n E |A fI l E IA[, f| > a , R P Y i=1 [(s ,t i-1) ( ,t0l' ,i)] 2 The rectangles in this sum form a partition of the n rectangles [(rl,t),(p,t0, )], [(r2',t 1),(P 0,2)], ... [(rn,tOn-1),(p,t')] (shaded rectangles in Figure 2-7). Thus n E Var (f) i-1 [( 't0,i-1 0, l n > E A f E [(s, t ) )f I > - R EP Y i=1 0,1-1 ) (rl 0, In particular, then, Var > a Let p = By [(r ,t),(pt')] 2 1 n assumption, Var [',t),(r t f)n > a, so we can repeat this procedure and get another point s' < r' < r such that n n Var[(r, t),( ,t.)](f) > a Continuing in this manner, we can 4 n 1 construct a sequence p0, p1' P2, such that i) P > Pi+ > s, pi*s ii) Var. t )(f) > a for all i. L(p i+ t),(Pit )] 1+1 We have, then, by additivity, i-1 Var (f) = Z Var (f) L(pi t),'(Pot )]f) J=O 1(pj+ t),(pj1t') i-1 i-1 > E (a -- ) = ia E --- > a- . j=0 23 j=0 2 +1 1-1 Then Var (f) > E Var (f) > ia-E. 2 j=0 Pj+1't)' t')J