Consideration of Future Consequences and Cannabis Use in Truant Adolescents

Michelle Castro1, Ali M. Yurasek1, Ricarda K. Pritschmann1, & Meredith S. Berry1
1Department of Health Education and Behavior, University of Florida

Corresponding Author:
Ali M. Yurasek, Ph.D.
Dept. of Health Education and Behavior
University of Florida
Gainesville, FL 32611
PO Box: 118210
Phone: 352-294-1066
Email: a.yurasek@ufl.edu

Declarations of interest: none
Abstract

Background: Truancy refers to unexpected absences from school without parental or school approval. Adolescents who are truant are more likely to report failing grades, low perceptions of graduation, and higher levels of alcohol, tobacco, and cannabis use. Cannabis use among adolescents is associated with various short-term and long-term consequences including delinquency, school dropout, health problems, and future risk of substance use disorder. The Consideration of Future Consequences (CFC) Scale measures individual differences in the extent to which individuals weigh the immediate as opposed to distant implications of current behaviors and events. Behavioral economic theory states that as rewards (implications) become more distant, the value of that reward decreases. The CFC is associated with substance use in young adults but has yet to be examined with truant adolescents to determine the value of future rewards at the time of decision making. This can be especially important when trying to increase the value that truant youth place on a delayed reward for a decision made in the present (e.g., going to school or decreasing substance use). The aim of this study was to examine cannabis use and the consideration of future consequences in truant adolescents. **Method:** Participants were 52 truant adolescents who reported at least 5 unexcused absences from school in 90 days (M age = 15.96, 80.8% female). Thirty-four participants reported cannabis use during a typical month in the past school year. Participants completed a survey assessing a variety of questions about substance use and school attendance. **Results:** A hierarchical regression was conducted to assess the utility of weekly cannabis use to predict consideration of future consequences scores. The first step controlled for sex and weekly cannabis use was then added in the second step. A conventional significance level of $p < .05$ was used in all analyses. In step one, sex was not a significant predictor of CFC scores. In step two, however, higher levels of weekly cannabis use
significantly predicted lower CFC scores, accounting for an additional 8% variance ($R^2 = .12$).

Conclusion: Initial findings suggest that weekly cannabis use is a significant predictor of CFC scores. Specifically, higher weekly cannabis use was associated with lower CFC scores (i.e., less consideration of future consequences). These findings have implications for interventions aimed at reducing cannabis use or increasing school attendance in adolescents. Addressing the salience of delayed rewards (e.g., graduating high school) and how cannabis use may influence those outcomes, may be important targets for treatment. Future work may want to examine behavioral economic focused interventions in this population.

Keywords: Cannabis use; Adolescents; Truancy; Behavioral Economics; Consideration of Future Consequences
Introduction

With the ongoing policy changes surrounding legalization, cannabis poses a unique risk for adolescents. Cannabis use among adolescents is associated with a variety of negative consequences like polysubstance use (Brooks et al., 2002), mental health concerns (Cronce et al., 2011; Crowley et al., 1998; D’Amico et al., 2005), and health problems. Other problems experienced by long-term cannabis users include cognitive impairment (Dembo et al., 2014), a chronic deficit in attention skills and impulsivity (Dembo et al., 2014), impaired functioning at school and school dropout (Dembo et al., 2011), and delinquent behaviors (Dembo et al., 2014). Identifying risk factors associated with cannabis use in adolescents is a public health priority. One common predictor associated with problem behavior among adolescents is truancy.

Truancy refers to unexpected absences from school without parental or school approval and is associated with a variety of negative consequences including cannabis use (Grella et al., 2001). Compared to their non-truant peers, truant adolescents are more likely to report failing grades, low perceptions of graduation, and recent substance use (Glaser et al., 1967). Truancy is also associated with both the initiation of and higher levels of actual use of alcohol, tobacco, and cannabis (Dembo et al., 2011; Harvey et al., 2010). This is particularly concerning because the early use of substances is associated with various short-term and long-term consequences including poor school performance, school dropout, delinquency, health problems, and future risk of substance use disorder (Henry et al., 2010; Henry et al., 2010; Higgins et al., 2004). Adolescents whose friends have negative attitudes towards school are more likely to increase cannabis use and truancy (Bryant et al., 2002). The unstructured and unsupervised time that truant youth experience may place them at an increased risk of cannabis use. Hence, understanding the influences and predictors of adolescent cannabis use among truant youth is
important as it can inform the development of treatment and preventative measures in this population.

