A COMMON FORMAT
FOR BASIC ARCHEOLOGICAL DATA IN CARIBBEAN ISLANDS:
GRENADA AS TEST EXAMPLE

Peter O’B. Harris

☐ ABSTRACT
Given the linguistic and political diversity of the Caribbean, IACA needs to develop a common format for collecting basic archeological data.
I propose four data sets. Ethnogeography uses ethnic concepts of directional quarters and drainage basins to divide an island into meaningful units. Ethnohistory and ethnic survival reconstruct the social context of ethnicity, beliefs, institutions, technology, and subsistence at contact. I also show that myths can be excavated to reveal beliefs from earlier periods. Stratigraphies plot cultural and environmental continuity and change. Settlement history governs our choice of site database fields, and brings out problems for higher level research.
Overall the four-part format provides an effective guideline for planners in national archeological research and management.

KEYWORDS: directional quarters, drainage basins, contact ethnicity and ethnography, oral tradition, vessel and pottery stratigraphy, settlement history, site database, specialty exchange.

Resumen
Vista la diversidad lingüística y política del Caribe, necésita a l’AIAC desarrollar un formato universal para recollectar datos arqueológicos básicos.
Propongo cuatro clases de datos. L’etnogeografía emplea los conceptos étnicos de cuartos direccionales y cuencas hidrográficas para dividir una isla en partes significantes. L’etnohistoria y las sobrevivencias étnicas reconstruyen el contexto social de l’etnicidad, las creencias, las instituciones, la tecnología, y la subsistencia al tiempo del contacto. Demuestro también que se puede excavar los mitos para descubrir las creencias de tiempos más antiguos. Las stratigráfias trazan la continuación y transformación cultural y ambiental. La historia de los asentamientos determina la selección de variables por un banco de datos de sitios, y saca a la luz problemas para investigación más avanzada.
En su totalidad, este formato cuadripartito ofrece a los proyectistas un modelo eficaz para l’investigación y la dirección de l’arqueología nacional.

Résumé
Vu la diversité linguistique et politique des Antilles, l’AIAC doit développer un format universel pour recueillir les données archéologiques de base.
Je propose quatre classes de données. L’ethnogéographie utilise les perceptions ethniques de quarts directionnels et de bassins hydrologiques pour diviser une île en parties significatives. L’ethnohistoire et les survivances ethniques reconstruisent le contexte social de l’ethnicité, des croyances, des institutions, de la technologie, et de la subsistance au temps de contact. Je montre aussi qu’on peut fouiller les mythes pour découvrir les croyances des temps passés. Les stratigraphies tracent la continuité et la transformation de la culture et du milieu. L’histoire de résidence détermine notre choix de variables pour une base de données de gisements, et met en valeur les problèmes pour la recherche de haut niveau.
En somme, ce format quadripartite offre aux planificateurs un modèle efficace pour la recherche et la gestion de l’archéologie nationale.
INTRODUCTION

Certain basic data are required to reconstruct the Indian history of each island. The linguistic and political diversity of the present-day Caribbean make it desirable for IACA to develop a common organization format. My paper outlines a four-part methodology as a basis for discussion:

1. Ethnogeography: to divide landscape into meaningful units.
2. Ethnohistory and Ethnic survival: to reconstruct ethnic mindset.
3. Stratigraphy: to create well defined cultural and environmental sequences and assemblages.
4. Settlement History: to suggest an outline of sociopolitical development.

These are applied to Grenada as a test example. I hope inputs from other members will in time result in a collaborative IACA research design. This is a large project, and a long version of the paper is available from the author.

ETHNOGEOGRAPHY

The aim here is to divide the island into ethnically meaningful units (Table 1).

In Amerindian world orientation, maps are shown with East at the top (eg Pasztory 1983). Directions have ideological as well as spatial value. For instance, East is associated with the sun, Sky-World spirits, and male power; and the West with darkness, Under-World spirits, and female power (eg Roe 1982).

Directional quarters (eg East-South-North-West) are another aspect of mental pattern (eg Ortíz 1969). A Caribbean example is reported in early 1494, when the Indians of Macoríx de Abajo in Hispaniola tell Alonso de Hojeda that four great rivers divide the island into quarters (Las Casas 1967).

Natural features with mythic potential include mountain peaks, caves, springs, lakes, islands. These are commonly regarded as the residence of a local spirit, or a mythical place of ethnic origin (Rostworowski 1988).

Drainage basins often coincide with ethnic polities. They largely structure the Taíno provinces of contact Hispaniola (Harris 1994). They are also a scientific way of organizing landscape.

Holdridge zones are a vegetation scale which allows one to hypothesize pristine vegetation (Holdridge et al 1968). Rainfall contours can be used if no zones have been published, as in Grenada.

