1 0 0 74 0 04 0 0 0 -04 74 0 a4 , k4 = 0 is the position vector d4 of B4, and R and p are the usual rotation matrix and position vector of end-effector pose P. Explicitly, we get nx4 S5 + bxU4 C5 + txT 4 u = n y4 S5 + b y4 C5 + tyT4 (6.34) nzU4 S5 + bza 4 C5 + tzT4 and (-nxa4d4 + bxa4) S5 (nxa4 + b a4d4) (-n ya4d4 + b ya4) S5 (n ya4 + by c4d4) (-nza4d4 + bza4) S5 (nza4 + bz"4d4) C5 tx 4d4 + Px C5 tyT4d4 + Py C5 tz74d4 + Pz Expressions of inner-products u.q and q.q in terms of S5 and C5 can be obtained from Eqs. (6.32) and (6.33), u.q =[R R51G4 z] R (R5 (-G4 k4) + p]- and B4 = (6.35) ..