Behavioral economic theory suggests that high rates of substance use are more likely in environments without substance-free sources of reinforcement (Vuchinich & Tucker, 1988), and that substance use will generally decrease if access to alternative reinforcers is increased (Yurasek et al., 2017). Truant youth who use cannabis may under engage in constructive activities (such as attending school) because the benefits of these activities are often delayed. This tendency to devalue the future in favor of the present is a behavioral economic construct similar to that of impulsivity that refers to the level of decrease in the current subjective value of a reinforcer as a function of the time until it is delivered (Vuchinich & Heather, 2003). Cannabis generally provides immediate reinforcement (anxiety reduction, euphoria), whereas many substance-free activities (school attendance, studying) do not. Youth who discount the value of delayed educational outcomes may be less likely to engage in the behaviors necessary for success in these domains and may instead allocate their behavior towards immediately reinforcing activities such as using cannabis. One way to capture this construct of future orientation is utilizing the Consideration of Future Consequences (CFC) measure (McKay et al., 2017).

The CFC measure was developed to measure the extent to which young adults consider distant versus immediate consequences of potential behaviors (Strathman et al., 1994). Since then, the CFC has been used with young adult populations and has been used to examine various substance use behaviors with the most common being alcohol (Acuff et al., 2017; Harvey et al., 2016; McKay et al., 2017). A study conducted with 393 college drinkers examined CFC as a predictor of academic success and engagement (Acuff et al., 2017). They used the original 1994
version of the CFC and found that greater CFC scores were associated with both greater academic success and engagement in college drinkers. Another study conducted with 769 young adults examined the original CFC measure in relation to behavioral willingness to use cannabis (Lewis et al., 2018). Their findings indicated that those who had lower CFC scores had a strong and positive association with willingness to use cannabis and number of hours high per week. In both of these studies, results show that higher consideration of future consequences is associated with greater academic success while lower CFC scores are associated with increased cannabis use.

In addition to adults and young adults, the CFC has also been used with adolescent populations. A 2012 study examined 68 high school students and their understanding of consideration of future consequences as it relates to alcohol use (McKay et al., 2012). Their results showed that many adolescents reported considerations of only short-term consequences of alcohol use. Similarly, a 2016 study examined 129 high schoolers’ consideration of the future consequences of alcohol consumption (Harvey & McKay, 2016). Their results showed that most participants did not consider the consequences at all while those that reported some consideration of the future choose to ignore them.

Over time, this measure has been adapted into various versions. All of the studies presented above used the original 12-item version of the CFC. A 2003 factor analysis study conducted by Petrocelli found evidence for a more appropriate 8-item scale. The study showed that the original 12-item scale yielded two factors and little support was found for the stability of Factor 2. After a confirmatory factor analysis, and an 8-item scale, representing Factor 1, fit better with the observed covariance. The 2012 study by McKay and colleagues in addition to showing adolescents low consideration of alcohol consequences, also showed that adolescents
had problems understanding some items. McKay and colleagues (2017) went on to derive a new version of the CFC that was age-appropriate for use in adolescents. After testing a 30-item version with six domains, they ended with an 18-item version with 4 domains (Health and Wellbeing, Environmental Concern, Academic, and Finance). The results of testing this new CFC with adolescents showed that adolescents consider the future differently compared to young adults across domains. While this construct has been examined with a general adolescent population, to the authors' knowledge, no one has examined the construct of CFC with truant youth and cannabis use. Because truant youth are at an increased risk to experience less academic success and increased cannabis use, it is important to examine future orientation among this population to better inform interventions in this area.

Current Study

Hence, the purpose of this study was to examine the relationship between cannabis use and the consideration of future consequences in truant adolescents. Data were collected from a sample of truant adolescents assessing cannabis use and considering future consequences when making decisions. It was hypothesized that higher levels of cannabis would be associated with less future orientation in this population. Findings from this study can be used to identify important targets for truancy and cannabis use prevention/intervention programs.

Method

Participants and Procedure

Potentially eligible adolescents were contacted using Qualtrics Online Market Research Sample Aggregator. Qualtrics has contact information for individuals who have expressed
interest in being a “panelist” for paid research surveys in response to advertisements. Out of this preexisting pool of applicants, Qualtrics contacted youth who reported being between the ages of 13 to 17 years old at the time of the panelist survey via email. Interested participants completed an initial screening survey to determine eligibility. Youth were eligible to participate if they reported: 1) being between the ages of 13 and 17 years old; 2) at least 5 unexcused absences from school in a 90-day period; 3) provided parental consent and child assent. A total of 52 adolescents (80.8% female; 80.8% Caucasian) were eligible and completed the full assessment battery. On average, participants were 15.96 years old with the majority of the youth (42.3%) being in the 11th grade and 42.3% reporting skipping 5-8 days of school in a 90-day period. Adolescents were compensated for their participation in the study. The overseeing University’s Institutional Review Board approved all study-related procedures.

