 6% to 0% and in the velocity amplitude from 3% to 2%. Moreover, the error in maximum head difference, $(\eta_o - \eta_{B1})_{max}$, also decreases from 6% to 0%.

2. The amplitudes of velocities and bay tides are within ±5%, which is a reasonably small error band. The percent error for St. Andrew Bay is almost 0%, and for the other bays it is within ±20%.

3. The bay area has a significant effect on the stability of the two inlets. At a bay area of 74 km2 both inlets are unstable. Increasing it by 22% to 90 km2 stabilizes St. Andrew Bay Entrance, and by 42% to 105 km2 stabilizes East Pass as well.

4. Two inlets can never be simultaneously unconditionally stable.

5. Keeping the bay area at 105 km2 and increasing the length of East Pass from 500 m to 2000 m destabilizes this inlet because as the length increases the dissipation in the channel increases as well.

6. A triangular channel cross-section is a better approximation than a rectangular one, because given the same values of all other hydraulic parameters, St. Andrew Bay Entrance with a rectangular cross-section is found to be barely stable, whereas with a triangular cross-section it is found to be stable, as is the case.

6.3 Recommendations for Further Work

Accurate numerical values required for the stability analysis of a complex inlet-bay system can only be obtained by using a two- (or three)-dimensional tidal model to describe the hydrodynamics of the bay.

Freshwater discharges from the rivers into the bay should be incorporated through numerical modeling.
Including a more realistic assumption for the channel cross-section can improve the stability analysis.
APPENDIX A
ALGORITHMS FOR MULTIPLE INLET-BAY HYDRAULICS

A.1 Introduction

The linearized approach described in Chapter 2 has been used to evaluate the hydraulic parameters of the multiple inlet bay system. The differential equations, developed by this approach (Chapter 2), Eq. (2.100), Eq. (2.101) and Eqs (2.102), are solved in Matlab Program-1 (given below). These are the general equations for four inlets and three bays system. These equations can be used to solve from one bay system to the complex three bays system. Note that for solving Program-1, the Matlab version should have a symbolic toolbox. The present program is solved in Matlab release 6.1. The solution from Program-1 is used as input to Program-2 (given below). The required input parameters and output for Program-2 are listed in Table 5.3 of Chapter 5.

A.2 Program-1

%UNIVERSITY OF FLORIDA
%CIVIL AND COASTAL ENGINEERING DEPARTMENT
%PROGRAM FOR SOLVING THE EQS 2.100, 2.101, 2.102
%ALL CONSTANTS DEFINED IN CHAPTER 2

clear all
s= sym('a b c A B')
t1= sym('theta1')
t2= sym('theta2')
t3= sym('theta3')
r1= sym('a1*exp(-i*t1)')
r2= sym('a2*exp(-i*t2)')
r3= sym('a3*exp(-i*t3)')
C=[a*i+1 a*A*i a*B*i;-1 b*i+1 0;-1 0 c*i+1]
D=[1;0;0]
%END
clear all

g=9.81;
ao=0.212;%ocean tide amplitude
theta=0;%ocean tide phase
etao=ao*cos(theta);%ocean tide
T=25.82;%time period
q=2*pi/(T*3600)%sigma
k=1.05;% entrance and exit loss
f=0.025;%friction factor
aB1=0.201;%approximate amplitude of bays
aB2=0.226;
aB3=0.2325;

m1=max(eta0-etab1),m2=max(etab1-etab2),m3=max(etab1-etab3)
m1=0.023;
m2=0.0527;
m3=0.123;

%Inlet 1
L1=1340;%Length of inlet
R1=10;%hydraulic radius
Ac1=6300;%CROSS-SECTION AREA of the inlet
 F1=k+(f*L1)/(4*R1);%friction factor F includes ken kex fL/4R

%Inlet 2
L2=1000;%Length of inlet
R2=9;%hydraulic radius
Ac2=1.9*10^4;%CROSS-SECTION AREA of the inlet, it is zero for one inlet bay case
 F2=k+(f*L2)/(4*R2);%friction factor F includes ken kex fL/4R

%Inlet 3
L3=400;%Length of inlet
R3=3;%hydraulic radius
Ac3=255;%CROSS-SECTION AREA of the inlet
 F3=k+(f*L3)/(4*R3);%friction factor F includes ken kex fL/4R

%Inlet 4
L4=1000;%Length of inlet
R4=12;%hydraulic radius
Ac4=9.7*10^3;%CROSS-SECTION AREA of the inlet
 F4=k+(f*L4)/(4*R4);%friction factor F includes ken kex fL/4R
%bay1 area
AB1=74*10^6;
%bay2 area
AB2=54*10^6;
%bay3 area
AB3=155*10^6;

