-- 120 - 5 K1 C e = iZ d. + C 0i 1 1 Ce (6.37) Solving for C1 from (6.36) and (6.37) and equating the results, 5 5 Ce Zoi d. 1 - C - d e 1le i=1 ~ji~l = C 1 = K /Ce 1 + K*I/Ce (6.38) Using equations (6.7) through (6.10) to obtain expressions for d1, d3, d4, and d., equation (6.38) reduces to ad2 + bd2 + C = 0 pCe + (p-1)K04 C K* e 01 (p-1)K02 b =p+ + C e c = p(Ce - 1) + Ce K* p= C + K* e 1 The solution to (6.39) is d2 = 2l - 4ac/b2) (6.39) (6.40) e (6.41) K03 (6.42) (6.43) (6.44) where