GRENADA

I have tentatively defined four directional quarters (Figure 1) based on Mount Sinai, Mount St Catherine, and the mountain ridge between them. Reportedly these two peaks can be seen from 100 km out to sea (de Kerhallet 1862). I further define 10 drainage basins:

East has two drainage basins (E1, E2), each with two major rivers; and a windward marine habitat.

South has many medium-to-small rivers, and a very different coastline of deeply indented bays and points with reefs. I tentatively use the ridge finishing at Little Bacolet Point to divide the quarter into two (SE, SW). However two petroglyphs may suggest division into three (Figure 2).

North has four drainage basins (NE, N1, N2, NW), each with one major river; it is unclear if Levera pond and hill belong to NE basin or N1.

West is steeper and wetter, with two drainage basins (W1, W2), each with two major rivers; and a lee marine habitat.

Natural features with mythic potential include a number of mountain peaks, 3 old volcanic craters (Grand Etang, Lake Antoine, Punch Bowl), and several islands.

ETHNOHISTORY AND ETHNIC SURVIVAL

The aim here is to reconstruct ethnic mindset (Table 2).

The context of Indian sources (oral tradition) has never been subjected to critique. This helps
explain the strength of the “conquest” model in Kalínago1 research.

Contact ethnicity must be our initial research focus. It lies at the difficult junction of archeology and ethnology, two disciplines with different data sets and methodologies.

Social diversity shows the presence or absence of significant subcultures requiring separate research. Contact ideology is the category for collecting ethnic beliefs. Oral tradition largely legitimates the current political elite. It also incorporates elements from previous political and religious ideologies to ensure acceptance by the people. Africanists have shown that oral tradition can be deconstructed into episodes, which can be compared with changes in the archeological record (Andah and Okpoko 1979).

Religious, political, economic, and social institutions provide a useful framework for organizing community behaviour. Assignment to institution is guided by activity objectives.

Household technology and subsistence represent craft and subsistence activities at the individual or family level.

An ethnic version of history helps to counterbalance the “other” cultural context of the typical colonial recorder, and allows one to hypothesize gaps in the official record. Ethnic survival is frequently present in toponyms, and can often be hypothesized from present-day rural subsistence.

In this paper I discuss only contact ethnicity and oral tradition.

LESSEY ANTILLES

Grenada cannot be viewed in isolation. There are two contact periods, and here I focus on the second (1624-1660) characterized by European settlement and abundant data. No major reconstruction of Kalínago ethnohistory has been published, although Douglas Taylor and Jacques Petitjean-Roget were both qualified to write one.

Contact ethnicity suggests the Lesser Antilles and parts of the coastal mainland form a single political ethnicity with two linguistic subgroups (J. Petitjean-Roget 1970; Prato-Perelli 1983; Allaire 1997). The Gálibi speak a Cariban language; and inhabit parts of the coastal mainland, north Trinidad, Tobago, and part of Grenada. The Kalínago speak an Arawakan language with three registers. The elders’ register is not reported. The male and female registers contain different proportions of Carib pidgin lexicon (very large in the male, small in the female) (Hoff 1995). The Kalínago inhabit part of Grenada, and the islands at least as far north as St Kitts. In contrast, the coastal mainland is a mosaic of ethnicities (Ralegh 1928 [1596]; Pelleprat 1965 [1655]; Boomert 1984). Ethnohistoric evidence for an ethnic mosaic in the Lesser Antilles as proposed by Wilson (1993) is minimal.

In the oral tradition I distinguish 3 episodes of political ideology.

The most recent episode legitimates a mainland or Gálibi founding ancestor, and uses conquest to explain the male and female language registers. In reality these registers create and maintain a political difference between “conquering” men and “captive” women. The archeological record indicates a major style change ca AD 850 (from Terminal Saladoid to Calivigny-Suazoid). Perhaps “conquest” is related to the disappearance of Barrancoid influence in the Lesser Antilles ca AD 650, and utilizes mainland history.

The second episode legitimates HIALI, simultaneously son and nephew of the male moon, and founder of the Kalínago nation. His name which means “bright, clear, serene,” and his association with vivid green feathers, are remarkably similar to HIA WAILI GUANIN, founder of the Taíno ruling lineage in Hispaniola. This episode seems to legitimate the rule of a divinely descended chiefly lineage. Archeology suggests this sort of rule during the period of Barrancoid influence (AD 350-650), when the Lower Orinoco and Lesser Antilles possibly formed an earlier single political ethnicity, with two cultural subgroups. Linguistics suggest the time when Taíno and Kalínago were a common language, ie Proto-Northern, which Rouse (1992) dates ca BC 1000. At contact, Híali is no longer politically valid, but every Kalínago male carries the divine patriline. Also the preferred marriage to father’s brother’s daughter produces male children who are simultaneously son and nephew.

