OPEN FILE REPORT NO. 80 except that the Tampa Member contains noticeably less phosphate (Scott, 1988). The limestone in the Tampa is white to yellowish gray, fossiliferous and variably sandy and clayey mudstone, wackestone and packstone with minor to no phosphate grains. Sand and clay beds are like those in the undifferentiated Arcadia Formation. Mollusks and corals are common in the Tampa Member as molds and casts, silicified pseudomorphs and original shell material. The Tampa Member and the lower part of the Arcadia Formation form the upper part of the Floridan aquifer system (FAS) in parts of southern Florida (Miller, 1986; Scott, 1991). PANHANDLE Upper Oligocene sediments are not known to crop out in the Florida panhandle. The Chickasawhay Formation of Alabama has been traced in the subsurface into the central panhandle but is not exposed on the Chattahoochee Anticline (Miller, 1986). Miocene Series Lower Miocene to Upper Miocene Aquitanian to Messinian Stage Sediments of the Miocene Series have been the focus of numerous investigations due to their complex nature and widespread occurrence in Florida (see Schmidt and Clark [1980], Huddlestun [1988] and Scott [1988] for a review of previous investigations). The Miocene sediments consist of siliciclastics, carbonates and mixed siliciclastic-carbonate lithologies with numerous lateral and vertical facies changes. Exposures are limited and most investigations dealt with these sediments in the subsurface. Miocene sediments crop out or occur in the shallow subsurface on the northwestern flank of the Ocala Platform in the eastern panhandle to the flanks of the Chattahoochee "Anticline" in the central panhandle then into the western panhandle to Okaloosa County. In the peninsula, the Miocene sediments crop out or are in the shallow subsurface from the northern flank of the Ocala Platform in Hamilton, Columbia and Baker Counties southward to Charlotte County. Some of the most beautiful landscapes in the State occur where the Miocene sediments are exposed, eroded and often affected by karstification of underlying Paleogene carbonates. The importance of the Miocene sediments in Florida is twofold first, these sediments contain valuable mineral resources, primarily phosphate and adsorptive clays; and, second, the Miocene sediments comprise the intermediate confining unit and aquifer system. Whereas the principle geological hazard associated with Paleogene carbonates is karst development, the hazards associated with the Miocene sediments are radon gas and swelling clays. Significant changes in age determinations or interpretations have occurred for the sediments traditionally considered as Miocene in the peninsula. Puri and Vernon (1964) recognized a simple three-fold subdivision of the Miocene in peninsular Florida. Their subdivision of the Miocene was that all Lower Miocene sediments were St. Marks Formation (Tampa [Note that they used Tampa as a stage name so all sediments that had been called Tampa were placed in the St. Marks Formation statewide]), Middle Miocene sediments were Hawthorn Formation and Upper Miocene sediments were Tamiami Formation. Poag (1972) placed the lower portion of the Chattahochee Formation in the Upper Oligocene. Currently, geologists recognize that the Hawthorn Group spans from the mid-Oligocene to Early Pliocene (Brewster-