31 function also can be expected to oscillate (Rykiel and Kuenzel, 1973). Some oscillating models demonstrate persistence; others are unstable (Holling, 1973). Time delays longer than the natural periodicity of the system (in the equation dx/dt = rx, the natural period, or time constant, is 1/r) almost inevitably cause instability (Smith, 1974). On the other hand, simple changes in the governing equations, representing adjustments or modifications in the basic structure of the system, can stabilize the system (Smith, 1974). On the basis of mathematical analysis, Oster and Takahashi (1974) predicted that, when intrinsic oscillating factors (periodic forcing functions) are imposed on systems with intrinsic oscillating factors (time delays), beat frequencies may result. If, however, the frequency of the intrinsic oscillation is close to the characteristic frequency of the external oscillators than a phenomenon known as entrainmentt" may occur, and the system will respond to the external freauency only. This allows biological oscillators to "latch on" to the environment (Pavlidis, 1973). In the case of the Wood Stork, if rainfall periodicity is operating on a 5 yr cycle and there is a 4 to 5 yr delay between fledging and breeding, then a synchronization of the intrinsic cycle and the extrinsic cycle may occur. The present existence of the birds is evidence that their population was maintained under natural conditions.