In the case of \( \text{25} \), oxidation by Fehling's reagent to \( \text{25} \) probably takes place first, followed by benzilic acid rearrangement to \( \text{131} \).

The bicyclo[6.2.1]undecanes can be considered to be derivatives of cyclononane (\( \text{12} \)) or cyclodecane (\( \text{11} \)) having, respectively, an added 1,3-ethylene or 1,4-methylene bridge. The problem of the conformation of cis-bicyclo[6.2.1]undecane derivatives was investigated qualitatively by examining models of the known\(^{25,26}\) conformations of \( \text{11} \) and \( \text{12} \) (Figures 1 and 2) to determine how the additional carbon bridges could be incorporated with a minimum of added strain.

Examination of a model of cyclodecane (Figure 1) reveals that existing carbon-hydrogen bonds are suitably oriented for replacement by a methylene bridge across the 1-4, 4-7, 2-9, or 6-9 positions. When this substitution is made across any of these positions, the cis-bicyclo[6.2.1]undecane (\( \text{33} \)) conformation of Figure 6 results. Some bond-angle deformation appears to be necessary to add the methylene, and the resulting conformation still has, as seen in Figure 6, the original trans-annular non-bonded interactions between the 3, 6, and 9 hydrogen atoms and an additional severe interaction between the 4-11 hydrogens. A possible conformation of the cis-diketone \( \text{25} \) can be derived from Figure 6 by