The earliest episode concerns a spirit pair, LUKWO associated with the sky and KOWALINA associated with waters, and a number of “first people.” One can argue that the story legitimates a pre-chiefly government by the elders of two moieties. Archeologically this episode may reflect the Saladoid-
Huecoid problem. Linguistically it suggests the time of Proto-Maipuran language, which Rouse dates ca BC 1500. At contact, the actors are no longer valid politically, and have been retired to the sky. But they continue to be valid ideologically. The women’s highly valued crystal and green beads, imported from the mainland, possibly still represent LUKWO (sky) and KOWALINA (water). Also constellations representing the “first people” are still being used as calendric markers by Dominica Caribs in the 1930s (Taylor 1946a).

GRENADA

Second period ethnicity can be tentatively reconstructed from incidental reports of chiefs and villages in Anon de la Grenade (1975 [1659]), historical French maps (eg MB 1758, in Anon 1975), and present-day place-names. The evidence suggests East, South and West quarters are Gálibi; and the North quarter Kalínago (Figure 1).

The Grenada Gálibi probably originated from the mainland Gálibi province of Guarapiche (Venezuelan side of the Gulf of Paria), as Pelleprat (1965 [1655]) shows a close relationship between these two groups. There is no information on migration dates. But the Grenada Gálibi have been there long enough for their principal chief to be considered a native of Grenada by the St Vincent Kalínago.

The war-fleet network comprizes Martinique, Dominica, St Vincent, and Grenada; but not St Lucia or Tobago. Although the Guarapiche Gálibi belong within the alliance network, islands and mainland seem to be separate interaction spheres.

Grenada adds interesting ethnographic data on assembly agendas and decisions, reciprocal revenge, guerilla and warfleet tactics, inter-island chiefly kinship, and a 2-carbet settlement layout.

STRATIGRAPHIES

The aim here is to construct a space-time chart of well defined archeological sequences and assemblages, in order to plot cultural and environmental continuity and difference (Table 3).

Excavation by real stratigraphy is essential for well-defined archeological assemblages (eg Lundberg this volume). Samples excavated by artificial stratigraphy (eg Rouse and Bullen) have blurred boundaries.

Pottery stratigraphy is a major tool for tracking cultural continuity and change, and is an essential part of the excavation record. Potter variation is endemic. But ethnoarcheology suggests the level of variation is worst in paste, less so in decoration, and least of all in vessel type (De Boer and Lathrap 1979). Vessel stratigraphy is therefore the best tool. Stylistic stratigraphy, as produced by Rouse’s system of modes, is good for preliminary space-time charts. But his system does not record multiple modes, and his pottery styles do not define continuity and difference precisely enough for higher level research. Paste stratigraphy is the least reliable indicator. Bullen’s binomial system of paste and stylistic types does record multiple modes. But paste types are not a useful primary sort field, and may reflect a variety of causes: eg ritual or cookware, household or community potting tradition, situational production constraints.

My approach is to divide the pottery sample into subsamples defined by diminishing levels of reliability: eg Recognizable Vessels, Informative Sherds (vessel parts, decoration), and Unidentifiable Sherds. Vessel analysis creates vessel types, which form the primary sort field (Harris 1995), so that stylistic and paste types are reported per vessel-type. Informative and Unidentifiable Sherd analysis expand the sets of stylistic and paste types. As the vessel database increases and demonstrates predictable relationships between vessel and stylistic types, sherds can be moved from the Informative to the Vessel subsample. In time also, paste types can be sorted against vessel type, decoration type, fine or coarse ware, stratigraphy, and patterns of distribution identified.

Other stratigraphies are needed to fill out the picture. Non-pottery artifact stratigraphies provide independent lines of evidence.
Stratigraphies of diet and climate change, based on zooarchaeology, paleo-ethnobotany, human bone isotope analysis, and palynology, reconstruct other aspects of environmental and cultural history. Chronometric dating provides another stratigraphy, which is sometimes less reliable than the others.

GRENADA

Excavations are reported at 11 sites (Table 5), all by artificial stratigraphy. However pottery stratigraphies are not well defined or reported, and need to be made a priority.

Bullen (1964) published pottery stratigraphies for 5 sites. But his vessel types are inadequate. Many of his stylistic types can be used to track cultural continuity and change, but others need redefining. His paste types are almost certainly not the chronological indicators he assumes. Also Cody and Keegan (1989) report that his two excavations at Pearls were made in a “very disturbed area.” Re-analysis of his other stratified samples at the Florida Museum of Natural History (FLMNH) would make a good project for a Grenadian with heritage qualifications and/or interest.

Bullen (1988, 1993) excavated at 2 sites, but did not publish pottery stratigraphies. Cody’s (1990, 1991) and Cody and Keegan’s (1989) excavations at Pearls showed a lot of disturbance, and Cody (1991) focussed on exotic lithics. Cody (1998) used her stratified collections from 5 late sites as unstratified samples for multivariate analysis to distinguish Caraïbe (Kalínago) and Gálibi ethnicities. However her analysis sheet design suggests she is in a position to publish stylistic stratigraphies for these excavations.

