- 115 - 5 1=C + d. + C, + e i1l 1 1 3 5 S C + d, C i=2 i=l (6.22) 13K X + I KC i=2 C- Solving for C1 from (6.21) and (6.22) and equating the resulting expressions gives an equation for Ce. 5 Ce - oi d i=l C1 13 K' X z.i-i i=2 C e 5 C-c - d. e i=l 1 13 K! i=2 Ce By algebraic manipulation, equation (6.23) can be written as Hdi + Hd2 + (H-l)d3 + (H+l)d4 + (H-l)d5 + H(C e-1) + Ce = 0 (6.24) 1 3 K' I z . i-1 i=2 Ce H= 13 K! 1+i i=2 C~ (6.25) From equations (6.7) through (6.10), C 2 C e 2 e d = ---- -2 d ' 2 = K- d K01 (K02] K02 (6.23) where