Informed Consent and Assent

The child received an email that included a link to the parental informed consent form. The child was then asked to obtain written informed consent from their parent (i.e., sign the informed consent). Following parental consent, the child was directed to and asked to sign an assent form. Once both of the consent forms were signed, the child was redirected to the screening survey followed by the full survey if eligible. These surveys were separate from the consent/assent forms in order to maintain anonymity.

Measures

Demographics. Participant demographics were assessed using a self-report questionnaire that included age, gender, ethnicity, and other relevant demographic variables.
School Attendance. Truancy was measured by asking youth to report how many days they had skipped school (i.e. had an unexcused absence) during the current school year. Answer choices included ‘Never’, ‘1-2 days in three months (less than once a year)’, ‘3-5 days in three months (less than once a month)’, ‘5-8 days in three months (about twice a month)’, ‘9-12 days in three months (about once a week)’, and ’12-24 times in three months (about twice a week)’. To be eligible, participants had to report missing at least 5-8 days of school in a 90-day period.

Cannabis Use and CUD symptoms. A modified version of the Timeline Follow-Back Interview (TLFB; Robinson et al., 2014) was used to measure cannabis use. This measure asked participants to recall their cannabis use during a typical week in the past month and to indicate the number of days they used during the 2019-2020 school year. In addition to the number of cannabis use days, adolescents were asked to report on the how many hours they felt the effects of cannabis per day used (reported in hours and minutes), times of day used (Morning 5:00 am – 11:59 am, Afternoon 12:00 pm – 4:59 pm, Evening 5:00 pm – 7:59 pm, Night 8:00 pm – 11:59 pm, and Late Night 12:00 am – 4:59 am), and route of administration (Smoked (i.e. joint, pipe, bong), Ate/Ingested (i.e. “pot brownie”, marijuana pill), Vaped/Vaporized, and Other). In the current study, the number of cannabis use days per week was used in analysis. The TLFB has been shown to have excellent reliability in clinical and nonclinical populations (Moyers et al, 2016). A 12-question checklist was also utilized to assess DSM-V Cannabis Use Disorder Criteria (American Psychiatric Association, 2013) such as withdrawal and craving. Participants were asked to select which symptoms they had experienced in the past 12 months. Examples of symptoms included ‘Use marijuana in larger amounts or over longer periods than intended’ and ‘Give up or reduce important social, occupational, or recreational activities because of marijuana use’.
Future Orientation. The Consideration of Future Consequences (CFC) measure was used to assess adolescents’ future orientation. This 18-item measure (McKay et al., 2017) adapted for an adolescent population, measures individual differences in the extent to which youth weigh the immediate vs distal consequences of current behaviors and events. Participants were asked to respond to statements such as ‘I do what I can to help prevent global warming in the future’ and ‘I play sports while I am young so that I hopefully live longer’ across four domains (Health and Wellbeing, Environmental Concern, Academic, and Finance). Responses were made on a five-point scale ranging from 1 = ‘Totally Disagree’ to 5 = ‘Totally Agree’. Final scores were calculated by summing each response to the 18 items. Scores may range from 18, the lowest consideration of future consequences, to 90, the highest consideration of future consequences.

Data Analysis Plan

Preliminary Analysis. All variables were initially screened for missing data and outliers. For each variable, data were checked to ensure that no values were greater than 3.29 standard deviations above the mean, but no variables required outlier corrections. (Tabachnick and Fidell 2013). Two participants did not provide complete data for weekly cannabis use and CUD count and thus were not included in the calculated means for these measures. Their responses for these variables were marked as missing but they were still included in the full analysis. Bivariate correlations were conducted to assess the associations between age, sex, weekly cannabis use, CUD count and CFC scores.

Primary Analysis. Next, a hierarchical regression was conducted to assess the utility of weekly cannabis use to predict consideration of future consequences scores in truant adolescents. Based on our preliminary analysis, the first step controlled for participants’ sex. The second step
included the cannabis related variables that were significantly correlated to CFC scores. A conventional significance level of $p < .05$ was used in all analyses.