%calculations
CDL1=sqrt(ao/(m1*F1))
CDL2=sqrt(aB1/(m2*F2))
CDL3=sqrt(ao/(m1*F3))
CDL4=sqrt(aB1/(m3*F4))

C1=CDL1*Ac1/AB1*sqrt(2*g/ao)
C2=CDL2*Ac2/AB2*sqrt(2*g/aB1)
C3=CDL3*Ac3/AB1*sqrt(2*g/ao)
C4=CDL4*Ac4/AB3*sqrt(2*g/aB1)

ALL THE CONSTANTS ARE DEFINED IN THE THESIS
a=q/(C1+C3)
if Ac2==0
 b=0
else
 b=q/C2
end

if Ac4==0
 c=0
else
 c=q/C4
end

A=AB2/AB1
B=AB3/AB1
r1=(c-i)*(b-i)/((-i*a*A+i*a*c*b+a*c-i*c-i*b-l+c*b-i*a*B+a*b-
 i*a+a*B*b+a*A*c)%SOLUTIONS ARE OBTAINED FROM ANOTHER
r2=-i*(c-i)/((-i*a*A+i*a*c*b+a*c-i*c-i*b-l+c*b-i*a*B+a*b-
 i*a+a*B*b+a*A*c)%MATLAB PROGRAM WHICH HAS SYMBOLIC TOOLBOX.
r3=-i*(b-i)/((-i*a*A+i*a*c*b+a*c-i*c-i*b-l+c*b-i*a*B+a*b-
 i*a+a*B*b+a*A*c)
aB1=abs(r1)*ao
eB1=-angle(r1)
aB2=abs(r2)*ao
eB2=-angle(r2)
aB3=abs(r3)*ao
eB3=-angle(r3)
etaB1=aB1*cos(theta-eB1)
etaB2=aB2*cos(theta-eB2)
\[
\eta_{B3} = a_{B3} \cos(\theta - e_{B3}) \\
CDL_{11} = \sqrt{a_0 / (\max(\eta_0 - \eta_{B1}) F_1)} \\
CDL_{22} = \sqrt{a_{B1} / (\max(\eta_{B1} - \eta_{B2}) F_2)} \\
CDL_{33} = \sqrt{a_0 / (\max(\eta_0 - \eta_{B1}) F_3)} \\
CDL_{44} = \sqrt{a_{B1} / (\max(\eta_{B1} - \eta_{B3}) F_4)} \\
\]

\[
C_{11} = CDL_1 \cdot A_{c1} / A_{B1} \cdot \sqrt{2g/e_0} \\
C_{22} = CDL_2 \cdot A_{c2} / A_{B2} \cdot \sqrt{2g/a_{B1}} \\
C_{33} = CDL_3 \cdot A_{c3} / A_{B1} \cdot \sqrt{2g/e_0} \\
C_{44} = CDL_4 \cdot A_{c4} / A_{B3} \cdot \sqrt{2g/a_{B1}} \\
\]

% velocity in the inlet
uc_1 = \sqrt{2g/e_0} \cdot CDL_1 \cdot (\eta_0 - e_0 \cdot r_1) \\
uc_{1\max} = |uc_1| \\
ev_1 = -\angle(uc_1) \\
uc_2 = \sqrt{2g/a_{B1}} \cdot CDL_2 \cdot (e_0 \cdot r_1 - e_0 \cdot r_2) \\
uc_{2\max} = |uc_2| \\
ev_2 = -\angle(uc_2) \\
uc_3 = \sqrt{2g/e_0} \cdot CDL_3 \cdot (\eta_0 - e_0 \cdot r_1) \\
uc_{3\max} = |uc_1| \\
ev_3 = -\angle(uc_1) \\
uc_4 = \sqrt{2g/a_{B1}} \cdot CDL_4 \cdot (e_0 \cdot r_1 - e_0 \cdot r_3) \\
uc_{4\max} = |uc_4| \\
ev_4 = -\angle(uc_4) \\
%END
APPENDIX B
INLET HYDRAULICS RELATED DERIVATIONS

B.1 Linearization of Damping Term

The linearization of the damping term in Eq. (3.6) is done as given in Bruun (1978). The bay tide response is represented by

\[\eta_B = a_B \sin(\theta - \epsilon_B) \] \hspace{1cm} (B.1)

where

\[\theta = \frac{2\pi t}{T} = \sigma t \], dimensionless time.

\[a_B = \text{one-half the tide range (i.e., amplitude) in the bay, and} \]

\[\epsilon_B = \text{lag between high water (HW) or low water (LW) in the ocean and corresponding HW or LW in the bay. Also,} \]

\[\eta_o = a_o \sin(\theta) \] \hspace{1cm} (B.2)

from the continuity equation we further have

\[A_c u = A_B \frac{d\eta_B}{dt} \] \hspace{1cm} (B.3)

where \(A_c \) is the area of cross-section of the inlet and \(A_B \) is the surface area of the bay.

