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Abstract. Parallel programming continues to be difficult, despite sub-
stantial and ongoing research aimed at making it tractable. Especially
dismaying is the gulf between theory and the practical programming.
We propose a structured approach to developing parallel programs for
problems whose specifications are like those of sequential programs, such
that much of the work of development, reasoning, and testing and de-
bugging can be done using familiar sequential techniques and tools. The
approach takes the form of a simple model of parallel programming,
a methodology for transforming programs in this model into programs
for parallel machines based on the ideas of semantics-preserving trans-
formations and programming archetypes (patterns), and an underlying
operational model providing a unified framework for reasoning about
those transformations that are difficult or impossible to reason about
using sequential techniques. This combination of a relatively accessible
programming methodology and a sound theoretical framework to some
extent bridges the gulf between theory and practical programming. This
paper sketches our methodology and presents our programming model
and its supporting framework in some detail.

1 Introduction

Despite the past and ongoing efforts of many researchers, parallel programming
continues to be difficult, with a persistent and dismaying gulf between theory
and practical programming. We propose a structured approach to developing
parallel programs for the class of problems whose specifications are like those
usually given for sequential programs, in which the specification describes initial
states for which the program must terminate and the relation between initial and
final states. Our approach allows much of the work of development, reasoning,
and testing and debugging to be done using familiar sequential techniques and
tools; it takes the form of a simple model of parallel programming, a methodol-
ogy for transforming programs in this model into programs for parallel machines

* This work was supported by funding from the Air Force Office of Scientific Research
(AFOSR) and the National Science Foundation (NSF).
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based on the ideas of semantics-preserving transformations and programming
archetypes (patterns), and an underlying operational model providing a uni-
fied framework for reasoning about those transformations that are difficult or
impossible to reason about using sequential techniques.

By combining a relatively accessible programming methodology with a sound
theoretical framework, our approach to some extent bridges the gap between the-
ory and practical programming. The transformations we propose are in many
cases formalized versions of what programmers and compilers typically do in
practice to “parallelize” sequential code, but we provide a framework for formally
proving their correctness (either by standard sequential techniques or by using
our operational model). Our operational model is sufficiently general to support
proofs of transformations between markedly different programming models (se-
quential, shared-memory, and distributed-memory with message-passing). It is
sufficiently abstract to permit a fair degree of rigor, but simple enough to be
relatively accessible, and applicable to a range of programming notations.

This paper describes our programming methodology and presents our pro-
gramming model and its supporting framework in some detail. It also sketches
briefly how the model applies in the context of particular programming nota-
tions.

2  Our programming model and methodology

Our programming model comprises a primary model and two subsidiary mod-
els, and is designed to support a programming methodology based on stepwise
refinement and the reuse where possible of the techniques and tools of sequential
programming. This section gives an overview of our model and methodology.

2.1 The arb model: parallel composition with sequential semantics

Our primary programming model, which we call the arb model, is simply the
standard sequential model (as defined by Dijkstra [14, 15], Gries [18], and others)
extended to include parallel compositions of groups of program elements whose
parallel composition is equivalent to their sequential composition. The name
(arb) is derived from UC (Unity C) [5] and is intended to connote that such
groups of program elements may be interleaved in any arbitrary fashion with-
out changing the result. We define a property we call arb-compatibility, and we
show that if a group of program elements is arb-compatible, their parallel com-
position is semantically equivalent to their sequential composition; we call such
compositions arb compositions. Since arb-model programs can be interpreted
as sequential programs, the extensive body of tools and techniques applicable
to sequential programs is applicable to them. In particular, their correctness
can be demonstrated formally by using sequential methods, they can be refined
by sequential semantics-preserving transformations, and they can be executed
sequentially for testing and debugging.
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2.2 Transformations from the arb model to practical parallel
languages

Because the arb composition of arb-compatible elements can also be inter-
preted as parallel composition, arb-model programs can be executed as par-
allel programs. Such programs may not make effective use of typical parallel
architectures, however, so our methodology includes techniques for improving
their efficiency while maintaining correctness. We define two subsidiary pro-
gramming models that abstract key features of two classes of parallel archi-
tectures: the par model for shared-memory (single-address-space) architectures,
and the subset par model for distributed-memory (multiple-address-space) ar-
chitectures. We then develop semantics-preserving transformations to convert
arb-model programs into programs in one of these subsidiary models. Interme-
diate stages in this process are usually arb-model programs, so the transforma-
tions can make use of sequential refinement techniques, and the programs can be
executed sequentially. Finally, we indicate how the par model can be mapped
to practical programming languages for shared-memory architectures and the
subset par model to practical programming languages for distributed-memory—
message-passing architectures. Together, these groups of transformations provide
a semantics-preserving path from the original arb-model program to a program
in a practical programming language. Figure 1 illustrates this overall scheme.

2.3 Supporting framework for proving transformations correct

Some of the transformations indicated in Figure 1 — those within the arb model
— can be proved correct using the techniques of sequential stepwise refinement
(as defined by Gries [18], Hoare [20], and others). Others — those between
our different programming models, or from one of our models to a practical
programming language — require a different approach. We therefore define an
operational model based on viewing programs as state-transition systems, give
definitions of our programming models in terms of this underlying operational
model, and use it to prove the correctness of those transformations for which
sequential techniques are inappropriate.

2.4 Programming archetypes

An additional important element of our approach, though not one that will be
addressed in this paper, is that we envision the transformation process just de-
scribed as being guided by parallel programming archetypes, by which we mean
abstractions that capture the commonality of classes of programs, much like
the design patterns [17] of the object-oriented world. We envision application
developers choosing from a range of archetypes, each representing a class of pro-
grams with common features and providing a class-specific parallelization strat-
egy (i.e., a pattern for the shared-memory or distributed-memory program to be
ultimately produced) together with a collection of class-specific transformations
and a code library of communication or other operations that encapsulate the
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sequential programs

programs for
shared-memory
‘ architecture

programs for
distributed-memory
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Fig. 1. Overview of programming models and transformation process. Solid-bordered
boxes indicate programs in the various models; arrows indicate semantics-preserving
transformations. A dashed arrow runs from the box denoting a sequential program to a
box denoting an arb-model programs because it is sometimes appropriate and feasible
to derive an arb-model program from an existing sequential program (by replacing
sequential compositions of arb-compatible elements with arb compositions of the same
elements).
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details of the parallel programs. Archetypes are described in more detail in [8]
and [30].

2.5 Program development using our methodology

We can then employ the following approach to program development, with all
steps guided by an archetype-specific parallelization strategy and supported by
a collection of archetype-appropriate already-proved-correct transformations.

Development of initial program. The application developer begins by developing
a correct program using sequential constructors and parallel composition (||), but
ensuring that all groups of elements composed in parallel are arb-compatible.
We call such a program an arb-model program, and it can be interpreted as either
a sequential program or a parallel program, with identical meaning. Correctness
of this program can be established using techniques for establishing correctness
of a sequential program.

Sequential-to-sequential refinement. The developer then begins the process of
refining the program into one suitable for the target architecture. During the
initial stages of this process, the program is viewed as a sequential program
and operated on with sequential refinement techniques, which are well-defined
and well-understood. A collection of representative transformations (refinement
steps) is presented in [30]. (Appendix C sketches a few of them.) In refining
a sequential composition whose elements are arb-compatible, care is taken to
preserve their arb-compatibility. The result is a program that refines the original
program and can also be interpreted as either a sequential or a parallel program,
with identical meaning. The end product of this refinement should be a program
that can then be transformed into an efficient program in the par model (for
a shared-memory target) or the subset par model (for a distributed-memory
target).

Sequential-to-parallel refinement. The developer next transforms (refines) the
refined arb-model program into a par-model or subset-par-model program.

Translation for target platform. Finally, the developer translates the par-model
or subset-par-model program into the desired parallel language for execution on
the target platform. This step, like the others, is guided by semantics-preserving
rules for mapping one of our programming models into the constructs of a par-
ticular parallel language.

3 The arb model

As discussed in Section 2, the heart of our approach is identifying groups of
program elements that have the useful property that their parallel composition
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is semantically equivalent to their sequential composition. We call such a group
of program elements arb-compatible.

In this section, we first present our operational model for parallel programs,
the model we will use for reasoning about programs and program transformations
that are not amenable to strictly sequential reasoning techniques. We then de-
fine a notion of arb-compatibility, such that the parallel composition of a group
of arb-compatible program elements is semantically equivalent to its sequential
composition. We then identify restrictions on groups of program elements that
are sufficient to guarantee their arb-compatibility, and we present some proper-
ties of parallel compositions of arb-compatible elements. Finally, we sketch how
these ideas apply in the context of programming notations and briefly discuss
executing arb-model programs sequentially and in parallel.

It is worth observing at this point that the ideas behind the programming
model are not tied to any particular programming notation but should apply
to any imperative programming notation. We present definitions and theorems
for our programming models in a notation based on that of Dijkstra’s guarded-
command language, since it is a simple and compact notation that makes for
readable definitions and theorems. However, we present examples of applying
the definitions and theorems in a notation based on Fortran 90, in order to
take advantage of Fortran 90’s wider range of convenient constructs (e.g., arrays
and DO loops) and to indicate how our ideas apply in the context of a practical
programming notation.

