Ai = Rz(9i) Trz(di) Trx(ai) Rx(ai). A useful decomposition of matrix Ai is Ai = Ai Bi (2.7) with the definitions Ai = Rz(ei) (2.8) and Bi = Trz(di) Trx(ai) Rx(ai). (2.9) Explicitly, matrix Bi is 1 0 0 ai 0 Ti -ai 0 G ki Bi (2.10) 0 ai Ti di 0 0 0 1 0 0 0 1 where Gi is the upper left 3 x 3 in Bi and ki is the upper right 3 x 1 vector of Bi. The upper left 3 x 3 matrix in Ai is the rotation matrix Ri necessary to align the unit vectors of Fi with their counterparts in Fi_1, while vector aiCi i = aiSi di positions the origin of Fi with respect to Fi_.1 ..