The time of HW or LW in the bay, i.e., when \(\frac{d\eta_B}{dt} = 0 \), coincides with time of slack water, i.e., \(u = 0 \), so that \(\epsilon_B \) is also the lag of slack water after HW or LW in the ocean. Thus it can be written as

\[\frac{d\eta_B}{dt} \left| \frac{d\eta_B}{dt} \right| = \sigma^2 a_B^2 \cos(\theta - \epsilon_B) \left| \cos(\theta - \epsilon_B) \right| \] \hspace{1cm} (B.4)
or in terms of Fourier series Eq. (B.4) can be written as

\[
\frac{d\eta_B}{dt} \bigg|_{\eta_B} = \sigma^2 a_B^2 \sum_{n=1}^{\infty} \frac{8\sin\left(\frac{n\pi}{2}\right)}{n\pi(4-n^2)} \cos n(\theta - \varepsilon_B) \tag{B.5}
\]

where \(n \) takes only odd integral values. For linearization purposes \(n=1 \), so that Eq. (B.5) becomes

\[
\frac{d\eta_B}{dt} \bigg|_{\eta_B} = \sigma^2 a_B^2 \frac{8}{3\pi} \cos(\theta - \varepsilon_B) \tag{B.6}
\]

The amplitude of the tidal velocity is given by

\[
u_{\text{max}} = \frac{a_B \sigma A_B}{A_c} \tag{B.7}
\]

Therefore, it can be written as

\[
u \bigg|_{\nu} = \frac{8}{3\pi} \nu_{\text{max}} u \tag{B.8}
\]

where \(\nu_{\text{max}} \) is the amplitude of the \(u \).

B.2 Shear Stress Dependence on Area

For each inlet discharge is defined as a time varying function:

\[
Q_i(t) = \frac{A_{B_i}}{A_i} \frac{d\eta_B}{dt} \tag{B.9}
\]

\[
Q_i(t) = \pm A_i \sqrt{\frac{2gR_i}{m_i} + 2F_iL_i} \sqrt{|\eta_o - \eta_{B_i}|} \tag{B.10}
\]

The expression for maximum tidal velocity can be obtained by the solution of the above equations with the simplifying assumptions mentioned in Chapter 2.

\[
u_{\text{max}} = C(K) \sin \gamma \frac{2\pi A_B a_o K_i}{AT} \frac{K_i}{K} \tag{B.11}
\]

where \(K \) is the coefficient of repletion,
\[K_i = \frac{T}{2\pi a_o A_b} \frac{A_i}{A_b} \sqrt{\frac{2g R a_o}{m_i R_i + 2F_i L_i}} \quad \text{(B.12)} \]

and

\[K = \sum K_i \quad \text{(B.13)} \]

is summation is over all the inlets. The function \(C(K) \sin \gamma \) is a monotonically increasing function with \(C=0 \) for \(K=0 \) and \(C=1 \) for \(K=\infty \), \(\gamma \) is a specific time when sea is at MSL, as defined by Kuelegan (1951)

It is seen below that the bottom shear stress, \(\hat{\tau} \), varies strongly with the cross-sectional area. This can be shown with the help of approximate analytical solution carried out by Keulegan (1951). Substituting the value of \(u \) from Eq. (B.11) in Eq. (3.1), and taking \(C(K) \sin \gamma \); \(1 \) and \(F = 0.003 \):

\[\hat{\tau} \approx \rho F \left[\frac{2\pi a_o A_b}{T} \right] \frac{1}{A^2} \quad \text{(B.14)} \]

It is clear from the above equation that \(\hat{\tau} \) has a strong dependence on \(A \).

B.3 General Equation for hydraulic radius.

