\(n \) = Planck's constant/2 \(\pi \)

\(I \) = electrical current

\(I_2 \) = Integral in Callaway theory

\(I_3 \) = Integral in Callaway theory

\(i \) = 1, 2, 3 defines principal axes or \(i^{th} \) impurity

\(j \) = polarization

\(k \) = Boltzmann's constant

\(L \) = sample length, Casimir length, or wire length

\(l_1 \) = width of sample

\(l_2 \) = breadth of sample

\(M \) = molecular weight

\(\bar{M} \) = average molecular weight

\(M_E \) = molecular weight of species \(E \)

\(M_i \) = molecular weight of the \(i^{th} \) impurity

\(N \) = number of molecules or normal phonon scattering process

\(N(q,j) \) = Bose-Einstein distribution function

\(n \) = exponent of \(w \)

\(Q \) = heat transfer rate

\(Q_i \) = heat transfer rate in \(i^{th} \) direction

\(Q_J \) = heat transfer rate due to Joulean heating

\(q \) = wave vector

\(q \) = internal generation per unit length

\(R \) = electrical resistance

\(R_H \) = electrical resistance of sample heater

\(R_{STD} \) = electrical resistance of standard resistor

\(r_i \) = \(r^{th} \) chemical bond along principal axis \(i \)