3.1 Overview of program semantics and operational model

We define programs in such a way that a program describes a state-transition
system, and show how to define program computations, sequential and parallel
composition, and program refinement in terms of this definition. In this paper
we present this material with a minimum of mathematical notation and only
brief sketches of most proofs; a more formal treatment of the material, including
more complete proofs, appears in [30].

Treating programs as state-transition systems is not a new approach; it has
been used in work such as Chandy and Misra [9], Lynch and Tuttle [24], Lam-
port [23], Manna and Pnueli [26], and Pnueli [34] to reason about both parallel
and sequential programs. The basic notions of a state-transition system — a
set of states together with a set of transitions between them, representable as a
directed graph with states for vertices and transitions for edges — are perhaps
more helpful in reasoning about parallel programs, particularly when program
specifications describe ongoing behavior (e.g., safety and progress properties)
rather than relations between initial and final states, but they are also applica-
ble to sequential programs. Our operational model builds on this basic view of
program execution, presented in a way specifically aimed at facilitating the stat-
ing and proving of the main theorems of this section (that for groups of program
elements meeting stated criteria, their parallel and sequential compositions are
semantically equivalent) and subsequent sections.
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3.2 Definitions

Definition 3.1 (Program).
We define a program P as a 6-tuple (V, L, InitL, A, PV, PA), where

V is a finite set of typed variables. V' defines a state space in the state-
transition system; that is, a state is given by the values of the variables in
V. In our semantics, distinct program variables denote distinct atomic data
objects; aliasing is not allowed.

L C V represents the local variables of P. These variables are distinguished
from the other variables of P in two ways: (i) The initial states of P are
given in terms of their values, and (ii) they are invisible outside P — that is,
they may not appear in a specification for P, and they may not be accessed
by other programs composed with P, either in sequence or in parallel.
InitL is an assignment of values to the variables of L, representing their
initial values.

A is a finite set of program actions. A program action describes a relation
between states of its input variables (those variables in V that affect its
behavior, either in the sense of determining from which states it can be
executed or in the sense of determining the effects of its execution) and
states of its output variables (those variables whose value can be affected by
its execution). Thus, a program action is a triple (I, Oy, Ry) in which

e [, C V represents the input variables of A.
e O, CV represents the output variables of A.
e R, is a relation between I,-tuples and O,-tuples.

PV CV are protocol variables that can be modified only by protocol actions
(elements of PA). (That is, if v is a protocol variable, and a = (I, Oq, R,)
is an action such that v € O,, a must be a protocol action.) Such variables
and actions are not needed in this section but are useful in defining the
synchronization mechanisms of Section 4 and Section 5; the requirement
that protocol variables be modified only by protocol actions simplifies the
task of defining such mechanisms. Observe that variables in PV can include
both local and non-local variables.

PA C A are protocol actions. Only protocol actions may modify protocol
variables. (Protocol actions may, however, modify non-protocol variables.)

A program action a = (I,,0,, R,) defines a set of state transitions, each of
which we write in the form s = s', as follows: s = s’ if the pair (i, 0), where
i is a tuple representing the values of the variables in I, in state s and o is a
tuple representing the values of the variables in O, in state s, is an element of
relation R,.

Observe that we can also define a program action based on its set of state

transitions, by inferring the required I, O,, and R,.

O
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Appendix A presents examples of defining the commands of a programming
notation (Dijkstra’s guarded-command language [13,15]) in terms of our model.

Definition 3.2 (Initial states).

For program P, s is an initial state of P if, in s, the values of the local variables
of P have the values given in InitL.

O

Definition 3.8 (Enabled).

For action a and state s of program P, we say that a is enabled in s exactly
when there exists program state s’ such that s = s'.

O

Definition 3.4 (Computation).
If P=(V,L, InitL, A, PV, PA), a computation of P is a pair

C = (s0,(j: 1 <j < N:(ay,s5)))
in which

— 5o is an initial state of P.

- (¢ :1<j < N:(aj,s5))is a sequence of pairs in which each a; is a
program action of P, and for all j, s;_; Ry sj. We call these pairs the state
transitions of C', and the sequence of actions a; the actions of C. N can be
a non-negative integer or cc. In the former case, we say that C' is a finite or
terminating computation with length N + 1 and final state sy. In the latter
case, we say that C is an infinite or nonterminating computation.

— If C is infinite, the sequence (j : 1 < j : (aj,s;)) satisfies the following
fairness requirement: If, for some state s; and program action a, a is enabled
in sj, then eventually either a occurs in C or a ceases to be enabled.

Definition 3.5 (Terminal state).

We say that state s of program P is a terminal state of P exactly when there
are no actions of P enabled in s.

O

Definition 3.6 (Mazimal computation).
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We say that a computation of C' of P is a mazimal computation exactly when
either (i) C' is infinite or (i) C is finite and ends in a terminal state.

O

Definition 3.7 (Affects).

For predicate ¢ and variable v € V', we say that v affects q exactly when there
exist states s and s’, identical except for the value of v, such that ¢g.s # ¢.s'. For
expression F and variable v € V', we say that v affects E exactly when there
exists value k for E such that v affects the predicate (E = k).

O

3.3 Specifications and program refinement

The usual meaning of “program P is refined by program P’” is that program P’
meets any specification met by P. We will confine ourselves to specifications that
describe a program’s behavior in terms of initial and final states, giving (i) a set
of initial states s such that the program is guaranteed to terminate if started in
s, and (ii) the relation, for terminating computations, between initial and final
states. An example of such a specification is a Hoare total-correctness triple [20].
In terms of our model, initial and final states correspond to assignments of values
to the program’s variables; we make the additional restriction that specifications
do not mention a program’s local variables L. We make this restriction because
otherwise program equivalence can depend on internal behavior (as reflected in
the values of local variables), which is not the intended meaning of equivalence.
We write P C P’ to denote that P is refined by P'; if P C P’ and P' C P, we
say that P and P’ are equivalent, and we write P ~ P'.

Definition 3.8 (Equivalence of computations).

For programs P; and P, and a set of typed variables V' such that V' C V; and
V' C V5 and for every v in V', v has the same type in all three sets (V/, V1, and
V2), we say that computations Cy of P; and Cy of P> are equivalent with respect
to V exactly when:

— For every v in V, the value of v in the initial state of C; is the same as its
value in the initial state of Cs.

— Either (i) both C; and C; are infinite, or (ii) both are finite, and for every
v in V, the value of v in the final state of C] is the same as its value in the
final state of Cs.

O

We can now give a sufficient condition for showing that P; C P, in our semantics.
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Theorem 3.9 (Refinement in terms of equivalent computations).

For P, and P, with (V1 \L1) C (V2\ L2) (where \ denotes set difference), P, C P,
when for every maximal computation Cs of P, there is a maximal computation
C; of P, such that C is equivalent to Cy with respect to (V1 \ Ly).

O

Proof of Theorem 3.9.

This follows immediately from Definition 3.8, the usual definition of refinement,
and our restriction that program specifications not mention local variables.

O

3.4 Program composition

We now present definitions of sequential and parallel composition in terms of
our model. First we need some restrictions to ensure that the programs to be
composed are compatible — that is, that it makes sense to compose them:

Definition 3.10 (Composability of programs).
We say that a set of programs Py, ..., Py can be composed exactly when

— any variable that appears in more than one program has the same type in
all the programs in which it appears (and if it is a protocol variable in one
program, it is a protocol variable in all programs in which it appears),

— any action that appears in more than one program is defined in the same
way in all the programs in which it appears, and

— different programs do not have local variables in common.

O

Sequential composition

The usual meaning of sequential composition is this: A maximal computation
of Pi; P, is a maximal computation C; of P, followed (if C is finite) by a
maximal computation Cy of P, with the obvious generalization to more than
two programs. We can give a definition with this meaning in terms of our model
by introducing additional local variables Eni, ..., Eny that ensure that things
happen in the proper sequence, as follows: Actions from program P; can execute
only when En; is true. En, is set to true at the start of the computation, and
then as each P; terminates it sets En; to false and Enjy; to true, thus ensuring
the desired behavior.
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Definition 3.11 (Sequential composition,).

If programs P,..., Py, with P; = (V}, L;, InitL;, A;, PV ;, PA;), can be com-
posed (Definition 3.10), we define their sequential composition (Py;...; Py) =
(V, L, InitL, A, PA, PV) thus:

- V=ViuU...UVyUL.

- L=LiU...ULyU{Enp,Eny,...,Enyn}, where Enp, Eny,...,Eny are
distinct Boolean variables not otherwise occurring in V:

Enp is true in the initial state of the sequential composition and false there-
after.

For all j, En; is true during (and only during) the part of the computation
corresponding to execution of P;.

— InitL is defined thus: The initial value of Enp is true. For all j, the initial
value of En; is false, and the initial values of variables in L; are those given
by InitL;.

