31 Define the function index range as: L = M U = A.(N)-(A.-M) A = A. 1 where N and A. are positive constant integers, M a constant integer. Define the variable index range (it is only with the range that the problem can occur) as: L = aL.+(l-a)i+ki aE{O,l} U. = bU.+(1-b)i+k." bc{O,1} 3 2 3 A = A. 3 2 where k. and k .u are integers and A. is a positive integer, again all 3 3 3 constants. Theorem: If A. = A. there is no acceleration of variables. 3 1 Proof: Assume A. = A.. The number of functions is: j 1 A.(N)-(A .-M)-M Hf A. 1 = N The number of variables U. -L. n= max min +1 v A. U. U3max =bU,+(1-b)imax+k.u i 3 but imax = U. so, U = bU +(l-b) U+k . gmax 2 2 g = U .+k, . similarly, L = L .+k .' rmin J 7