Results

Preliminary Analyses

Table 1 presents the general descriptive statistics for the total sample and as a function of cannabis use status. The majority of the youth (42.3%) reported missing school 5-8 days within a 90-day period. Approximately 65.38% of the truant youth reported weekly cannabis use in a typical month during the current school year, with an average of 3.50 cannabis use days per week. Overall, youth reported an average score of 60.27 (11.27) on the CFC. Cannabis users did not significantly differ from non-users on basic demographic characteristics. On average, cannabis users reported using cannabis 5.09 days per week. Figure 1 shows the visual representation of average CFC scores in cannabis users and non-users.

Table 2 presents the results of the bivariate correlations between age, gender, weekly cannabis use, CUD count, and CFC score. Age and gender were not significantly related to cannabis related variables or CFC scores (all p’s > .05). Weekly cannabis use was significantly correlated to CUD count and CFC score (all p’s < .05). Specifically, higher weekly cannabis use was associated with a higher CUD count and lower CFC scores. While CUD count had a significant association with weekly cannabis use ($p < .05$) it was not significantly associated with CFC scores and was not included in the primary hierarchical regression analysis.

Primary Analysis
Hierarchical linear regressions were conducted to determine the specific association between weekly cannabis use and CFC scores. The results of the regression predicting CFC scores are shown in Table 3. Sex was not a significant predictor of CFC scores as indicated in Step 1 (F(1,48) = 2.30, p = 0.136, R² = 0.05). In step two, higher weekly cannabis use significantly predicted lower CFC scores and accounted for an additional 8% variance in CFC scores (F(1,49) = 3.28, p = 0.046, R² = 0.12).

Discussion

Truant youth are at increased risk to initiate cannabis use and experience CUD related symptoms (Dembo et al., 2011; Higgens et al., 2004). Given the relationship between truancy and cannabis use, truant youth who also use cannabis may display less consideration of future consequences placing them at increased risk to experience negative academic related outcomes. The goal of this study was to investigate whether cannabis use among truant adolescents was associated with lower valuation of future outcomes. Consistent with our hypothesis, higher levels of weekly cannabis use were associated with lower CFC scores. This study extends prior work that has examined cannabis use and consideration of future consequences by examining this relationship in a high-risk sample of truant youth.

Surprisingly, CUD count did not show any significant associations with CFC scores in our initial bivariate correlation analyses and hence was not included in the regressions as part of the primary analysis. Since the average age was 15.96, our sample may not have been using cannabis long enough to have experienced CUD symptoms. Even though CUD count was not significantly correlated with CFC scores, the association it shares with weekly cannabis use could be evidence for an increased risk for cannabis misuse in the future. Alternatively, this finding could suggest that frequency of cannabis use is more important when considering future orientation than
problems associated with use. However, a larger sample would be needed to explore this hypothesis further.

Our findings are in line with other studies examining substance use and CFC with adolescents. Similar to the 2012 and 2016 studies (McKay et al., 2012; Harvey & McKay, 2016) conducted with adolescents and alcohol use, our study also found that substance using truant adolescents also report lower CFC scores. Additionally, our study results are also consistent with the study examining CFC in young adults and cannabis use (Lewis et al., 2018). That study showed that those with lower CFC scores had a strong and positive association between willingness to use cannabis and number of hours high per week. Our study similarly shows that increased weekly use can predict lower CFC scores in a population of truant adolescents. Our study adds to the current literature regarding substance using adolescents by examining the influence of use on a behavioral economic construct of future orientation in truant youth. Examining CFC in this at-risk population provides a better understanding of the value that truant adolescents place on distant rewards and the influence that a substance like cannabis has on that value. Future studies should include a sample of non-truant adolescents, cannabis users and non-users, to get a better picture of reward valuation in adolescents and to see how truant adolescents differ from their non-truant peers in this regard.

Notably, the cannabis users in our sample endorsed missing more days of school than their non-using peers. Specifically, 41.2% of cannabis users reported missing school 12-24 days in a 90-day period while 50.0% of non-users reported missing only 5-8 days in a 90-day period. While more research is needed, this provides preliminary support that cannabis users who endorse lower value of the future may be at risk for missing more days of school, perhaps due to
low future orientation. Future research with a larger sample of both users and non-users will be needed to better determine this relationship.

