If(si ,0) f(s ,0)| + JAR.fI If(si+ ,ti) f(si,t )I 1 = If(sit ) f(s i+ ,t t ) AR~fl = f(si+1,t ) f(s i+ ,t +1) f(0,t ) + f(O,ti+l S f(si+ ',ti) f(si+1,ti+1) lf( ,ti) f(o,ti+ ) ,' f(0,tC ) f(0,ti+l)1 + (IAR fj > If(si+ ,1ti) f(si+ ',ti+1) . 1 Here we diverge from the proof of (1), since the rectangles Ri, Ri overlap (see Figure 2-12). From the first inequality we have, upon summing over i, j-1 SIf(s ,ti) f(si+1 ,t ) i=1 j-1 5 i ( R fI + If(si+1,0) f(si,0)p) j-1 j-1 IE R f + E If(si+1,0) f(si'O) i=1 1 i=1 S Var[(,),(s,1 (f) + Var s1s]f(.,0) as in the proof of (1) SI f (s,t ) (as in the proof of (1)). Also, by a similar computation, we have