In this situation and with the benefit of hindsight, I suggest an interim guideline of seven pottery styles (Table 6). Transition is a new phase suggested by my study of Saladoid Bottles (Harris 1997), and is defined by Saladoid decoration on Barrancoid vessel-shapes. Cayoid is defined in St Vincent by Boomert (1986: figures 3-10). He demonstrates a relationship with the Koriabo style of the Guayananas (ibid: figures 11-14), and argues convincingly that both represent Gálibi ethnicity. Cody reports one Cayo sherd from Sauteurs locus-1 (1998:195), and illustrates probable Koriabo imports from Galby Bay W-locus (ibid: figure 5-20).

Vessel stratigraphies may not be far off. I have collected data from FLMNH, the Grenada National Museum, the Leon Taylor collection, to construct a preliminary vessel typology for vessel analysis. Further data are available in Cody (1998), but hopefully she will soon publish vessel stratigraphies covering her total count of 766 recognizable vessels. Her style and vessel stratigraphies should define the Early and Late Calivigny-Suazoid phases, and will further enhance her already considerable contribution to Grenada archeology.

Non-pottery stratigraphies include the manufacture and exchange of exotic lithics in Huecan Saladoid and Transition assemblages. Research is needed to establish if internal exchange of stone tools is worth tracking (see below). Research is also needed on Gálibi and Koriabo cranial treatment, to see if presence/absence of head-flattening is a Kalínago / Gálibi ethnic indicator.

Zoo-archeological and isotope samples are currently too few to show diet change. Palynology suggests a period of lower sea-level or drier climate during AD 825-975 (McAndrews 1996:247). Zoo-archeology and paleo-ethnobotany reports need to be given priority.

Twenty-two radiocarbon dates have been published, mostly by Cody (Table 7). But their value is reduced by lack of pottery stratigraphies.

SETTLEMENT HISTORY

The aim here is to develop an outline of demographic and sociopolitical history for each meaningful spatial unit (Table 4).

Although settlement history has been an important method in US archeology since 1953, Caribbean applications have been few. I report them briefly, as they show the data fields needed for an island site database, and the conclusions to be obtained from settlement history analysis.

Rouse (1942) reviews 123 sites in the Maniabón Hills of Cuba in terms of assemblage, size and type of site, location, and ethnohistoric province. But the method is not re-applied till the mid-1980s.
Rodríguez (1990, maps in 1992) reviews 52 settlements in the Loíza valley of northeast Puerto Rico in terms of geographic zone (coastal plain, hills, mountains), assemblage, date, population size, and subsistence. He tracks movement up the valley, and subsistence change. His data also show that the first site in each zone usually remains the largest, suggesting remarkable longevity of the ruling lineages.

Keegan (1992) reviews 173 sites on 10 islands of the Bahamas/Turks and Caicos islands in terms of settlement size, and estimated population density. He identifies pattern at the large settlement level, and a high degree (90%) of pairing mainly between settlements of unequal size.

Wilson (1991) reviews 21 settlements on the small island of Nevis (130 km²) in terms of assemblage, size, and location.

Curet (1992) reviews 7 settlements and 4 religio-political sites in the small (42.7 km²) Maunabo valley of southeast Puerto Rico in terms of assemblage, type, size, and location. His data show large settlement pattern and probable satellites.

Drainage basins are shown to be meaningful units in Puerto Rico, and might improve Rouse’s hypothesized chiefdom boundaries in Cuba. Although not used in Nevis, directional quarters are a good way to divide a small island with central peak and radiating drainages.

Exchange of specialty products or resources is a political tool for maintaining alliance between communities and ethnicities.

Relevant site database fields are clearly shown in the Caribbean reports reviewed above. They include type and size of site, drainage basin, location, distance from the sea, elevation, rainfall, stratigraphic assemblage(s), dates, subsistence, and settlement pattern role.5

Maps can show settlement pattern by archaeological assemblage, or settlement history by drainage basin.

GRENADA

The island has an area of 345 km², and contains 65 published sites (Table 5). Bullen (1964) reported 18.6 Henry Petitjean-Roget (1981) added 17.7 The FFR added 248 from two marine coastal surveys (1986, 1993). They also established a site numbering system, and filed site record sheets and sketch maps at the National Museum. Cody (1998) added 6. This list includes the 5 definite petroglyphs9 (one with work-rocks) reported by Dubelaar (1995). I was unable to find copies of Petitjean-Roget (1981), the FFR site records,10 or Cody (1998) at the National Museum, so that many sites in Table 5 lack details of type, pottery style, location, distance from sea, and altitude.

