Var[(st)p,t')] (f) > a for all p > s'. Let, then, p0 > s', let c>0. There exist partitions o0: s' = s0,0 < sO,1 < ... < Om PO' TO: t = t0,0 < t,1 < ... < t,n = t' such that lA R f > . RBEo~0xx0 Now, consider the rectangle [(s',t),(s ,1,t')]. For each i, i 1,2,..., n, there is ri, s' < ri < s 0,1 ri+1 < r such that for each i [(s',toi-1),(r ,t )] 1+1 by right continuity at each (s',t 1). (rn,t') (so0,t') (Po,t') t0,n-1 0,2 I to,1 (s',t) rn-r2 r1 (So01t) (Po,t) Figure 2-7 Breakdown of 0oXT0 Subdividing each of the leftmost rectangles of a ox in this manner creates a refinement P of o0XT0, hence E |AR fi > a. Now, we also have that n n i-1 [( ,t0,i-1),(rit0, f i=1 21+1 2 '