(S0,1,rO) (PO,ro) I III (s 't0, POl) l0,1 II Si -----------'(po,tI) t,1 (s ,t') s (sO, ,'t ) Figure 2-5 Computing variation of R1 variation of f on the respective rectangles, we have + V[- ]ar (f) Var (s ,t ,1),'(s0,1 ,r0)](f) + Var[(s0,1',t'),(p t o, + Var (f) > c , P(s ,t1O' 0,1 0r0)]t)I 2 Denote u = (S0,1'taI) = (l ,rl) > z'. By assumption, Var[z ,u (f) > a, so there exists a partition oa: s' = s1,0 < s1,1 < ... < s1,m p1 1: t' t,0 < t, < ... < t ,n = r1 such that E JA f > a and 1r(s t )(s ,t f < Then, as RBE:co 1 0,0't1,0 1,1 above, we have that the total variation of f on the three rectangles comprising [(s' ,t'),pr) t'),(s ,t1,1 )] is greater than a hence the total variation of f on the rectangles comprising [(s',t'),(p0,rO)] \ [(s',t'),(s ,t, )] > (a ) + (a ) = 2, ( + ). 2 4