— A consists of the following types of actions:

e Actions corresponding to actions in A;, for some j: For a € A;, we define
a' identical to a except that a' is enabled only when En; = true.

e Actions that accomplish the transitions between components of the com-
position:
Initial action a7, takes any initial state s, with Enp = true, to a state
s’ identical except that Enp = false and En; = true. s’ is thus an initial
state of P;.
For j with 1 < j < N, action ar; takes any terminal state s of P,
with En; = true, to a state s’ identical except that En; = false and
Enj1 = true. s' is thus an initial state of Pj;;.
Final action ar, takes any terminal state s of Py, with Eny = true, to
a state s’ identical except that Eny = false. s’ is thus a terminal state
of the sequential composition.

— PV =PV, U...UPVn.

— PA contains exactly those actions a' derived (as described above) from the
actions @ of PA; U...U PAn.

O

Parallel composition

The usual meaning of parallel composition is this: A computation of P;||P;
defines two threads of control, one each for P; and P;. Initiating the composition
corresponds to starting both threads; execution of the composition corresponds
to an interleaving of actions from both components; and the composition is
understood to terminate when both components have terminated. We can give a
definition with this meaning in terms of our model by introducing additional local
variables that ensure that the composition terminates when all of its components
terminate, as follows: As for sequential composition, we introduce additional
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local variables Enq, ..., Eny such that actions from program P; can execute only
when FEn; is true. For parallel composition, however, all of the En;’s are set to
true at the start of the computation, so computation is an interleaving of actions
from the P;’s. As each P; terminates, it sets the corresponding En; to false;
when all are false, the composition has terminated. Observe that the definitions
of parallel and sequential composition are almost identical; this greatly facilitates
the proofs of Lemma 3.17 and Lemma 3.18.

Definition 3.12 (Parallel composition,).

If programs Pi,..., Py, with P; = (V}, L;, InitL;, A;, PV ;, PA;), can be com-
posed (Definition 3.10), we define their parallel composition (Pi]|...||Pnx) =
(V, L, InitL, A, PV, PA) thus:

- V=ViuU...UVNyUL.
- L=LiU...ULyU{Enp,En,,...,Eny}, where Enp, En;,...,Eny are
distinct Boolean variables not otherwise occurring in V:
Enp is true in the initial state of the parallel composition and false there-
after.
For all j, En; is true until the part of the composition corresponding to P;
has terminated.
— InitL is defined thus: The initial value of Enp is true. For all j, the initial
value of En; is false, and the initial values of variables in L; are those given
by InitL;.
A consists of the following types of actions:

e Actions corresponding to actions in A;, for some j: For a € A;, we define
a’ identical to a except that a' is enabled only when Enj is true.

e Actions that correspond to the initiation and termination of the compo-
nents of the composition:
Initial action ar, takes any initial state s, with Enp = true, to a state
s’ identical except that En; = true for all j. s’ is thus an initial state of
P;j, for all j.
For j with 1 < j < N, action ar; takes any terminal state s of P,
with En; = true, to a state s’ identical except that En; = false. A
terminating computation of P contains one execution of each ar;; after
execution of ar; for all j, the resulting state s’ is a terminal state of the
parallel composition.

- PV =PVU...UPVy.
— PA contains exactly those actions o' derived (as described above) from the
actions a of PA; U...U PAp.
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3.5 arb-compatibility

We now turn our attention to defining sufficient conditions for a group of pro-
grams Py, ..., Py to have the property we want, namely:

(Pi|...|IPx) ~ (Pr;...; Py)

We first define a key property of pairs of program actions; we can then define
the desired condition and show that it guarantees the property of interest.

Definition 3.18 (Commutativity of actions).

Actions a and b of program P are said to commute exactly when the following
two conditions hold:

— Execution of b does not affect (in the sense of Definition 3.7) whether a is
enabled, and vice versa.

— It is possible to reach ss from s; by first executing a and then executing b
exactly when it is also possible to reach ss from s; by first executing b and
then executing a, as illustrated by Figure 2. then executing a. (Observe that
if @ and b are nondeterministic, there may be more than one such state ss.)

o bQ/@

Fig. 2. Commutativity of actions a and b. Observe that a and b are nondeterministic,
but the graph has the property that if we can reach a state (s> or s5) by executing
first a and then b, then we can reach the same state by first executing b and then a,
and vice versa.

(That is, @ and b commute exactly when they have the diamond property [10,
25].)

O

Definition 3.1/ (arb-compatible).
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Programs P, ..., Py are arb-compatible exactly when they can be composed
(Definition 3.10) and any action in one program commutes (Definition 3.13)
with any action in another program.

O

Theorem 3.15 (Parallel ~ sequential for arb-compatible programs).

If P,,..., Py are arb-compatible, then

(Py||...||Px) ~ (Pi;...; Py) .

Proof of Theorem 3.15.

We write Pp = (P1]|...||Pn) and Ps = (Py;...; Py). From Definition 3.11 and
Definition 3.12,

(Vb =Vs) A (Lp=Ls) A (InitLp = InitLs) A (PVp = PVg)
A (PAP = PAs) ,

so we write Pp = (V, L, InitL, Ap, PV, PA) and Ps = (V, L, InitL, As, PV, PA).
We proceed as follows:

— We first show (Lemma 3.17) that for every maximal computation Cs of Pg
there is a maximal computation Cp of Pp with Cs equivalent to C'p with
respect to V' \ L. From Theorem 3.9, this establishes that Pp C Ps.

— We then show (Lemma 3.18) the converse: that for every maximal computa-
tion C'p of Pp there is a maximal computation Cg of Ps with C'p equivalent
to C's with respect to V'\ L. From Theorem 3.9, this establishes that Ps C Pp.

— We then conclude that Pp ~ Pg, as desired.

O

Lemma 3.16 (Reordering of computations).

Suppose that Py, ..., Py are arb-compatible and Cp is a finite (not necessarily
maximal) computation of Pp = (Py||...||Pn) containing a successive pair of
transitions ((a, s,,), (b, Sp+1)) such that a and b commute. Then we can construct
a computation Cp of Pp with the same initial and final states as C'p, and the
same sequence of transitions, except that the pair ((a,sy), (b, sn+1)) has been
replaced by the pair ((b, s},), (a, Sn+1))-

O
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Proof of Lemma 3.16.

This is an obvious consequence of the commutativity (Definition 3.13) of a and

b . b
b: If s, 1 — s, and s,, — Sn+1, then there exists a state s/, such that s,,_1 — s,
and s/, % Sn41, SO we can construct a computation as described.

O

Lemma 3.17 (Sequential refines parallel).

For Pp and Ps defined as in Theorem 3.15, if C's is a maximal computation of
Ps, there is a maximal computation C'p of Pp with C's equivalent to Cp with
respect to V' \ L.

O

Proof of Lemma 3.17.

The proof of this lemma is straightforward for finite computations: We have
defined parallel and sequential composition in such a way that any maximal
finite computation of the parallel computation maps to an equivalent maximal
computation of the parallel composition.

For nonterminating computations, we can similarly map a computation of
the sequential composition to an infinite sequence of transitions of the parallel
composition. However, the result may not be a computation of the parallel com-
position because it may violate the fairness requirement: If P; fails to terminate,
no action of P;;; can occur, even though in the parallel composition there may
be actions of Pjy; that are enabled. If this is the case, however, we can use the
principle behind Lemma 3.16 to transform the unfair sequence of transitions into
a fair one.

O

Lemma 3.18 (Parallel refines sequential).

For Pp and Ps defined as in Theorem 3.15, if Cp is a maximal computation of
Pp, there is a maximal computation C's of Ps such that C's is equivalent to Cp
with respect to V'\ L.

O

Proof of Lemma 3.18.

For terminating computations, the proof is straightforward: Given a maximal
computation of the parallel composition, we first apply Lemma 3.16 repeatedly to
construct an equivalent (also maximal) computation of the parallel composition
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in which, for j < k, all transitions corresponding to actions of P; occur before
transitions corresponding to actions of Pj. As in the proof of Lemma 3.17, this
computation then maps to an equivalent maximal computation of the sequential
composition.

For nonterminating computations, we can once again use the principle behind
Lemma 3.16 to construct a sequence of transitions (of the parallel composition)
in which, for j < k, all transitions corresponding to actions of P; occur be-
fore transitions corresponding to actions of Pj,. We then map this sequence of
transitions to a computation of the sequential composition.

O

3.6 arb composition

For arb-compatible programs P, ..., Py, then, we know that
(Pi]]...||IPN) ~ (Pr;...; PN) .

To denote this parallel/sequential composition of arb-compatible elements, we
write arb(P, ..., Py), where

arb(P,,...,Px) ~ (Pi]|...||Px)

or equivalently
arb(Py,...,Pn) ~ (Py;...;PN) .

We refer to this notation as “arb composition”, although it is not a true com-
position operator since it is properly applied only to groups of elements that are
arb-compatible. We regard it as a useful form of syntactic sugar that denotes
not only the parallel /sequential composition of P, ..., Py but also the fact that
Py,..., Py are arb-compatible. We also define an additional bit of syntactic
sugar, seq(Py, ..., Py), such that

seq(Pi,...,Py) ~ (Pi;...; Py) .