Consider the general trapezoidal cross-section:

Area, \[A = \frac{1}{2} (B + B_o) h = \frac{1}{2} Bh \left(1 + \frac{B_o}{B} \right) \]

Wetted perimeter, \[P = B_o + 2 \sqrt{\frac{1}{4} (B - B_o)^2 + h^2} = B \left(\frac{B_o}{B} + \sqrt{\frac{1}{4} \left(1 - \frac{B_o}{B} \right)^2 + 4 \left(\frac{h}{B} \right)^2} \right) \]

Hydraulic radius, \[R = \frac{A}{P} = \frac{\frac{1}{2} h \left(1 + \frac{B_o}{B} \right)}{\frac{B_o}{B} + \sqrt{\left(1 - \frac{B_o}{B} \right)^2 + 4 \left(\frac{h}{B} \right)^2}} \]
Now consider two cases: 1) Rectangular cross-section, i.e., $B_0 = B$, and 2) Triangular cross-section, i.e., $B_0 = 0$.

B.3.1 Rectangular

$B = B_0$, Therefore hydraulic radius for a rectangle is

$$ R = \frac{A}{P} = \frac{h}{1 + 2 \left(\frac{h}{B} \right)} $$

B.3.2 Triangular

For triangular section, $B_0 = 0$

$$ R = \frac{A}{P} = \frac{\frac{1}{2} h}{\sqrt{1 + 4 \left(\frac{h}{B} \right)^2}} $$

B.4 Hydraulic Radius for Triangular Cross-Section

For a triangular cross-section the hydraulic radius is related as a square root of the area, as shown below:
Figure B.2 is a triangular cross-section where β is the angle with the horizontal on both the sides:

Area \[A = \frac{1}{2} h 2h \tan \beta \]

Wetted perimeter \[P = \frac{2h}{\cos \beta} \]

Hydraulic radius \[R = \frac{A}{P} = \frac{1}{\sqrt{2 \sin \beta \cos \beta}} \sqrt{A} = a \sqrt{A} \quad \text{(B.15)} \]

Figure B.2 Triangular cross-section.
APPENDIX C
CALCULATION OF BAY TIDE AND LINEAR DISCHARGE COEFFICIENTS

This appendix contains sample calculations of input data in Table 5.4 for the Matlab Program –2 (Appendix A) in Chapter 5. Estimation of bay tide amplitude \((a_B1, a_B2, a_B3)\), input for Table 5.4 was made by taking the weighted-averages of the NOS tide amplitudes at reported stations in the bay. Let us take the case of St. Andrew Bay (Table C.1). This bay has three stations where tide is reported. The weighting factor for the range at a given station was estimated by selecting the approximate area of influence of tide (range) surrounding that station. Given the tidal period of 12.42 h, the phase difference between Gulf and the bay could be converted in to degree or radians.

<table>
<thead>
<tr>
<th>St. Andrew Bay</th>
<th>Station</th>
<th>Weighting factor</th>
<th>Sept. tide range (m)</th>
<th>Weighted-average (m)</th>
<th>Phase difference (h)</th>
<th>Weighted-average (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Channel Entrance</td>
<td>0.48</td>
<td>0.197</td>
<td>0.0945</td>
<td>0.0017</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>Panama City</td>
<td>0.37</td>
<td>0.203</td>
<td>0.0751</td>
<td>1.0000</td>
<td>0.370</td>
</tr>
<tr>
<td></td>
<td>Parker</td>
<td>0.15</td>
<td>0.236</td>
<td>0.0354</td>
<td>2.0000</td>
<td>0.300</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>0.2050</td>
<td></td>
<td>0.678 h=19.65°</td>
</tr>
</tbody>
</table>

East Bay

	Laird Bayou	0.40	0.236	0.0940	2.0000	0.800
	Parker	0.40	0.236	0.0940	2.0000	0.800
	Panama City	0.20	0.203	0.0406	1.0000	0.200
				0.2300		1.8 h=52.17°

West Bay

	West Bay Creek	0.50	0.236	0.118	3.0000	1.5 hrs
	Lynn Haven	0.50	0.236	0.118	2.0000	1.0 hrs
				0.236		2.5 h=72.46°

The Gulf tide range had to be estimated, as there was no open coast tidal station near to the study site. The procedure was as follows:
1 The tidal range at the gauge installed by UF in September 2001 in the bay was \(R = 0.18 \) m.

