are allowed to propagate to the shoreline. It is assumed that no breaking occurs as the wave shoals and no attenuation due to bottom friction is present. The solution of the equation in the form of 6.4 cannot be used since unrealistic restrictions on η_w at the shoreline are required. The finite difference scheme developed in section 6.3 is now employed with its pertinent boundary condition at the shoreline. The adjusted domain can be seen in Figure 6.6.

Since the bottom is sloping, and the wavelength changes as the wave shoals, the exact value of L_{bw} that would result in strong tertiary reflection is not as easily determined. However, wave envelopes are plotted for the same frequency near resonance for two choices of d. The bottom is plotted below the envelopes. The bottom parameters, except d, are identical for both cases where, $h = .15m$, the bumps, shaped $\delta(x) = 0.05m \sin 2\pi/0.5m$ for the positive branch only, are spaced $1.0m$ apart. For Figure 6.7 $d = 10.0$, and $d = 10.5$ for figure 6.8.