Although more research is needed to determine the clinical implications of low future orientation, theoretical behavioral economic research suggests that discounting the future reflects stronger and more persistent motivation to consume the substance (Yi, et al., 2010). These findings extend prior work with substance using truant youth by indicating that cannabis use in this population may contribute to a greater devaluation of the future or less responsive to traditional truancy interventions (Yurasek et al., 2015; Madden et al., 2010) which may then contribute to worse academic outcomes. Therefore, prevention and intervention programs aimed at increasing school attendance in adolescents may want to assess and target both cannabis use and future orientation. Personalized substance use interventions that have targeted these concepts have been successful with young adults (Yurasek et al., 2015; Murphy et al., 2012). These interventions address the importance of delayed rewards or even emphasize the severity of future consequences of their present actions.

Limitations

Some limitations should be considered in the context of the present study. Due to difficulty in recruitment, our sample size was small and may not be representative of all truant adolescents. Since our participants had to get parental consent before beginning the online survey, some adolescents may have felt uncomfortable reporting their truant behaviors or cannabis use. While this study showed evidence of a relationship between cannabis use and future value in truant adolescents, the exact causal direction between increased cannabis use and truancy cannot be determined in the current study. Weekly cannabis use was determined by summing the total
number of days participants reported using in a typical week during the school year and this may not be representative of every week that they use or the best way to assess cannabis use. Future work may want to examine the quantity of cannabis use in addition to frequency. Finally, these data were collected in spring of 2020 amidst the COVID-19 pandemic. While students were asked to report the number of days skipped in a 90-day period during the current school year, this may have been impacted due to COVID-19 and the transition to home-based schooling.

Future Directions

As stated earlier, the nature of this study did not allow us to determine the exact causal direction between increased cannabis use and truancy. It is unclear if increased use leads to students missing more days or if missing more days of school lends itself to increased opportunities to use cannabis. Most likely this is a bidirectional association but should be explored in longitudinal future study. Other future work could examine what influence home life has on both cannabis use and CFC scores in a truant population. There could be other social factors that play into the number of days missed at school or substance use may already be prevalent in the home. Family socioeconomic status, parenting skills, family social support, and child abuse/neglect are other factors that have been linked with truancy (McCluskey et al. 2004) and may also be affecting an adolescent’s substance use and how they consider the future. Future work should also continue to include other behavioral economic constructs like delay discounting or cannabis demand to further examine reward value in this population. Finally, for a more representative sample, future work should include a larger sample of both truant and non-truant adolescents.

Conclusion
Findings from the present study demonstrated that higher weekly levels of cannabis use among truant adolescents are related to reduced consideration for how their current behaviors influence their future outcomes. The continued devaluation of future rewards may place cannabis using youth at an increased risk for negative academic and health-related outcomes. Our results have implications for behavioral economic focused interventions in this population that may be aimed at reducing cannabis use or increasing school attendance in adolescents. Addressing the importance of future rewards and how cannabis may influence those outcomes may be important targets for treatment. Further research is needed with a larger sample of both truant and non-truant adolescents to get a better understanding of the differences between how each group values future outcomes and the influence of cannabis on those outcomes.
References

Dembo, R., Briones-Robinson, R., Wareham, J., Schmeidler, J., Winters, K. C., Barrett, K.,
Services on Drug Using Truant Youth Arrest Charges over Time. *Journal of child &
adolescent substance abuse*, 23(6), 375–388.
https://doi.org/10.1080/1067828X.2012.741560

high-risk youths and families in community-based, brief intervention services.
https://doi.org/10.1080/1067828X.2011.59883

for Adolescents with Comorbid Mental and Substance Use Disorders. *The Journal of
Nervous and Mental Disease*, 189(6), 384–392. doi: 10.1097/00005053-200106000-
00006

Strategies for Qualitative Research. *Nursing Research*, 17(4), 364. doi:
10.1097/00006199-196807000-00014

Harvey, S. A., & McKay, M. T. (2016). Perspectives on adolescent alcohol use and
consideration of future consequences: results from a qualitative study. *Child Care in
Practice*, 23(1), 104–120. doi: 10.1080/13575279.2015.1126230

