costs . . . even so, there is one danger innate to all energy sources that rely on chemical or nuclear combustion:

Heat.

Every time you split an atom or burn a crumb of coal you release heat into the environment. And every year we release more heat than the year before, four or five percent more each year, like compound interest. According to Constantine Generales, the human race has been doing this since the time of the Minoans, 3400 years ago; and, he adds, if we keep on doing it for another 3400 years we will be releasing so much heat into the atmosphere that the temperature of the surface of the Earth will be the same as the temperature at the surface of the sun.

Clearly, long before that we would all be dead.

Equally clearly, that is a long way off, and surely the human race would stop its increase in the use of energy sometime before the year 5400 A.D. But when? We don’t have to reach the temperature of the sun to destroy every living thing on earth; we only have to reach a mean surface temperature of around 212° Fahrenheit for that—then the oceans boil off as steam. Long before that we melt the polar ice caps and submerge New York and Los Angeles, London and Rio de Janeiro under three hundred feet of ocean. Long before that we change the climate so drastically that Kansas and the Ukraine become deserts. And long before that—no one knows when, some think within the next century, some even within the next few decades—we change the mean annual temperature in certain parts of the world (most particularly and surely our own 48 contiguous states of the U.S.A.) to such an extent that the consequences cannot be foreseen.

The paradox of “limitless” nuclear fusion of the hydrogen from sea water is that even if we had it (and we don’t; no one has yet succeeded in generating one net watt of power that way anywhere in the world), we would have to limit our use of it.

What remains to hope for?

In one sense, a great deal. Solar power, for instance. All forms of renewable power in general.

The problems are severe, but they are not intrinsically hopeless. We can safely use every watt of solar, wind, tide or hydroelectric power we can generate, and the ultimate reserves are very large. But they are not infinite; and they cost a great deal in capital construction.

So we come back to two reliable statements: 1, energy is never going to be cheap again—which means that the world is going to have to rethink its ideas of where people live and how they live: possibly the end of the suburbs (because of the wastefulness of