(We use this notation to improve the readability of nestings of sequential and
arb composition.)

arb composition has a number of useful properties. It is associative and
commutative (proofs given in [30]), and it allows refinement by parts, as the
following theorem states.

Theorem 3.19 (Refinement by parts of arb composition,).

We can refine any component of an arb composition to obtain a refinement of
the whole composition. That is, if P,..., Py are arb-compatible, and, for each
Jj, P; € P}, and Pj,..., Py are arb-compatible, then

arb(Py,...,Py) Carb(P],..., Py)
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Proof of Theorem 3.19.

This follows from Theorem 3.15 and refinement by parts for sequential programs.

O

This theorem is the justification for our program-development strategy, in which
we apply the techniques of sequential stepwise refinement to arb-model pro-
grams.

3.7 A simpler sufficient condition for arb-compatibility

The definition of arb-compatibility given in Definition 3.14 is the most general
one that seems to give the desired properties (equivalence of parallel and sequen-
tial composition, and associativity and commutativity), but it may be difficult
to apply in practice. We therefore give a more-easily-checked sufficient condition
for programs Py, ..., Py to be arb-compatible.

Definition 3.20 (Variables read/written by P).

For program P and variable v, we say that v is read by P if it is an input variable
for some action a of P, and we say that v is written by P if it is an output variable
for some action a of P.

O

Theorem 3.21 (arb-compatibility and shared variables).

If programs P, ..., Py can be composed (Definition 3.10), and for j # k, no vari-
able written by P; is read or written by Py, then Py, ..., Py are arb-compatible.

O

Proof of Theorem 3.21.

Given programs P, ..., Py that satisfy the condition, it suffices to show that
any two actions from distinct components P; and P, commute. The proof is
straightforward; a detailed version appears in [30].

O
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3.8 arb composition and programming notations

A key difficulty in applying our methodology for program development is in
identifying groups of program elements that are known to be arb-compatible.
The difficulty is exacerbated by the fact that many programming notations have
a notion of program variable that is more difficult to work with than the notion
we employ for our formal semantics. In our semantics, variables with distinct
names address distinct data objects. In many programming notations, this need
not be the case, and the difficulty of detecting situations in which variables with
distinct names overlap (aliasing) complicates automatic program optimization
and parallelization just as it complicates the application of our methodology.
Syntactic restrictions sufficient to guarantee arb-compatibility do not seem in
general feasible. However, it is feasible to give semantics-based rules that identify,
for program P, supersets of the variables read and written by P, and identify-
ing such supersets is sufficient to permit application of Theorem 3.21. In [30]
we discuss such rules for two representative programming notations, Dijkstra’s
guarded-command language [13,15] and Fortran 90 [22,1], and present exam-
ples of the use of these rules. Defining such rules is fairly straightforward for
Dijkstra’s guarded-command language, since it is a small and well-understood
language. It is less straightforward for a large and complex language such as For-
tran 90; giving a formal definition of its semantics is far from trivial. We observe,
however, that the well-understood constructs of Dijkstra’s guarded-command
language have, when deterministic, analogous constructs in Fortran 90 (as in
many other practical languages), and that formally-justified results derived in
Dijkstra’s guarded-command language apply to Fortran 90 programs insofar as
the Fortran 90 programs limit themselves to these analogous constructs.

Before presenting examples, we introduce a little additional notation so that
we can apply our extensions to the sequential programming model to a represen-
tative practical programming notation, Fortran 90. We do this in order to show
how our ideas apply in the context of a practical programming notation.

arb composition. For arb-compatible programs Py, ..., Py, we write their arb
composition thus:

arb
P_1

P_N
end arb

seq composition. We define an analogous notation for sequential composition,
using keywords seq and end seq, useful in improving the readability of nestings
of sequential and arb composition.

arball. To allow us to express the arb composition of, for example, the iter-
ations of a loop, we define an indexed form of arb composition, with syntax
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modeled after that of the FORALL construct of High Performance Fortran [19],
as follows. This notation is syntactic sugar only, and all theorems that apply to
arb composition apply to arball as well.

Definition 3.22 (arball).

If we have N index variables iy,...,¢x, with corresponding index ranges
itj-start <i; <ij_end, and program block P such that P does not modify the
value of any of the index variables, then we can define an arball composition as
follows.

For each tuple (z1,...,zx) in the cross product of the index ranges, we
define a corresponding program block P(z1,...,zy) by replacing index variables
i1,--.,in with corresponding values z1,...,zn. If the resulting program blocks
are arb-compatible, then we write their arb composition as follows:

arball (i1l = il_start : il_end , ..., iN = iN_start : iN_end)
P(x1, ..., xN)
end arball

3.9 Examples of arb composition

Composition of sequential blocks. This example composes two sequences, the
first assigning to a and b and the second assigning to ¢ and d.

arb
seq
a=1;b=a
end seq
seq
c=2;d-=c
end seq
end arb

Composition of sequential blocks (arball). The following example composes ten
sequences, each assigning to one element of a and one element of b.

arball (i = 1:10)

seq
a(i) = i
b(i) = a(i)
end seq

end arball
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Invalid composition. The following example is not a valid arb composition; the
two assignments are not arb-compatible.

arb
a=1
b=a

end arb

3.10 Execution of arb-model programs

Since for arb-compatible program elements, their arb composition is semanti-
cally equivalent to their parallel composition and also to their sequential com-
position, programs written using sequential commands and constructors plus
(valid) arb composition can, as noted earlier, be executed either as sequential or
as parallel programs with identical results.! In this section we sketch how to do
this in the context of practical programming languages; [30] presents additional
details and examples.

Sequential execution. A program in the arb model can be executed sequentially;
such a program can be transformed into an equivalent program in the underlying
sequential notation by replacing arb composition with sequential composition.
For Fortran 90, this is done by removing arb and end arb and transforming
arball into nested DO loops.

Parallel execution. A program in the arb model can be executed on a shared-
memory-model parallel architecture given a language construct that implements
general parallel composition as defined in Definition 3.12. Language constructs
consistent with this form of composition include the par and parfor constructs
of CC++ [7] and the PARALLEL DO and PARALLEL SECTIONS constructs of the
OpenMP proposal [33].

4 The par model and shared-memory programs

As discussed in Section 1, once we have developed a program in our arb model,
we can transform the program into one suitable for execution on a shared-
memory architecture via what we call the par model, which is based on a
structured form of parallel composition with barrier synchronization that we
call par composition. In our methodology, we initially write down programs us-
ing arb composition and sequential constructs; after applying transformations

! Programs that use arb to compose elements that are not arb-compatible cannot, of
course, be guaranteed to have this property. As discussed in Section 3.6, we assume
that the arb composition notation is applied only to groups of program elements
that are arb-compatible; it is the responsibility of the programmer to ensure that
this is the case.
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such as those presented in Appendix C, we transform the results in par-model
programs, which are then readily converted into programs for shared-memory
architectures (by replacing par composition with parallel composition and our
barrier synchronization construct with that provided by a selected parallel lan-
guage or library). In this section we extend our model of parallel composition to
include barrier synchronization, give key transformations for turning arb-model
programs into programs using parallel composition with barrier synchronization,
and briefly discuss executing such programs on shared-memory architectures.

4.1 Parallel composition with barrier synchronization

We first expand the definition of parallel composition given in Section 3 (Defini-
tion 3.12) to include barrier synchronization. Behind any synchronization mech-
anism is the notion of “suspending” a component of a parallel composition until
some condition is met — that is, temporarily interrupting the normal flow of
control in the component, and then resuming it when the condition is met. We
model suspension as busy waiting, since this approach simplifies our definitions
and proofs by making it unnecessary to distinguish between computations that
terminate normally and computations that terminate in a deadlock situation —
if suspension is modeled as a busy wait, deadlocked computations are infinite.

Specification of barrier synchronization. We first give a specification for
barrier synchronization; that is, we define the expected behavior of a barrier
command in the context of the parallel composition of programs P, ..., Py. If
iB; denotes the number of times P; has initiated the barrier command, and cB;
denotes the number of times P; has completed the barrier command, then we
require the following:

— For all j, iBj = cBj or iB; = cB; + 1. If iB; = cB; + 1, we say that P; is
suspended at the barrier. If ¢B; = ¢B;, we say that P; is not suspended at
the barrier.

— If P; and P} are both suspended at the barrier, or neither P; nor Py is
suspended at the barrier, then ¢B; = iBy,.

— If P; is suspended at the barrier and Py is not suspended at the barrier,
iBj =B + 1.

— For any n, if every P; initiates the barrier command n times, then eventually
every P; completes the barrier command n times:

(Vj :: iBj = cBj +1) A (iBj = n)) ~ (Vj :: (¢B; = n)) .