2 The kinetic head in the channel was calculated by using the peak velocity value, 0.63 m/s:

\[
h_k = \frac{u^2}{2g} = \frac{(0.63)^2}{2 \times 9.81} = 0.02 \text{ m.}
\]

3 Thus the Gulf tide range was obtained as \(R_o = R + h_k = 0.02 + 0.18 \) m.

So the amplitude correction factor \(\frac{R_o}{R} = \frac{0.20}{0.18} = 1.11 \)

4 The distance between the open coast (Gulf-ward tips of the entrance jetties) and the UF gauge was \(X = 673 \) m and the depth of the deepest channel (thalweg) between the two locations \(h = 12 \) m.

5 Therefore the time difference between calculated ocean tide and the bay is calculated as

\[
\frac{X}{\sqrt{gh}} = \frac{673}{\sqrt{9.81 \times 12}} = 62.03 \text{ s} = 1.03 \text{ min}
\]

The maximum driving heads, \((\eta_o - \eta_{B1})_{\text{max}}, (\eta_{B1} - \eta_{B2})_{\text{max}}, (\eta_{B1} - \eta_{B3})_{\text{max}}\) are calculated as suggested by O’Brien and Clark (1973).

1 The driving head between ocean and bay 1 \((\eta_o - \eta_{B1})_{\text{max}}\), at any time \(t \) during the tidal cycle is

\[
\eta_o - \eta_{B1} = a_o \cos \sigma t - a_{B1} \cos(\sigma t - \epsilon_{B1})
\]

slack water occurs at \(\sigma t = \epsilon_{B1} \)

Maximum head occurs at \(\sigma t = \epsilon_{B1} + \frac{\pi}{2} \)

\[
\therefore (\eta_o - \eta_{B1})_{\text{max}} = a_o \sin \epsilon_{B1}
\]

(C.2)

2 The driving head between bay 1 and bay 2 \((\eta_{B1} - \eta_{B2})_{\text{max}}\), at any time \(t \) during the tidal cycle is

\[
\eta_{B1} - \eta_{B2} = a_{B1} \cos(\sigma t - \epsilon_{B1}) - a_{B2} \cos(\sigma t - \epsilon_{B2})
\]

slack water occurs at \(\sigma t = \epsilon_{B2} - \epsilon_{B1} \)
Maximum head occurs at $\sigma t = \frac{\pi}{2} + \varepsilon_{B2} - \varepsilon_{B1}$

\[\therefore (\eta_{B1} - \eta_{B2})_{\text{max}} = a_{B1} \cos \left(\frac{\pi}{2} + \varepsilon_{B2} - \varepsilon_{B1} - \varepsilon_{B1} \right) - a_{B2} \cos \left(\frac{\pi}{2} + \varepsilon_{B2} - \varepsilon_{B1} - \varepsilon_{B2} \right) \] (C.4)

\[\therefore (\eta_{B1} - \eta_{B2})_{\text{max}} = -a_{B1} \sin (\varepsilon_{B2} - 2\varepsilon_{B1}) - a_{B2} \sin (\varepsilon_{B1}) \] (C.5)

For maximum head difference we have to take absolute value of the head difference. Examples of the use of the above equations are shown in Figures C.1 and C.2.

Figure C.1 gives the ocean and bay 1 tide head difference, while Figure C.2 gives the head difference between bay 1 and bay 2. Table C.2 provides the values used to calculate the linear discharge coefficients given by Eqs (2.28), (2.29) and (2.50).

Table C.2 Calculation of $|\eta_o - \eta_{B1}|_{\text{max}}$, $|\eta_{B1} - \eta_{B2}|_{\text{max}}$ $|\eta_{B1} - \eta_{B3}|_{\text{max}}$

<table>
<thead>
<tr>
<th>Sept. 2001 tide</th>
<th>Ampl (m)</th>
<th>Phase diff. with Gulf (deg)</th>
<th>Tide functions</th>
<th>Max. tide difference (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocean</td>
<td>0.1090</td>
<td>00.00</td>
<td>$\eta_o = 0.109 \cos(\theta)$</td>
<td>-</td>
</tr>
<tr>
<td>Bay 1</td>
<td>0.1025</td>
<td>19.65</td>
<td>$\eta_{B1} = 0.1025 \cos(\theta + 19.65^\circ)$</td>
<td>$(\eta_o - \eta_{B1})_{\text{max}} = 0.0366$</td>
</tr>
<tr>
<td>Bay 2</td>
<td>0.1150</td>
<td>52.17</td>
<td>$\eta_{B2} = 0.115 \cos(\theta + 52.17^\circ)$</td>
<td>$(\eta_o - \eta_{B1})_{\text{max}} = 0.0601$</td>
</tr>
<tr>
<td>Bay 3</td>
<td>0.1180</td>
<td>72.46</td>
<td>$\eta_{B3} = 0.118 \cos(\theta + 72.46^\circ)$</td>
<td>$(\eta_o - \eta_{B1})_{\text{max}} = 0.0989$</td>
</tr>
</tbody>
</table>

\(^a\)Amplitude correction factor of 1.11 applied.
Definition sketch of Ocean and Bay Tides

Figure C.1 Head difference between ocean (Gulf) and bay 1.

