Step 2. Perform an analysis of variance (ANOVA) for number of plants (X) to get the sum of squares (Ex2) values: (CF) = Correction Factor = (1310)2 / 24 = 71504.17 SST = Treatment sum of squares = {[(241)2 + (219)2 +...+ (224)2] / 4} CF = 561.33 = (Ex2)trts SSB = Block sum of squares = {[(318)2 + (302)2 +...+ (324)2] / 6} CF = 372.50 = (Ex2)blocks SStot = Total sum of squares = [(60)2 + (47)2 +...+ (62)2 + (61)2] CF = 1999.83 = (Ex2)total SSE = Error sum of squares = SStot (SST + SSB) = 1999.83 (561.33 + 372.50) = 1066 = (Zx2)error Step 3. Perform the ANOVA for yield (Y) to get the Ey2 values: CF = (95.67)2 / 24 = 381.36 {[(19.43)2 +...+ 8.47 (Ey2)treatments {[(18.34)2 +...+ 10.44 (Zy2)blocks (16.09)2] / 4} CF (29.51)2] / 6} CF SST = SSB =