adolescence. *Journal of Studies on Alcohol and Drugs*, 71(1), 115–

Table 1. Descriptive and Outcome Statistics

<table>
<thead>
<tr>
<th>Demographics/Outcome Variables</th>
<th>Total Sample (N = 52)</th>
<th>Cannabis Users (N = 34; 65.38%)</th>
<th>Non-Users (N = 18; 34.62%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>52</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td>Age</td>
<td>15.96 (1.17)</td>
<td>15.97 (1.11)</td>
<td>15.94 (1.31)</td>
</tr>
<tr>
<td>Sex</td>
<td>52</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td>Male</td>
<td>10 (19.2%)</td>
<td>8 (23.5%)</td>
<td>2 (11.1%)</td>
</tr>
<tr>
<td>Female</td>
<td>42 (80.8%)</td>
<td>26 (76.5%)</td>
<td>16 (88.9%)</td>
</tr>
<tr>
<td>Race</td>
<td>52</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td>Caucasian</td>
<td>42 (80.8%)</td>
<td>28 (82.4%)</td>
<td>14 (77.8%)</td>
</tr>
<tr>
<td>African American</td>
<td>4 (7.7%)</td>
<td>3 (8.8%)</td>
<td>1 (5.6%)</td>
</tr>
<tr>
<td>Asian</td>
<td>1 (1.9%)</td>
<td>1 (2.9%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Native American</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Caucasian and Hispanic</td>
<td>5 (9.6%)</td>
<td>2 (5.9%)</td>
<td>3 (16.7%)</td>
</tr>
<tr>
<td>Grade in School</td>
<td>52</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td>6th Grade</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>7th Grade</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>8th Grade</td>
<td>3 (5.8%)</td>
<td>0 (0.0%)</td>
<td>3 (16.7%)</td>
</tr>
<tr>
<td>9th Grade</td>
<td>8 (15.4%)</td>
<td>7 (20.6%)</td>
<td>1 (5.6%)</td>
</tr>
<tr>
<td>10th Grade</td>
<td>9 (17.3%)</td>
<td>6 (17.6%)</td>
<td>3 (16.7%)</td>
</tr>
<tr>
<td>11th Grade</td>
<td>22 (42.3%)</td>
<td>13 (38.2%)</td>
<td>9 (50.0%)</td>
</tr>
<tr>
<td>12th Grade</td>
<td>10 (19.2%)</td>
<td>8 (23.5%)</td>
<td>2 (11.1%)</td>
</tr>
<tr>
<td>Days Skipped in a 90 Day Period</td>
<td>52</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td>5-8 Days (Twice per month)</td>
<td>22 (42.3%)</td>
<td>13 (38.2%)</td>
<td>9 (50.0%)</td>
</tr>
<tr>
<td>9-12 Days (Once per week)</td>
<td>13 (25.0%)</td>
<td>7 (20.6%)</td>
<td>6 (33.3%)</td>
</tr>
<tr>
<td>12-24 Days (Twice per week)</td>
<td>17 (32.7%)</td>
<td>14 (41.2%)</td>
<td>3 (16.7%)</td>
</tr>
<tr>
<td>Weekly Cannabis Use (Days per week)</td>
<td>50</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>CFC Scores</td>
<td>52 (60.27 (11.40))</td>
<td>34 (58.24 (11.16))</td>
<td>18 (64.11 (11.15))</td>
</tr>
<tr>
<td>CUD</td>
<td>52 (3.70 (2.75))</td>
<td>34 (5.00 (2.26))</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 2. *Bivariate Correlations Among Weekly Cannabis Use and CFC Scores*

<table>
<thead>
<tr>
<th></th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Age</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2. Gender</td>
<td>-0.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3. Weekly Cannabis Use</td>
<td>0.20</td>
<td>-0.24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4. CUD Count</td>
<td>0.21</td>
<td>-0.15</td>
<td>0.60**</td>
<td>-</td>
</tr>
<tr>
<td>5. CFC Score</td>
<td>-0.07</td>
<td>0.22</td>
<td>-0.32*</td>
<td>-0.23</td>
</tr>
</tbody>
</table>

*Note: n = 52; *p < .05; **p < .01; CUD = Cannabis Use Disorder; CFC = Consideration of Future Consequences*
Table 3. *Hierarchical Linear regression model predicting Consideration of Future Consequences Scores.*

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE B</th>
<th>β</th>
<th>R²</th>
<th>ΔR²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>5.88</td>
<td>3.88</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>0.12*</td>
<td>0.08*</td>
<td></td>
<td>0.12*</td>
<td>0.08*</td>
</tr>
<tr>
<td>Weekly Cannabis Use</td>
<td>-1.10</td>
<td>0.54</td>
<td>-0.29*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: n = 52; Males were coded as 1 and Females were coded as 2. *p ≤ .05; **p ≤ .01; ***p ≤ .001. Dependent variable = CFC scores*
Figure 1 Average CFC Scores

Note: Figure 1 demonstrates the average CFC scores in cannabis users and non-users.