We observe that this specification simply captures formally the usual meaning of
barrier synchronization and is consistent with other formalizations, for example
those of [2] and [36]. Most details of the specification were obtained from [38];
the overall method (in which initiations and completions of a command are
considered separately) owes much to [27].
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Barrier synchronization in our model. We define barrier synchronization
by extending the definition of parallel composition given in Definition 3.12 and
defining a new command, barrier. This combined definition implements a com-
mon approach to barrier synchronization based on keeping a count of processes
waiting at the barrier, as in [2]. In the context of our model, we implement this
approach using two protocol variables local to the parallel composition, a count
Q of suspended components and a flag Arriving that indicates whether compo-
nents are arriving at the barrier or leaving. As components arrive at the barrier,
we suspend them and increment ). When @) equals the number of components,
we set, Arriving to false and allow components to leave the barrier. Components
leave the barrier by unsuspending and decrementing ). When @ equals 0, we
reset Arriving to true, ready for the next use of the barrier.

Definition 4.1 (barrier).
We define program barrier = (V, L, InitL, A, PV, PA) as follows:

V = Lu{Q, Arriving}.
— L = {En, Susp}, where En, Susp are Boolean variables.
— InitL = (true, false).
- A= {aarm'vea Qreleases Aleave s Areset await}: where
® Gurrive COrresponds to a process’s initiating the barrier command when
fewer than N —1 other processes are suspended. The process should then
suspend, so the action is defined by the set of state transitions s — s
such that:
x In s, En is true, Arriving is true, and @ < (N — 1).
x s’ is s with En set to false, Susp set to true, and () incremented by
1.
® Urelease COrTEsponds to a process’s initiating the barrier command when
N — 1 other processes are suspended. The process should then complete
the command and enable the other processes to complete their barrier
commands as well. The action is thus defined by the set of state transi-
tions s — s’ such that:
x In s, En is true, Arriving is true, and @ = (N — 1).
x s’ is s with En set to false and Arriving set to false. Susp, which
was initially false, is unchanged.
® Qjeqve corresponds to a process’s completing the barrier command when
at least one other process has not completed its barrier command. The
action is defined by the set of state transitions s — s’ such that:
x In s, Susp is true, Arriving is false, and Q > 1.
x s’ is s with Susp set to false and () decremented by 1.
® Q.5 corresponds to a process’s completing the barrier command when
all other processes have already done so. The action is defined by the set
of state transitions s — s’ such that:
x In s, Susp is true, Arriving is false, and Q = 1.
x s’ is s with Susp set to false, Arriving set to true, and @ set to 0.
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® a4t corresponds to a process’s busy-waiting at the barrier. The action
is defined by the set of state transitions s — s’ such that:
x In s, Susp is true.
x s =3,
— PV ={Q, Arriving}.
— PA = A.

O

Definition 4.2 (Parallel composition with barrier synchronization).

We define parallel composition as in Section 3 (Definition 3.12), except that we
add local protocol variables Arriving (of type Boolean) and @ (of type integer)
with initial values true and 0 respectively.

O

Observe that this definition meets the specification given previously; a proof
can be constructed by formalizing the introductory discussion preceding the
definitions.

4.2 The par model

We now define a structured form of parallel composition with barrier synchro-
nization. Previously we defined a notion of arb-compatibility and then defined
arb composition as the parallel composition of arb-compatible components.
Analogously, in this section we define a notion of par-compatibility and then
define par composition as the parallel composition of par-compatible compo-
nents. The idea behind par-compatibility is that the components match up with
regard to their use of the barrier command — that is, they all execute the bar-
rier command the same number of times and hence do not deadlock. Observe
that while our definition is given in terms of restricted forms of the alternative
(IF) and repetition (DO) constructs of Dijkstra’s guarded-command language
[13,15], it applies to any programming notation with equivalent constructs.

Definition 4.8 (arb-compatible, revisited,).

Programs P, ..., Py are arb-compatible exactly when (i) they meet the con-
ditions for arb-compatibility given earlier (Definition 3.14), and (ii) for each
J, Pj contains no free barriers, where program P is said to contain a free bar-
rier exactly when it contains an instance of barrier not enclosed in a parallel
composition.

O

Definition 4.4 (par-compatible).

We say programs Pi,..., Py are par-compatible exactly when one of the fol-
lowing is true:



24

Berna L. Massingill
Py, ..., Py are arb-compatible.
For each 7,
P; = Qj;barrier; R;
where @1, ...,Qn are arb-compatible and Ry,..., Ry are par-compatible.
For each j,
P;=ifb; — Q;[]-b; — skipfi
where @1, ..., QN are par-compatible, and for k£ # j no variable that affects
b; is written by Q.
For each j,
P; =if b; — (Qj;barrier; R;) [| ~b; — skip fi
where 1, ...,QnN are arb-compatible, Ry, ..., Ry are par-compatible, and
for k # j no variable that affects b; is written by Q.
For each j,
P; =do b; — (Qj;barrier; R;; barrier) od
where 1, ..., Qn are arb-compatible, Ry, ..., Ry are par-compatible, and

for k # j no variable that affects b; is written by Q.

O
As with arb, we write par(P, ..., Py) to denote the parallel composition (with
barrier synchronization) of par-compatible elements Py, ..., Py. We also define

a Fortran 90-compatible notation analogous to that for arb and a syntax parall
analogous to arball.

4.3 Examples of par composition

Composition of sequential blocks (parall). The following example composes ten
sequences, each assigning to one element of a and one element of b. The bar-
rier is needed since otherwise the sequences being composed would not be par-
compatible.

parall (i = 1:10)

seq
a(i) = i
barrier
b(i) = a(11-1)
end seq

end parall
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Invalid composition. The following example is not a valid par composition; the
two sequences are not par-compatible.

par
seq
a =1 ; barrier ; b = a
end seq
seq
c=2
end seq
end par

4.4 Transforming arb-model programs into par-model programs

We now give theorems allowing us to transform programs in the arb model
into programs in the par model. The versions here are suitable if the eventual
goal is a program for a shared-memory architecture; versions more suitable for
distributed-memory architectures are presented in Appendix B.

Theorem 4.5 (Replacement of arb with par).
If P,,..., Py are arb-compatible,

arb(Py,...,Py) C par(Py,...,Pn)

Proof of Theorem 4.5.
Trivial.
O

Theorem 4.6 (Interchange of par and sequential composition).

If Qq,...,QnN are arb-compatible and Ry, ..., Ry are par-compatible, then
arb(Qq,...,Qn);par(Ry,...,RN)
cC
par(
(Q1; barrier; Ry),

(Qn;barrier; Ry)
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O

Proof of Theorem 4.6.

First observe that both sides of the refinement have the same set of non-local
variables V,,;. We need to show that given any maximal computation C' of the
right-hand side of the refinement we can produce a maximal computation C’ of
the left-hand side such that C' is equivalent to C' with respect to V. This is
straightforward: In any maximal computation of the right-hand side, from the
definitions of sequential composition and barrier we know that we can partition
the computation into (1) a segment consisting of maximal computations of the
(;’s and initiations of the barrier command, one for each j, and (2) a segment
consisting of completions of the barrier command, one for each j, and maximal
computations of the R;’s. Segment (1) can readily be mapped to an equivalent
maximal computation of arb(Q1, ..., Qn) by removing the barrier-initiation ac-
tions. Segment (2) can readily be mapped to an equivalent maximal computation
of par(Ry,...,Ry) by removing the first barrier-completion action for each j.
We observe that this approach works even for nonterminating computations: If
the right-hand side does not terminate, then either at least one @); does not ter-
minate, or par(Ry, ..., Ry) does not terminate, and in either case the analogous
computation of the left-hand side also does not terminate. The right-hand side
cannot fail to terminate because of deadlock at the first barrier because if all
the @);’s terminate, the immediately-following executions of barrier terminate
as well (from the specification of barrier synchronization).

O

Theorem 4.7 (Interchange of par and IF, part 1).

If Q1,...,QN are par-compatible, and for all j no variable that affects b is
written @);, then

if b —» par(Qq,...,Qn) ][] b — skip fi
cC

par(
ifb = Q1 []-b — skip fi,

ifb - Qn[]-b — skipfi

Proof of Theorem 4.7.
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Again observe that both sides of the refinement have the same set of non-local
variables V;,;. As before, a proof can be constructed by considering all maximal
computations of the right-hand side and showing that for each such computation
C we can produce a maximal computation C’ of the left-hand side such that C'
is equivalent to C' with respect to Vj,;. Here, such a proof uses the fact that the
value of b is not changed by @; for any j. Since no barriers are introduced in
this transformation, we do not introduce additional possibilities for deadlock.

O

Theorem 4.8 (Interchange of par and IF, part 2).

If Qq,...,QnN are arb-compatible, Ry,..., Ry are par-compatible, and for all
J no variable that affects b is written by @), then

if b —» (arb(Q1,...,Qn);par(Ry,...,Ry)) [ b — skip fi
cC
par(
if b — (Qq;barrier;R;) [] °b — skip fi,

if b - (Qn;barrier; Ry) [| -b — skip fi

Proof of Theorem 4.8.