Site types comprize settlements (51), settlement plus shell processing (1), settlement plus work-rocks (2), work-rocks plus petroglyphs (2), and petroglyphs (9) (Figure 2). Settlement size is sometimes not reported, and should be made a standard part of the record. If location data are reported, distance from sea and altitude can usually be calculated. Settlement zones are coastal (47), and inland (4).11 Two of the inland sites (3-4 km from the sea) date from the Saladoid period, suggesting a difference in occupation behaviour between a small island like Grenada and a large island like Puerto Rico (cp Rodríguez 1990, 1992). Work-rocks are all by the sea (4). Petroglyphs are coastal (9) sometimes associated with work-rocks (2), and inland (2). The largest and presumably the most important site politically is inland. Location is close to a river (8), on a point (2), or on an island (1). Some (4) are close to my drainage basin boundaries, and must be considered as possible territorial markers. If they are markers, two other petroglyphs may divide the south quarter into three units (SE, S, SW).

External exchange is documented by Cody. During the Huecan Saladoid-Transition phases, she shows Grenada’s participation in a manufacturing and exchange network of exotic lithics, extending from probably the lower Amazon to Puerto Rico (1993). During the Late Calivigny-Suazey phase, she records probable pottery imports from St Vincent and the Guayanas (1998).

Local inter-basin exchange is undocumented. Inputs are needed from specialists in local marine resources, botany, and geology, to identify drainage basin resources and products suitable for specialty exchange. The four work-rock sites are a potential example. They may be hypothesized as workshops for the production of volcanic stone adzes and axes, which Barbotin (1972) and Harris (1983) argue are canoe building tools, and date to the pottery age. Each site is in a different basin. If the raw
materials of each basin can be differentiated geologically, the origin of stone tools can be identified, the workshop hypothesis tested, and the artifact distribution from each work-rock site mapped.

I have plotted settlement history in three periods, Saladoid, Postsaladoid, and Contact. Each hypothesized quarter is different. Two continuous Saladoid-Postsaladoid settlements seem to dominate in both periods, each in a different quarter.

East (6 settlements, 1 petroglyph, 1 contact village). The petroglyph on Telescope Point seems to mark the E2/E1 boundary. The very large settlement of Pearls on the rich alluvial plain of the lower Simon and Great Rivers (E2) dominates. Continuity characterizes this quarter, even at the Marquis rivermouth (E1), where settlements change location.

South (31 settlements [one with work-rocks], 2 petroglyphs, 1 Gálibi toponym). The numerous bays and points of the south coast contain many small to medium settlements. Petroglyphs on Marquis Point and Calivigny Island may mark internal boundaries, which divide the quarter into three. Continuity is rare in the data available to me.12 Saladoid settlements are mostly in the west, and the cluster by Point Saline needs specific explanation (driest part of Grenada, rainfall below 1000 mm). Postsaladoid sites are on the south and southeast coast. The Gálibi toponym is associated with probable Gálibi pottery from the Guayanases.

North (13 settlements, 6 petroglyphs [one with work-rocks], 6 contact villages). The very large inland petroglyph site at Mount Rich and nearby continuous settlement of Montreuil probably dominate the quarter. Each basin has a different configuration. NE (5 settlements) is mostly Postsaladoid. N1 (4 settlements) contains Mount Rich-Montreuil, and is characterized by continuity. N2 (3 settlements) has a continuous settlement on one drainage, and a Postsaladoid settlement and work-rocks plus petroglyphs site on another. NW contains 4 petroglyphs and no settlements. The contact villages are reported at 2-4.5 km intervals along the coast, and probably reflect closer French relationships with the Kalínago than with the Gálibi.

West (5 settlements, 2 work-rocks [one plus a petroglyph], 2 petroglyphs, ?1 contact village). The petroglyphs may mark the SW/W1 and W1/W2 boundaries. W1 (5 settlements) contains one Saladoid settlement and one work-rock site. W2 contains no settlements, but one work-rock plus petroglyph site and a possible contact village, both just north of the boundary. It is the wettest and steepest basin in Grenada, and apparently the last to be settled.

Conclusions

You have now seen the application of this four-part methodology to Grenada.
1. Ethnogeography has divided the island into 4 directional quarters and 10 drainage basins.
2. Ethnohistory has reconstructed a contact ethnicity of 3 Gálibi quarters and one Kalínago.

Oral Tradition has suggested 3 periods of political ideology in the Lesser Antilles, which I have tentatively related to archeological assemblages (Calivigny-Suazoid, Barrancan Saladoid, Huecan Saladoid).

3. Stratigraphy has shown an urgent need for well defined pottery and zooarcheological stratigraphies.
4. Settlement History has identified site database fields, shown the importance of good site records, suggested a need for specialist reports on food and exchange resources, and brought out problems for higher level research.