Definition sketch of tides in two bays

Figure C.2 Head difference between bay 1 and bay 2.
APPENDIX D
CALCULATIONS FOR STABILITY ANALYSIS

D.1 Introduction

van de Kreeke’s (1990) linearized lumped model is used for development of the equilibrium flow curves for the two inlets, namely St. Andrew Entrance and East Pass. This appendix includes the calculation of some of the input parameters listed in Table 5.6

D.2 Calculations

D.2.1 Equilibrium velocity

The equilibrium velocity is calculated using Eq. (D.1), which is same as Eq. (3.12). The equilibrium shear stress, \(\hat{\tau}_{eq} \), is taken from Mehta and Christensen (1983).

\[
 u_{eq} = \sqrt{\frac{\tau_{eq}}{8/3 \pi \rho F_i}} \tag{D.1}
\]

Table D.1 Calculation of equilibrium velocity

<table>
<thead>
<tr>
<th>Friction Coefficient, F=f/8</th>
<th>Range of (\hat{\tau}_{eq}) (Pa)</th>
<th>(\rho), Density (kg/m(^3))</th>
<th>Range of (u_{eq}) (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.003</td>
<td>0.48-0.72</td>
<td>1024</td>
<td>0.43-0.52</td>
</tr>
<tr>
<td>0.004</td>
<td>0.48-0.72</td>
<td>1024</td>
<td>0.37-0.45</td>
</tr>
</tbody>
</table>

D.2.2 Constant for Triangular schematization.

The constant \(a_i \) [Appendix B, Eq (B.15)] is calculated for St. Andrew Bay Entrance and East Pass.

Table D.2 Calculation of \(a_i \)

<table>
<thead>
<tr>
<th>Inlet</th>
<th>Cross-sectional Area (m(^2))</th>
<th>Hydraulic Radius, (R) (m)</th>
<th>(a_i = \frac{R_i}{\sqrt{A_i}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Andrew Bay Entrance</td>
<td>5,250</td>
<td>10</td>
<td>0.138</td>
</tr>
<tr>
<td>East Pass</td>
<td>255</td>
<td>3</td>
<td>0.187</td>
</tr>
</tbody>
</table>
D.3 Relationship between Flow Curves and Stability of Two Inlets

In general, equilibrium areas of the two inlets are defined by the sets of the areas where the two inlet equilibrium flow curves intersect. The hatched rectangle (common equilibrium zone) is formed by the intersection of two equilibrium intervals. Each interval is defined from the first equilibrium area to ∞. Consider the following two cases:

1. For both inlets to be in equilibrium, it is necessary that the enhanced parts of both the curves intersect. The hatched portion is the common equilibrium region where both the inlets are stable. Suppose after a storm, point a (Figure D.1) marked by a square (in hatched region) represent the areas of the two inlets. If we follow the arrows, which show how the areas of the inlets try to adjust after the storm, it is clear that both the areas lie in the enhanced parts, so both the inlets will be stable.

![Figure D.1 General configuration of equilibrium flow curve.](image1)

![Figure D.2 General configuration of equilibrium flow curve.](image2)
In this set of equilibrium flow curves, although the enhanced parts of the equilibrium curves intersect, the inlets need not necessarily come back to the equilibrium region. Let’s draw a rectangle around the intersection of enhanced part of the equilibrium flow curve. Let us take a point a (Figure. D.2), which represents the areas of the inlets just after a storm event. In this case following the arrows, it is clear that Inlet 2 will reach stable equilibrium but Inlet 1 will not. So this set of equilibrium flow curves does not always represent a stable equilibrium. Similarly we can argue with the other Figures (Figure 3.5 (c) and Figure 3.5 (d) in Chapter 3).

D.4 Matlab Programs

For solving the linearized model for stability, two Matlab programs were developed, Program –1 for solving the inlets with rectangular cross-section and Program –2 for triangular cross-section.