Again observe that both sides of the refinement have the same set of non-local
variables V,,;. As before, a proof can be constructed by considering all maximal
computations of the right-hand side and showing that for each such computation
C we can produce a maximal computation C' of the left-hand side such that C’ is
equivalent to C' with respect to Vi,;. The barrier introduced in the transformation
cannot, deadlock for reasons similar to those for the transformation of Theorem
4.6.

O

Theorem 4.9 (Interchange of par and DO ).

If Qq,...,QnN are arb-compatible, Ry,..., Ry are par-compatible, and for all
J no variable that affects b is written by @), then
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dob — (arb(Qi,...,Qn);par(Ry,...,RNx)) od
C
par(
do b — (Qi;barrier; Ry;barrier) od,

dob — (Qn;barrier; Ry;barrier) od

Proof of Theorem 4.9.

First observe that both sides of the refinement have the same set of non-local
variables V;,;. As before, a proof can be constructed by considering all maximal
computations of the right-hand side and showing that for each such computation
C we can produce a maximal computation C’ of the left-hand side such that C’
is equivalent to C' with respect to V,;. The proof makes use of the restrictions on
when variables that affect b can be written. For terminating computations, the
proof can be constructed using the standard unrolling of the repetition command
(as in [18] or [15]) together with Theorem 4.6 and Theorem 4.8. For nontermi-
nating computations, the proof must consider two classes of computations: those
that fail to terminate because an iteration of one of the loops fails to terminate,
and those that fail to terminate because one of the loops iterates forever. In both
cases, however, the computation can be mapped onto an infinite (and therefore,
in our model, equivalent) computation of the left-hand side.

O

Ezample of applying transformations. Let P be the following program:

do while (x < 100)
arb
a=ax 2
b=>b+1
end arb
par
x = max(a, b)
skip
end par
end do

Then P is refined by the following:
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par
do while (x < 100)
a =a * 2 ; barrier ; x = max(a, b) ; barrier
end do
do while (x < 100)
b=D>b + 1 ; barrier ; skip ; barrier
end do
end par

Additional examples of applying these transformations are given in [30].

4.5 Executing par-model programs

It is clear that par composition as described in this section is implemented
by general parallel composition (as described in Section 3.10) plus a barrier
synchronization that meets the specification of Section 4.1. Thus, we can trans-
form a program in the par model into an equivalent program in any language
with constructs that implement composition and barrier synchronization in a
way consistent with our definitions (which in turn are consistent with the usual
meaning of parallel composition with barrier synchronization). Examples of such
constructs are the PARALLEL DO, PARALLEL SECTIONS, and BARRIER constructs
of the OpenMP proposal [33]. Examples of conversions are given in [30].

5 The subset par model and distributed-memory
programs

As discussed in Section 1, once we have developed a program in our arb model,
we can transform the program into one suitable for execution on a distributed-
memory—message-passing architecture via what we call the subset par model,
which is a restricted form of the par model discussed in Section 4. In our
methodology, we apply a succession of transformations to an arb-model program
to produce a program in the subset par model and then transform the result
into a program for a distributed-memory—message-passing architecture. In this
section we extend our model of parallel composition to include message-passing
operations, define a restricted subset of the par model that corresponds more
directly to distributed-memory architectures, discuss transforming programs in
the resulting subset par model into programs using parallel composition with
message-passing, and briefly discuss executing such programs on distributed-
memory—message-passing architectures.

5.1 Parallel composition with message-passing

We first expand the definition of parallel composition given in Section 3 to include
message-passing.
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Specification of message-passing. We define message-passing for P, ..., Py
composed in parallel in a way compatible with single-sender—single-receiver chan-
nels with infinite slack (i.e., infinite capacity). Every message operation (send or
receive) specifies a sender and a receiver, and while a receive operation suspends
if there is no message to receive, a send operation never suspends. Messages are
received in the order in which they are sent and are not received before they
are sent. That is, if we let nS;; denote the number of send operations from P;
to Py performed, ¢R; denote the number of receive operations from P; to P
initiated, and cR; denote the number of such receive operations completed,
then we can write the desired specification as follows:

— iR =cRj or iR;, = cR; + 1 for all j, k.

— Messages are not received before they are sent: nS; > cR; for all j, k.

— Messages are received in the order in which they are sent: The n-th message
received by P; from Py is identical with the n-th message sent from P to
P;.

— If n messages are sent from P} to P;, and P; initiates n receive operations
for messages from Py, then all will complete:

(nSjr > n) A (iRjk =n)) ~ (cRjx =n) .

We observe that this specification, like the one for barrier synchronization in
Section 4, simply captures formally the usual meaning of this type of message
passing, and is consistent with other formalizations, for example those of [2] and
[35]. The terminology (“slack”) and overall method (in which initiations and
completions of a command are considered separately) are based on [27].

Message-passing in our model. Like many other implementations of message-
passing, for example that of [2], our definition represents channels as queues:

We define for each ordered pair (P;, P;) a queue Cj; whose elements rep-
resent messages in transit from P; to Pj. Message sends are then represented
as enqueue operations and message receives as (possibly suspending) dequeue
operations. Elements of C; ; take the form of pairs ( Type, Value). Just as we did
in Section 4, we model suspension as busy waiting.

Definition 5.1 (send).
We define program send = (V, L, InitL, A, PV, PA) as follows:

-V =LU{OutP,,..., OutPn, Rcvr, Type, Value}, where each OutP; (“out-
port j”) is a variable of type queue, Rcur is an integer variable, Type is
a type, and Value is a variable of type Type. Variables OutPq, ..., OutPn
are to be shared with the enclosing parallel composition, as described later,
while variables Rcvr, Type, Value are to be shared with the enclosing sequen-
tial composition. (Le., it is assumed that send is composed in sequence with
assignment statements that assign appropriate values to Rcur, Type, and
Value.)
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L = {En}, where En is a Boolean variable.
InitL = (true).
A ={asngq}, where
® as,q corresponds to a process’s sending a message ( Type, Value) to pro-
cess Preyr- The action is defined by the set of state transitions s — s’
such that:
x In s, En is true.
x s' is s with En set to false and (Type, Value) enqueued (appended)
to OutP Reyr-
— PV ={OutPy,..., OutPn}.
— PA=A.

O

Definition 5.2 (recv).
We define program recv = (V, L, InitL, A, PV, PA) as follows:

— V =LU{InP,...,InPN, Sndr, Type, Value}, where each InP; (“inport j”)
is a variable of type queue, Sndr is an integer variable, Type is a type, and
Value is a variable of type Type. Variables InPy, ..., InPy are to be shared
with the enclosing parallel composition, as described later, while variables
Sndr, Type, Value are to be shared with the enclosing sequential composition,
similarly to the analogous variables of send.

— L = {En}, where En is a Boolean variable.

— InitL = (true).

- A= {arcvaawait}a where

® a,., corresponds to a process’s receiving a message (Type, Value) from
process Ps,4,. The action is defined by the set of state transitions s — s’
such that:
x In s, En is true and InP g,g4, is not empty.
x s' is s with En set to false and (Type, Value) and InP g,q4- set to the
values resulting from dequeueing an element from InP g, 4.
® a4t corresponds to a process’s waiting for a message from process Psy g -
The action is defined by the set of state transitions s — s’ such that:
x In s, En is true and InP g4, is empty.
x s’ =s.
— PV ={InP,,...,InPN}.
— PA = A.

O

Definition 5.8 (Parallel composition with message-passing).

We define parallel composition as in Section 3 (Definition 3.12), except that
we add local protocol variables Cj ) (of type queue), one for each ordered pair
(Pj, Pr), with initial values of “empty”, and we perform the following additional
modifications on the component programs P;:
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— We replace variables OutP1,..., OutPx in V; with Cj1,...,Cj ~, and we
make the same replacement in actions a derived from ag,q.

— We replace variables InP1, ..., InPy in V; with C ;,...,Cn j, and we make
the same replacement in actions a derived from @, and aqai;-

O

Observe that this definition clearly meets the specification given earlier.

5.2 The subset par model

We define the subset par model such that a computation of a program in this
model may be thought of as consisting of an alternating sequence of (i) blocks of
computation in which each component operates independently on its local data,
and (ii) blocks of computation in which values are copied between components,
separated by barrier synchronization, as illustrated by Figure 3. We refer to a

= =
S S .
_NE=
=
S S
\><\ ¢
- - %,,,,% - =
local-computation data-exchange
sections operations

T
VI

[
[

Fig. 3. A computation of a subset-par-model program. Shaded vertical bars represent
computations of processes, arrows represent copying of data between processes, and
dashed horizontal lines represent barrier synchronization.

block of the first variety as a local-computation section and to a block of the
second variety (together with the preceding and succeeding barrier synchroniza-
tions) as a data-exchange operation.

That is, a program in the subset par model is a composition par(P;, ..., Py),
where P, ..., Py are subset-par-compatible as defined by the following.
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Definition 5.4 (Subset par-compatibility).