These four parts create a framework for heritage professionals to plan national management and research programs. We need similar basic data for every island to facilitate regional research. I hope this paper has provided a suitable basis for IACA discussion, and will eventually result in a common format for basic archeological data in all Caribbean islands.

Acknowledgements

I am grateful to Jean Pitt and Robert Pierre of the Grenada National Museum for permission to study the pottery on display and assistance, Leon Taylor for permission to study his collection, Beverly
Steele of the University of the West Indies School of Continuing Studies for permission to study archival materials, Neil Sealey for advice on the delineation of drainage basins, and Emily Lundberg for a copy of Cody (1998).

REFERENCES CITED

ALLAIRE, L.

ANDAH, B. W. and A.I. OKPOKO

ANON DE LA GRENADE,

BANKS, T. J.
1993 Excavation at La Sagesse Bay (Site Number D-1). FFR Grenada Report Series 8.

BARBOTIN, M.

BOOMERT, A.

BULLEN, R. P.

BULLEN, R. P. and A. K. BULLEN
1972 Archaeological Investigations on St Vincent and the Grenadines, West Indies. Florida Technical University, Orlando.

CODY, A. K.
CODY, A. K. and T. J. BANKS

CODY, A. K. and W. F. KEEGAN

CURET, L. A.

DE BOER, W. R. and D. W. LATHRAP

DE KERHALLET, P.

DUBELAAR, C.N.
1995 *The Petroglyphs of the Lesser Antilles, the Virgin Islands and Trinidad.* Foundation for Scientific Research in the Caribbean Region, Amsterdam.

FREDERICK, E.
ca 1982 *From Camerhogne to Free Grenada*. Grenada National Museum, St George’s.

HARRIS, P. O’B.

HOFF, B. J.

HOLDRIDGE, L.R., W.C. GRENKE, W.H. HATHEWAY, T. LIANG, and J.A. TOSI Jr

HULME, P. and N. L. WHITEHEAD

KEEGAN, W. F.

LAS CASAS, B. DE
LUNDBERG, E. R.

MCANDREWS, J. H.

ORTIZ, A.

PASZTORY, E.

PELLEPRAT, P.

PETITJEAN-ROGET, J.

PRATO-PERELLI, A. DA

RALEGH, W.

RODGRENZ, M.

ROE, P. G.

ROSTWOROWSKI DE DIEZ CANSECO, M.

ROUSE, I.

TAYLOR, D.
NOTES
1 I think we should agree to use the ethnic terms Kalínago and Gálibi for Island and Mainland Carib.
2 My very preliminary knowledge is based largely on English version extracts from Breton (1647) and
La Borde (1674) in Hulme and Whitehead (1992), checked against Taylor (1946a, 1946b) and J.
3 Archeological ethics assume that excavation and destruction of a section of cultural deposit must be
replaced by publication of the excavation record.
4 However I could find no registration records to confirm reported provenience from Pearls.
5 In 1997 the IACA-2000 work group identified a common site database format as a longterm regi-
onal need. Hopefully this recommendation will be pursued in due course.
6 I have counted Westerhall Point as 3, and excluded High Bluff where he reports only one sherd.
7 I have not read this report, but his map of prehistoric sites is published as the front cover of
Frederick (ca 1982), and Cody (1998) reports some details.
8 I have excluded La Tante Point where Cody (1998) reports isolates only.
9 I have provisionally excluded Pomme Rose, as the designs are uncharacteristic.
10 Caribbean archeological institutions must maintain site records, and a system which limits access to
individuals who can demonstrate bona fide concern for local archeological heritage.
11 In Grenada I define “coastal” as under 500 m from the sea, and “inland” as over 500 m and in the
hills.
12 I have no record of style for 16 settlements.

Figure 1. Directional quarters, drainage basins, and contact ethnicity: # contact villages.

Figure 2. Settlement histories by quarters and basins: o Saladoid, o Postsaladoid, oo Continuous,
^ Style not recorded, * Cayo/Koriabo imports, # Contact, X Petroglyphs, + Work-rocks.

Table 1. Ethnogeography: aim and components.

Table 2. Ethnohistory and Ethnic Survival: aim and components.

Table 3. Stratigraphies: aim and components.

Table 4. Settlement History: aim and components.

Table 5. Grenada site list by directional quarters and drainage basins. Excavations are underlined: B
(Bullen), C (Cody), Bk (Banks), K (Keegan). Fields: distance from sea (km), altitude (m), RPB
(Bullen), PJR (Henry Petitjean-Roget), FFR (Foundation for Field Research).

Table 6. Interim guide to Grenada pottery styles.

Table 7. Grenada radiocarbon dates. Depth (cms). The Pearls styles are judgemental, based on Cody’s
(1991) figures and two vessels displayed in the National Museum.
Figure 1. Directional quarters, drainage basins, and contact ethnicity: # contact villages.