D.4.1 Program-1

```matlab
%UNIVERSITY OF FLORIDA
%DEPARTMENT OF CIVIL AND COASTAL ENGINEERING
%INLET STABILITY CALCULATION ASSUMING THE CROSS-SECTION TO BE RECTANGULAR

clear all
Ab=90*10^6; %Bay surface area, St. Andrew
eta_o=0.26; %Ocean Tide amplitude
ueq1=0.40; %Equilibrium velocity in Inlet 1, as calculated in Appendix D.
ueq2=0.45; %Equilibrium velocity in Inlet 2, as calculated in Appendix D.
T=18; %Tidal Period
sigma=(2*pi)/(T*3600);
g=9.81; %acceleration due to gravity

% Inlet -1
W1=525; % Width of the Inlet-1
L1=1340; % Length of the Inlet-1
F1=4*10^(-3); %Friction coefficient
%a1=0.044;

% Inlet-2
B=[];
W2=300; %Width of Inlet-2
L2=2000; %Length of the Inlet-2
F2=0.004; %Friction Coefficient of Inlet-2
%a2=0.197;
```
A=[];
P1=Ab*sigma*(eta_o)^2;
P2=(2*8*(F1*L1*W1*(ueq1^3)+F2*L2*W2*(ueq2^3)))/3*(pi*g); if P1>P2
 sprintf('the solution to the inlet system is possible')
else
 sprintf('the solution to the inlet system is not possible')
end

a=(F1*L1*W1*(ueq1^3)+F2*L2*W2*(ueq2^3))^2;
b=-(Ab*sigma*(eta_o))^2;
c=((Ab*sigma*8)/(3*pi*g))^2;
p=[a b c];
roots(p)
A1eq=sqrt(((F1*L1*W1*(ueq1^2))^2)*roots(p))
A2eq=sqrt(((F2*L2*W2*(ueq2^2))^2)*roots(p))

%B1=(A1.^-1).*2*F1*L1*W1;
newm1=[];

%Solve for inlet 1
for i=1:80
 A2=i*100;
 % for equilibrium case B1*ueq1^2=B2*ueq2^2
 a1=ueq1^2;
 b1=2*A2*ueq1*ueq2;
 c1=(ueq1^2)*A2^2-(Ab*sigma*eta_o)^2;
 d1=0;
 e1=((8*Ab*sigma*F1*L1*W1*ueq1^2)/(3*pi*g))^2;
 p1=[a1 b1 c1 d1 e1];
 Af(1:4)=roots(p1);
 B=[A2 A2 A2 A2;Af(1:4)];
 newa=B(3:6);
 newm=reshape(newa,2,2);
 newm1=cat(2,newm,newm1);
 fid = fopen('r1.txt','w');
 fprintf(fid,'%6.2f %12.8f
',newm1);
 fclose(fid);
end

newm12=[]

%Solve for inlet 2
for i=1:80
 A1=i*100;
% for equilibrium case B1*ueq1^2=B2*ueq2^2
a2=ueq2^2;
b2=2*A1*ueq1*ueq2;
c2=(ueq2^2)*A1^2-(Ab*sigma*eta_o)^2;
d2=0;
e2=((8*Ab*sigma*F2*L2*W2*ueq2^2)/(3*pi*g))^2;

p2=[a2 b2 c2 d2 e2];
As(1:4)=roots(p2);
B2=[A1 A1 A1 A1;As(1:4)];
newa2=B2(3:6);
newm2=reshape(newa2,2,2);
newm12=cat(2,newm2,newm12);
fid = fopen('r2.txt','w');
fprintf(fid,'%6.2f %12.8f
',newm12);
fclose(fid);
end

%Line
A2L=0:100:2000;
A1L=(F1*L1*W1*A2L)./(F2*L2*W2);
eq1=[A2L;A1L]
fid = fopen('r3.txt','w');
fprintf(fid,'%6.2f %12.8f
',eq1);
fclose(fid);
%End

D.4.2 Program-2

%UNIVERSITY OF FLORIDA
%DEPARTMENT OF CIVIL AND COASTAL ENGINEERING
%INLET STABILITY CALCULATION ASSUMING THE CROSS-SECTION TO BE TRIANGULAR

clear all

%Input Parameters

Ab=90*10^6;%Bay surface area, St. Andrew
eta_o=0.26;%Ocean Tide amplitude
ueq1=0.4;%Equilibrium velocity in Inlet 1 , as calculated in Appendix D.
ueq2=0.45;%Equilibrium velocity in Inlet 2 , as calculated in Appendix D
T=18;%Tidal Period
sigma=2*pi/(T*3600);
g=9.81;%acceleration due to gravity
%Inlet 1
L1=1340;%Length of Inlet
R1=10;% Hydraulic Radius
F1=4*10^-5\text{k}+(f*L1)/(4*R1);%friction factor F includes ken kex fL/4R
alpha1=0.138;%factor for triangular cross-section calculated as alpha=R/sqrt(Area)
B=[];

