= 0.69785 Cr 0.000022 C2 + 0.52514 CA 0.000007 CA CF 0.0000013 C + 0.70355 0.0001 2 C 0.000052 C2 + 0.5826 CT 0.000006 C C 0.000033 Cd 15.1943 VF 33.9199 VA 35.6776 V 25.4102 VT "F(CF 164.0136 V*7402) (CA 187.9868 VA7402 AC 323.8766 VA7402 Ar(Cr 62.9634 V;7402 First Order Conditions Ir = 0.69735 0.000044 CF 0.000007 CA 0.00001 CM 0.000008 CT A = 0 aCF an- = 0.52514 0.000007 CF 0.0000026 CA = 0 = 0.70356 0.00001 C, 0.000104 CM M = 0 aCM a- = 0.5826 0.000006 CF 0.000066 AT 0 aCT a- = 15.1943 VF AF(164.0136 V7402) 0 an = 33.9199 VA A(187.9868 VA7402) 0 aVA an7402 M 35.6776 VM M(323.8766 V7402) = 0 a-r 25.4102 VT XT(62.9634 V7402) = 0 aVT j2 CF 164.0136 V*7402 0 a '= CA 187.9868 V7402 0 ir = CM 323.8766 V.7402 0 ai CT 62.9634 VT7402 0 aT aFishing power components for each state are fixed at 1975 levels. Definition of Variables v = Total Gulf of Mexico Reef Fish Fishery profit; CF = Florida catch of reef fish (thousands of pounds); CA = Alabama catch of reef fish (thousands of pounds); CM = Mississippi catch of reef fish (thousands of pounds); CT Texas catch of reef fish (thousands of pounds); VF Number of Florida vessels; VA Number of Alabama vessels; VM = Number of Mississippi vessels; VT Number of Texas vessels; AF Lagrange multiplier for Florida catch constraint; AA Lagrange multiplier for Alabama catch constraint; AM Lagrange multiplier for Mississippi catch constraint; and AT Lagrange multiplier for Texas catch constraint. Figure H-l. Equation for obtaining maximum economic yield for the Gulf of Mexico Reef Fish Fisherya