Py,..., Py are subset-par-compatible exactly when (i) Pi,..., Py are par-
compatible, (ii) the variables V' of the composition (excluding the protocol
variables representing message channels) are partitioned into disjoint subsets
Wi,...,Wn, and (iii) exactly one of the following holds:

— Py,..., Py are arb-compatible and each P; reads and writes only variables
in Wj.
— For each j,
Pj = Qj; barrier; Q}; barrier; R;
where

e (J1,...,QnN are arb-compatible.

e Each (), reads and writes only variables in W;.

e Each Q; is an arb-compatible set of assignment statements x; := x;
such that z; is an element of W; and x; is an element of W}, for some &
(possibly k = j).

e Ri,..., Ry are subset-par-compatible.

— For each j, b; € W; and

Pj :ifb] — Qj [] —|bj — S]{,'Zpﬁ

where @1, ..., QN are subset-par-compatible.
— For each j, b; € W; and

Pj:dOb]’ — Qde

where @1, ..., QN are subset-par-compatible.

5.3 Example of subset par composition

The following example computes the maximum of four elements using recursive
doubling:

integer a(4), part(2), part_copy(2), m(2)
arb
part (1)
part(2)
end arb

max(a(1l), a(2))
max(a(3), a(4))

arb
part_copy (1)
part_copy(2)
end arb

part(2)
part (1)

arb
m(1)
m(2)
end arb

max (part (1), part_copy(1))
max (part_copy(2), part(2))
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5.4 Transforming subset-par-model programs into programs with
message-passing

We can transform a program in the subset par model into a program for a
distributed-memory-message-passing architecture by mapping each component
P; onto a process j and making the following additional changes:

— Map each element W; of the partition of V' to the address space for process j.

— Convert each data-exchange operation (consisting of a set of
(barrier; }; barrier) sequences, one for each component Pj) into a
collection of message-passing operations, in which each assignment z; := x,
is transformed into a pair of message-passing commands: a send command
in k specifying Rcvr = j, and a recv command in j specifying Sndr = k.

— Optionally, for any pair (P;, P;) of processes, concatenate all the messages
sent from P; to P as part of a data-exchange operation into a single message,
replacing the collection of (send, receive) pairs from P; to Pj, with a single
(send, receive) pair.

Such a program refines the original program: Each send-receive pair of opera-
tions produces the same result as the assignment statement from which it was
derived (as discussed in [21] and [28]), and the arb-compatibility of the assign-
ments ensures that these pairs can be executed in any order without changing the
result. Replacing barrier synchronization with the weaker pairwise synchroniza-
tion implied by these pairs of message-passing operations also preserves program
correctness; we can construct a proof of this claim by using the techniques of
Section 3 and our definitions of barrier synchronization and message-passing. A
similar theorem and its proof are given in [29].

Ezample. If P is the recursive-doubling example program of Section 5.3, P is
refined by the following subset-par-model program P’ with variables partitioned
into

— W1 ={a(1:2),part(1), part_copy(1),m(1)} and
— Wy = {a(3:4),part(2),part_copy(2),m(2)} :

arb
seq
part(1) = max(a(1), a(2))
barrier ; part_copy(l) = part(2) ; barrier
m(1l) = max(part(l), part_copy(1l))
end seq
seq

part(2) = max(a(3), a(4))
barrier ; part_copy(2) = part(l) ; barrier
m(2) = max(part_copy(2), part(2))
end seq
end arb
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which is in turn refined by the following message-passing program P"':

arb
seq
part(1) = max(a(l), a(2))
send ("integer", part(1)) to (P2)
recv (type, part_copy(l)) from (P2)
m(1l) = max(part(l), part_copy(1l))
end seq
seq
part(2) = max(a(3), a(4))
send ("integer", part(2)) to (P1)
recv (type, part_copy(2)) from (P1)
m(2) = max(part(2), part_copy(2))
end seq
end arb

5.5 Executing subset-par-model programs

We can use the transformation of the preceding section to transform programs
in the subset par model into programs in any language that supports multiple-
address-space parallel composition with single-sender—single-receiver message-
passing. Examples include Fortran M [16] (which supports multiple-address-
space parallel composition via process blocks and single-sender—single-receiver
message-passing via channels) and MPI [31] (which assumes execution in an
environment of multiple-address-space parallel composition and supports single-
sender—single-receiver message-passing via tagged point-to-point sends and re-
ceives).

Example. Program P" from Section 5.4 can be implemented by the following
Fortran M program:

program main
integer a(4)
inport (integer) inp(2)
outport (integer) outp(2)
channel (outp(1), inp(2))
channel (outp(2), inp(1))
processes
process call P(a(1:2), inp(1), outp(1))
process call P(a(3:4), inp(2), outp(2))
end processes
end

process P(a, inp, outp)
integer a(2)
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inport (integer) inp

outport (integer) outp

integer part, part_copy, m

part = max(a(1l), a(2))

send (outp) part

receive (inp) part_copy

m = max(part, part_copy)
end process

6 Related work

Program development via stepwise refinement. Other researchers, for example
Back [3, 4] and Martin [28], have addressed stepwise refinement for parallel pro-
grams. Our work is somewhat simpler than many approaches because we deal
only with specifications that can be stated in terms of initial and final states,
rather than also addressing ongoing program behavior (e.g., safety and progress
properties).

Operational models. Our operational model is based on defining programs as
state-transition systems, as in the work of Chandy and Misra [9], Lynch and
Tuttle [24], Lamport [23], Manna and Pnueli [26], and Pnueli [34]. Our model is
designed to be as simple as possible while retaining enough generality to support
all aspects of our programming model.

Parallel programming models. Programming models similar in spirit to ours have
been proposed by Valiant [39] and Thornley [37]; our model differs in that we
provide a more explicit supporting theoretical framework and in the use we make
of archetypes.

Automatic parallelization of sequential programs. Our work is in many respects
complementary to efforts to develop parallelizing compilers, for example Fortran
D [12]. The focus of such work is on the automatic detection of exploitable
parallelism, while our work addresses how to exploit parallelism once it is known
to exist. Our theoretical framework could be used to prove not only manually-
applied transformations but also those applied by parallelizing compilers.

Programming skeletons and patterns. Our work is also in some respects com-
plementary to work exploring the use of programming skeletons and patterns
in parallel computing, for example that of Cole [11] and Brinch Hansen [6]. We
also make use of abstractions that capture exploitable commonalities among pro-
grams, but we use these abstractions to guide a program development method-
ology based on program transformations.
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7 Conclusions

We believe that our operational model, presented in Section 3, forms a suitable
framework for reasoning about program correctness and transformations, par-
ticularly transformations between our different programming models. Proofs of
the theorems of Section 3, sketched here and presented in detail in [30], demon-
strate that this model can be used as the basis for rigorous and detailed proofs.
Our programming model, which is based on identifying groups of program ele-
ments whose sequential composition and parallel composition are semantically
equivalent, together with the collection of transformations presented in [30] for
converting programs in this model to programs for typical parallel architectures,
provides a framework for program development that permits much of the work
to be done with well-understood and familiar sequential tools and techniques. A
discussion of how our approach can simplify the task of producing correct par-
allel applications is outside the scope of this paper, but [30] presents examples
of its use in developing example and real-world applications with good results.

Much more could be done, particularly in exploring providing automated
support for the transformations we describe and in identifying additional useful
transformations, but the results so far are encouraging, and we believe that the
work as a whole constitutes an effective unified theory/practice framework for
parallel application development.
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A Some commands of Dijkstra’s guarded-command
language in our model

This section sketches definitions in our model for some of the commands of Dijk-
stra’s guarded-command language [13, 15]. Definitions of additional constructors
appear in [30].

Definition A.1 (Skip).
We define program skip = (V, L, InitL, A, PV, PA) as follows:

-V =0L.
L = {Engip}, where Engip is a Boolean variable.
InitL = (true).

A = {a}, where

Ia - {Enskip}

O, = {Enskip}

Rq = {((true), (false))}
PV = {}.
PA={}.

Definition A.2 (Assignment).
We define program P = (V, L, InitL, A, PV, PA) for (y := E) as follows:

-V =A{vy,...,on}U{y} UL, where {vy,...,uon} = {v: affects.(v, E) : v}.

— L ={Enp}, where Enp is a Boolean variable not otherwise occurring in V.
— InitL = (true).

A = {a}, where

I, ={Enp}U{uvy,...,on}
Oa = {ENP,:U}
R, =A{z1,...,zn = ((true,xy,...,zN), (false, E.(z1,...,zN))}

and z1,...,xy is an assignment of values to the variables in vy,...,vy.
- PV ={}.
- PA={}.

Definition A.8 (Abort).
We define program abort = (V, L, InitL, A, PV, PA) as follows:
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V=L
L = {Enaport }, where Engport is a Boolean variable.
InitL = (true).

— A ={a}, where
I, = {Enabort}
O = {}
Ra = {(true), ()}
- PV ={}.
— PA={}.

B More about transforming arb-model programs into
par-model programs

This section presents versions of some of the theorems of in Section 4.4 more
suitable for transforming programs for distributed-memory architectures. For
proofs of theorems refer to [30].