%Inlet 2
L2=2000;%Length of Inlet
R2=3;% Hydraulic Radius
F2=0.004;%friction factor F includes ken kex fL/4R
alpha2=0.187;%factor for triangular cross-section calculated as alpha=R/sqrt(Area)
A=[];

calcuations

P1=Ab*sigma*(eta_o)^3;
P2=((3*sqrt(3))/2)*((8/(3*pi))^2)*(((F1*L1*(ueq1^5))/(alpha1*g))^2+((F2*L2*(ueq2^5))/(alpha2*g))^2);
if P1>P2
 sprintf('the solution to the inlet system is possible')
else
 sprintf('the solution to the inlet system is not possible')
end

%Solve for the 2 roots , its a third degree polynomial so lets define the coefficients

a=(ueq1*(((F1*L1*alpha1)/(F1*L1*alpha1))^2)+ueq2*(((F2*L2*alpha1)/(F1*L1*alpha2))^2))^2;
b=0;
c=-(Ab*sigma*eta_o)^2;
d=((8/(3*pi))*(Ab*sigma)*((F1*L1)/(alpha1*g))*(ueq1^2))^2;
p=[a b c d];
roots(p)
A(1:3)=roots(p);
A1=A(2:3);
% for equilibirium case B1*ueq1^2=B2*ueq2^2
A2=((((alpha1*F2*L2)/(alpha2*F1*L1))*((ueq2/ueq1)^2))^2)*A1;

%B1=(A1.^-1).*2*F1*L1*W1;
newm1=[];

%Equilibrium curve for Inlet 1
for i=1:100
A2=i*100;
a1=ueq1^2;
b1=2*A2*ueq1*ueq2;
c1=(ueq1^2)*(A2^2)-(Ab*sigma*eta_o)^2;
d1=((8*Ab*sigma*F1*L1*ueq1^2)/(alpha1*3*pi*g))^2;
p1=[a1 b1 c1 d1];
roots(p1);
Af(1:3)=roots(p1);
B=[A2 A2 A2;Af(1:3)];
newa=B(3:6);
newm=reshape(newa,2,2);
newm1=cat(2,newm,newm1);
fid = fopen('t1.txt','w');
fprintf(fid,'%6.2f %12.8f
',newm1);
fclose(fid);
end
newm12=[];
%Equilibrium curve for Inlet 2
for i=1:100
 A1=i*100;
a2=ueq2^2;
b2=2*A1*ueq1*ueq2;
c2=(ueq2^2)*(A1^2)-(Ab*sigma*eta_o)^2;
d2=((8*Ab*sigma*F2*L2*ueq2^2)/(alpha2*3*pi*g))^2;
p2=[a2 b2 c2 d2];
roots(p2);
As(1:3)=roots(p2);
B=[A1 A1 A1;As(1:3)];
newa2=B(3:6);
newm2=reshape(newa2,2,2);
newm12=cat(2,newm2,newm12);
fid = fopen('t2.txt','w');
fprintf(fid,'%6.2f %12.8f\n',newm12);
fclose(fid);
end
%Line
A2L=0:100:7000;
A1L=((F1*L1*alpha2*(A2L.^0.5))/(F2*L2*alpha1)).^2;
eq1=[A2L;A1L]
fid = fopen('t3.txt','w');
fprintf(fid,'%6.2f %12.8f\n',eq1);
fclose(fid);
%end.
LIST OF REFERENCES

Keulegan, G. H., 1967, Tidal flows in entrances: Water level fluctuations of basins in communication with the seas. *Committee on Tidal Hydraulics Technical Bulletin No. 14*, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

BIOGRAPHICAL SKETCH

Mamta Jain was born in 1976, as the only daughter of Kanta and Mohan Jain, in Kathmandu, Nepal. She did her bachelor’s in civil engineering from Delhi College of Engineering in 1998. After that she worked for three years as Ocean Engineer in the oil sector consultancy, Engineers India Ltd. Her main area of specialization is design of oil terminals. The craving for more knowledge made her take a break from the job and she applied to graduate school. In fall 2001 she was admitted to the Graduate School of the University of Florida. She married Parag Singal in December 2001, who encouraged and supported her to continue her academic work in the Coastal and Oceanographic Engineering Program of the Department of Civil and Coastal Engineering.