Figure 2. Settlement histories by quarters and basins: o Saladoid, o Postsaladoid, oo Continuous, ^ Style not recorded, * Cayo/Koriabo imports, # Contact, X Petroglyphs, + Work-rocks.
<table>
<thead>
<tr>
<th>Aim: to divide landscape into ethnically meaningful units.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- World orientation.</td>
</tr>
<tr>
<td>- Directional quarters.</td>
</tr>
<tr>
<td>- Natural features with mythic potential.</td>
</tr>
<tr>
<td>- Drainage basins.</td>
</tr>
<tr>
<td>- Holdridge zones (or rainfall contours).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aim: to reconstruct ethnic mindset.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Context of sources (including Indian).</td>
</tr>
<tr>
<td>- Contact ethnicity.</td>
</tr>
<tr>
<td>- Social diversity.</td>
</tr>
<tr>
<td>- Contact ideology (oral tradition).</td>
</tr>
<tr>
<td>- Institutions (Religious, Political, Economic, Social).</td>
</tr>
<tr>
<td>- Household technology and subsistence.</td>
</tr>
<tr>
<td>- Ethnic version of history.</td>
</tr>
<tr>
<td>- Ethnic survival.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aim: to construct a space-time chart of well defined cultural and environmental sequences and assemblages.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Real stratigraphy.</td>
</tr>
<tr>
<td>- Pottery stratigraphy (vessel, style, paste).</td>
</tr>
<tr>
<td>- Non-pottery indicators.</td>
</tr>
<tr>
<td>- Diet and climate change.</td>
</tr>
<tr>
<td>- Chronometric dates.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aim: to develop outlines of demographic and sociopolitical history.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Caribbean applications.</td>
</tr>
<tr>
<td>- Meaningful spatial units.</td>
</tr>
<tr>
<td>- Resources and exchange.</td>
</tr>
<tr>
<td>- Site list and database.</td>
</tr>
<tr>
<td>- Settlement maps.</td>
</tr>
<tr>
<td>NAME (NO)</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Great Boccalet Bay (D-7)</td>
</tr>
<tr>
<td>Marquis River (A-3)</td>
</tr>
<tr>
<td>Marquis (A-4)</td>
</tr>
<tr>
<td>Telescope Point</td>
</tr>
<tr>
<td>Simon Beach</td>
</tr>
<tr>
<td>LeFillete</td>
</tr>
<tr>
<td>Puerta (A-1)</td>
</tr>
<tr>
<td>Carib's Beach (D-10)</td>
</tr>
<tr>
<td>Cenhu Harbour (D-9)</td>
</tr>
<tr>
<td>Unioned Bay (D-11)</td>
</tr>
<tr>
<td>La Tante Bay (D-6)</td>
</tr>
<tr>
<td>Gallu Bay (D-3)</td>
</tr>
<tr>
<td>Bone Bay</td>
</tr>
<tr>
<td>Melmont Bay</td>
</tr>
<tr>
<td>Requin Bay</td>
</tr>
<tr>
<td>Marquis Point</td>
</tr>
<tr>
<td>Le Soussou Bay (D-1)</td>
</tr>
<tr>
<td>St David's Point (D-12)</td>
</tr>
<tr>
<td>Unnamed Point (D-6)</td>
</tr>
<tr>
<td>Little Boccalet Point (D-6)</td>
</tr>
<tr>
<td>Unioned Bay (D-8)</td>
</tr>
<tr>
<td>Petite Bauce Bay</td>
</tr>
<tr>
<td>Westerhall Point 3 (G-10)</td>
</tr>
<tr>
<td>Westerhall Point 2 (G-11)</td>
</tr>
<tr>
<td>Westerhall Point 1</td>
</tr>
<tr>
<td>Chemin Bay</td>
</tr>
<tr>
<td>Egmont Harbour (G-9)</td>
</tr>
<tr>
<td>Calving Island 3 (G-13)</td>
</tr>
<tr>
<td>Calving Island Con (G-14)</td>
</tr>
<tr>
<td>Calving Island N (G-12)</td>
</tr>
<tr>
<td>Hog Island E (G-16)</td>
</tr>
<tr>
<td>Hog Island W (G-15)</td>
</tr>
<tr>
<td>St Hartman Point (G-17)</td>
</tr>
</tbody>
</table>