Lemma B.1 (Interchange of par and IF, part 1, with duplicated variables).

If Q1,...,Qn and b are as for Theorem 4.7, and by, ..., by are Boolean expres-
sions such that for j # k no variable that affects b; is written by @i, then the
following holds whenever both sides are started in a state in which b; = b for all

J:
if b - par(Q1,...,Qn)[] b — skip fi
C

par(
if by — Ql [] -b; — Sklp ﬁ,

ey

if by — QN [] -by — Sk‘ipﬁ

Proof of Lemma B.1.

This lemma follows from Theorem 4.7 and exploitation of copy consistency as
discussed in Section C.2.

O
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Lemma B.2 (Interchange of par and IF, part 2, with duplicated variables).

If Q1,...,Qn, R1,...,Ryn, and b are as for Theorem 4.8, and by,...,by are
Boolean expressions such that for j # k no variable that affects b; is written by
Qp, then the following holds whenever both sides are started in a state in which
b; = b for all j:

if b —» (arb(Q1,...,Qn);par(Ry,...,Ry)) [ b — skip fi

C
par(
if by — (Qq;barrier;R;) [| -by — skip fi,

if by — (Qn;barrier; Ry) [| “by — skip i

O

Proof of Lemma B.2.
Analogous to Lemma B.1.
O

Lemma B.8 (Interchange of par and DO, with duplicated variables).

If Q,...,Qn are arb-compatible, R;,..., Ry are par-compatible, and for all
k # j no variable that affects b; is written by Q, and (Vj :: (b; = b)) is an
invariant of the loop

dob — (arb(Qi,...,Qn);par(Ry,...,Ry)) od
then the following holds whenever both sides are started in a state in which
b;j = b for all j:
dob — (arb(Qi,...,Qn);par(R;,...,Ry)) od
C
par(
do by — (Q1;barrier; R, barrier) od,

do by — (Qn;barrier; Ry,barrier) od

O

Proof of Lemma B.3.
Analogous to Lemma B.1.
O
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Ezample of applying transformations. Let P be the following program:

x = max(a, b)
do while (x < 100)

arb
a=a 2
b=">» 1

end arb

par
x = max(a, b)
skip

end par

end do

Then P is refined (using the data-duplication techniques of Section C.2) by the
following:

arb
x1 = max(a, b)
x2 = max(a, b)
end arb
do while (x1 < 100)
arb
a=ax 2
b=>b+1
end arb
par
x1 = max(a, b)
x2 = max(a, b)
end par
end do

which in turn is refined (using Theorem B.3) by the following:

arb
x1 = max(a, b)
x2 = max(a, b)
end arb
par

do while (x1 < 100)
a =a *x 2 ; barrier ; x1
end do
do while (x2 < 100)
b=D>b+ 1 ; barrier ; x2 = max(a, b) ; barrier
end do
end par

max(a, b) ; barrier
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which again in turn is refined by the following:

par
seq
x1 = max(a, b)
barrier
do while (x1 < 100)
a =a *x 2 ; barrier ; x1 = max(a, b) ; barrier
end do
end seq
seq
x2 = max(a, b)
barrier
do while (x2 < 100)
b=>b+ 1 ; barrier ; x2 = max(a, b) ; barrier
end do
end seq
end par

C Some example transformations

Section 2.5 sketches our program-development strategy. A key element of that
strategy, and one not discussed in detail in this paper, is the sequence of trans-
formations that convert the original arb-model program into one that can be
transformed into a program in the par or subset par model and thence into
a program for the target architecture. A collection of transformations useful in
this process appears in [30]; we summarize a few here.

C.1 Change of granularity

If the number of elements in an arb composition is large compared to the number
of processors available for execution, and the cost of creating a separate thread
for each element of the composition is relatively high, then we can improve the
efficiency of the program by reducing the number of threads required, that is,
by changing the granularity of the program.

We can change the granularity of an arb-model program by transforming
an arb composition of N elements into a combination of arb composition (of
fewer than N elements) and sequential composition, as described in the following
theorem.

Theorem C.1 (Change of granularity).

If Py,..., Py are arb-compatible, and we have integers ji, j2, ..., ja such that
(I1<ji)A(G1 <Jo)A...A(m < N), then
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arb(Py, ..., Pn)

arb(
seq(Pla"')Pj1)>
seq(Pj1+17---7Pj2)a

Seq(PjM+17"'7PN)

Proof of Theorem C.1.
See [30].

O

C.2 Data distribution and duplication

In order to transform a program in the arb model into a program suitable for
execution on a distributed-memory architecture, we must partition its variables
into distinct groups, each corresponding to an address space (and hence to a
process). Section 5 describes the characteristics such a partitioning should have
in order to permit execution on a distributed-memory architecture; in this sec-
tion we discuss only the mechanics of the partitioning, that is, transformations
that effect partitioning while preserving program correctness. These transforma-
tions fall into two categories: data distribution, in which variables of the original
program are mapped one-to-one onto variables of the transformed program; and
data duplication, in which the map is one-to-many, that is, in which some vari-
ables of the original program are duplicated in the transformed program.

Data distribution. The transformations required to effect data distribution
are in essence renamings of program variables, in which variables of the original
program are mapped one-to-one to variables of the transformed program. The
most typical use of data distribution is in partitioning non-atomic data objects
such as arrays: Each array is divided into local sections, one for each process,
and a one-to-one map is defined between the elements of the original array and
the elements of the (disjoint) union of the local sections. That such a renaming
operation does not change the meaning of the program is clear, although if
elements of the array are referenced via index variables, some care must be taken
to ensure that they (the index variables) are transformed in a way consistent with
the renaming/mapping.
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Data duplication. The transformations involved in data duplication are less
obviously semantics-preserving than those involved in data distribution. The
goal of such a transformation is to replace a single variable with multiple copies,
such that “copy consistency is maintained when it matters.” We use the term
(re-)establishing copy consistency to refer to (re-)establishing the property that
all of the copies have the same value (and that their value is the same as that
of the original variable at an analogous point in the computation). In the trans-
formed program, all copies have the same initial value as the initial value of the
original variable (thereby establishing copy consistency), and any reference to
a copy that changes its value is followed by program actions to assign the new
value to the other copies as well (thereby re-establishing copy consistency when
it is violated). Whenever copy consistency holds, a read reference to the origi-
nal variable can be transformed into a read reference to any one of the copies
without changing the meaning of the program.

We can accomplish such a transformation using the techniques of data refine-
ment, as described in [32]. We begin with the following data-refinement trans-
formation: Given program P with local variables L, duplicating variable w in L
means producing a program P’ with variables

L'=L\{w}u{w®, . . w™M}

(where N is the number of copies desired and w® ..., w®) are the copies of
w), such that P C P'. It is simplest to think in terms of renaming w to w® and
then introducing variables w®, ..., w™); it is then clear what it means for P’
(with variable w(!)) to meet the same specification as P (with variable w).
Using the techniques of data refinement, we can produce such a program P’

by defining the abstraction invariant
Vj:2<j<N:wW =wl
and transforming P as follows:

— Assign the same initial value to each copy w?) in InitL’ that was assigned
to w in InitL, and replace any assignment w := E in P with the multiple
assignment,

w®, ™ = g0 g

PR

where E®) = E[w/w)] (j is arbitrary and can be different for different
values of k). Observe that multiple assignment can be implemented as a
sequence of assignments, possibly using temporary variables if w affects E.

— Replace any other reference to w in P with a reference to w(?), where j is
arbitrary.

The first replacement rule ensures that the abstraction invariant holds after
each command; the second rule makes use of the invariant. In our informal
terminology, the abstraction invariant states that copy consistency holds, and the
two replacement rules respectively (re-)establish and exploit copy consistency.
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Let P’ be the result of applying these refinement rules to P. Then P C P’.
We do not give a detailed proof, but such a proof could be produced using the
rules of data refinement (as given in [32]) and structural induction on P.

For our purposes, however, P’ as just defined may not be quite what we want,
since in some situations it would be advantageous to postpone re-establishing
copy consistency (e.g., if there are several duplicated variables, it might be ad-
vantageous to defer re-establishing copy consistency until all have been assigned
new values), if we can do so without losing the property that P C P’. We observe,
then, that

WO, w™ = BO,... EM); @
C
w® = E® Q. (w®, . wk D D) (V) = ) p(R))

)

as long as for all j # k, w9 is not among the variables read or written by Q.
The argument for the correctness of this claim is similar to that used to prove
Theorem 3.21 in Section 3.7.

We can thus give the following replacement rules for duplicating variable w
in an arb-model program:

— Replace w := E with
arb(w) = Elw/wM], ..., w™) := Elw/w™N]) .
— If w is not written by any of Py, ..., Py, replace arb(P;,..., Py) with
arb(P,[w/wV], ..., Px[w/w™)]) .

— If w is written by Py but neither read nor written by any other Py, replace
arb(P,..., Py) with

arb(P,... ,Pk[w/w(k)], ., Pn);
arb(w(l) = w® WD = B (B =y (B) (V) = w(k)) .



