lower I.Q. students, even though the effect of I.Q. on achievement was held constant.

3. High mobility students with high I.Q. obtained higher achievement scores than low mobility students with high I.Q. In fact, they concluded that the interests and attitudes of high I.Q. students were actually stimulated by frequent moves. High mobility students of low I.Q., however, obtained lower scores than low mobility students of low I.Q.

There was no significant difference between high or low socio-economic students and no significant interaction of socio-economic status with either mobility or intelligence. Thus, the hypothesis of the influence of socio-economic status was not supported.

The researchers concluded that parental attitudes might also be studied, taking into account family size and the child's positioning within the family.

MORRIS, PESTANER, AND NELSON STUDY

Morris, Pestaner, and Nelson (see attached Resource Materials) felt that conflicting results of previous studies also indicated an omission of I.Q. and socio-economic status as criteria. They used reading and arithmetic as the subject area tools of measurement with a group of 5th graders in Alameda, CA. The following hypotheses were examined:

1. The proportion of high and low scores obtained by mobile children will differ from those of non-mobile children.

2. The mean reading and arithmetic scores obtained from mobile students will be no different from scores of non-mobile students.

In regard to the socio-economic status of the students, two additional hypotheses were examined:

3. The proportion of non-mobile, high socio-economic status children (gaining high reading skills) will be no different from the proportion of mobile, high socio-economic status students gaining high achievement scores.

4. The proportion of non-mobile, low socio-economic status pupils gaining high reading scores will be different from the proportion of mobile, low socio-economic status pupils gaining high scores.

The team determined the students' raw scores via the California Achievement Tests (CAT) in reading and arithmetic. From these scores they calculated, using the Anticipated Achievement Calculator, the students' anticipated achievement scores.

The number of schools attended and the occupation of the students' fathers were determined from school records. The socio-economic status was determined by using the Wilson Classification of socio-economic status. (This classification uses nine categories in contrast to the seven used by Hollingshead, but both separate the white-collar workers placing high executives and professionals at the top.)

The results were divided into thirds and the frequency of occurrence