5.3 Improper gage spacing and virtual standing wave 62
5.4 Energy crossing system boundaries ... 62
5.5 Typical energy density spectrum for incident wave 63
5.6 Typical energy density spectrum for reflected wave 64
5.7 Typical energy density spectrum for transmitted wave 64
5.8 Reflection theory vs. measured, .8 m bar spacing 68
5.9 Reflection theory vs. measured 1.2 m bar spacing 68
5.10 Energy Conserved: Theoretical and Measured .8 m bar spacing 69
6.1 Definition sketch of bar field in front of a wall 76
6.2 Wave envelope in front of a wall for \(\eta \) directly and \(\eta = f^{-1/2}W \) numerical schemes, \(d = 4 \) ... 77
6.3 Wave amplitude at the wall for \(\eta \) directly and \(\eta = f^{-1/2}W \) numerical schemes, \(d = 4 \) ... 77
6.4 Wave envelope in front of a wall for \(\eta \) directly and \(\eta = f^{-1/2}W \) numerical schemes, \(d = 4.5 \) .. 78
6.5 Wave amplitude at the wall for \(\eta \) directly and \(\eta = f^{-1/2}W \) numerical schemes, \(d = 4.5 \) .. 79
6.6 Definition sketch of bar field on a sloping bottom in front of a shoreline 80
6.7 Wave envelope on a sloping beach with 4 sine shaped bumps, \(d = 10.0 \) 80
6.8 Wave envelope on a sloping beach with 4 sine shaped bumps, \(d = 10.5 \) 81
6.9 Wave amplitude at the shoreline vs. \(2k/\lambda, d = 10.0 \) 82
6.10 Wave amplitude at the shoreline vs. \(2k/\lambda, d = 10.5 \) 82
6.11 Wave amplitude at \(x = 7 \) m vs. \(2k/\lambda, d = 10.0 \) 83
6.12 Wave amplitude at \(x = 7 \) m vs. \(2k/\lambda, d = 10.5 \) 83