Table 5. Grenada site list by directional quarters and drainage basins. Excavations are underlined: B (Bullen), C (Cody), Bk (Banks), K (Keegan). Fields: distance from sea (km), altitude (m), RPB (Bullen), PJR (Henry Petitjean-Roget), FFR (Foundation for Field Research).
<table>
<thead>
<tr>
<th>STYLE</th>
<th>SOME STYLISTIC TYPES</th>
<th>REFERENCE STYLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUECAN SALADOID</td>
<td>incised-pellets, FLI (line-line incision), ZIC, WOR, strap-handles, small round cross-section handles.</td>
<td>Pearls (Bullen 1964)</td>
</tr>
<tr>
<td>TRANSITION</td>
<td>Saladoid decoration on Barrancoid vessel shapes, e.g., rims and lugs. (part of Pearls)</td>
<td></td>
</tr>
<tr>
<td>BARRANCAN SALADOID</td>
<td>elaborate incision, BLI (bread-line incision), incised WOR, red paint, heavy strap-handles, very even wall thickness.</td>
<td>Simon (Bullen 1964)</td>
</tr>
<tr>
<td>TERMINAL SALADOID</td>
<td>simplified Barrancoid Saladoid, rectangular and "clean" end-lugs on hammock or oval vessels, interior finger-type painting on platters. (part of Simon, Calligny)</td>
<td></td>
</tr>
<tr>
<td>EARLY POSTSALADOID</td>
<td>rectangular and "clean" end-lugs, goolge-eye heads, Caligny poly-chrome, scratching, paste-shaped zemies, tripod griddle. mixed Caligny-Suayzye (Bullen 1964)</td>
<td></td>
</tr>
<tr>
<td>LATE POSTSALADOID</td>
<td>black painted lines, scratching, finger-dercted rims, rectangular ?side-lugs, sill-eye heads, figurine zemies, tripod griddle. mixed Caligny-Suayzye (Bullen 1964)</td>
<td></td>
</tr>
<tr>
<td>CAIVID</td>
<td>Imports; collared bowls, petty modeling, ?caspalp temper (Koraiabo). Cayo (Boomert 1986)</td>
<td>Cody (1998:Figure 5-20)</td>
</tr>
</tbody>
</table>

Table 6. Interim guide to Grenada pottery styles.

<table>
<thead>
<tr>
<th>STYLE</th>
<th>SITE</th>
<th>MATERIAL</th>
<th>DEPTH</th>
<th>DATES</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearls</td>
<td>Perros</td>
<td>Tororo</td>
<td>75-80</td>
<td>BP 1914</td>
<td>Cody (1991: figure 9)</td>
</tr>
<tr>
<td>?Transition</td>
<td>Tororo</td>
<td>Astrea</td>
<td>110-120</td>
<td>BP 1711</td>
<td>ibid (figure 10)</td>
</tr>
<tr>
<td>?Simon</td>
<td>Grande Anse</td>
<td>Strombus</td>
<td>74</td>
<td>BP 1725</td>
<td>ibid (figures 7-8)</td>
</tr>
<tr>
<td>Saladoid</td>
<td>La Tente</td>
<td>Strombus</td>
<td>86-110</td>
<td>AD 1305</td>
<td>Cody (1998:222)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ditto</td>
<td>ditto</td>
<td>AD 1410 (same sample)</td>
<td>ibid (248)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ditto</td>
<td>ditto</td>
<td>AD 1270</td>
<td>ibid (247)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ditto</td>
<td>ditto</td>
<td>AD 1270</td>
<td>ibid (248)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strombus</td>
<td>550</td>
<td>BP 550</td>
<td>Bullen and Bollen (1972)</td>
</tr>
<tr>
<td>Caligny-Suayzye</td>
<td>Grande Anse</td>
<td>charcoal</td>
<td>10-20</td>
<td>AD 1245</td>
<td>Cody (1998:208)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>charcoal</td>
<td>15-31</td>
<td>AD 1220</td>
<td>ibid (190)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>charcoal</td>
<td>17020/1720/1820</td>
<td>AD 12170</td>
<td>ibid (212)</td>
</tr>
<tr>
<td>S. Suayzye-S</td>
<td>Duquesne R.</td>
<td>charcoal</td>
<td>190</td>
<td>AD 1000</td>
<td>ibid (195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>charcoal</td>
<td>197</td>
<td>AD 1030</td>
<td>ibid (197)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>charcoal</td>
<td>1630</td>
<td>AD 1245</td>
<td>ibid (202)</td>
</tr>
<tr>
<td>S. Suayzye-NE</td>
<td>Duquesne R.</td>
<td>charcoal</td>
<td>40</td>
<td>AD 770</td>
<td>ibid (Table 8-16)</td>
</tr>
<tr>
<td>Seauters-1</td>
<td>Duquesne R.</td>
<td>charcoal</td>
<td>30</td>
<td>AD 770</td>
<td>ibid (Table 8-16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ditto</td>
<td>80-90</td>
<td>AD 1245</td>
<td>ibid (205)</td>
</tr>
<tr>
<td>Seauters-2</td>
<td>Duquesne R.</td>
<td>ditto</td>
<td>base of hearth 40</td>
<td>AD 1245</td>
<td>ibid (205)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ditto</td>
<td>70</td>
<td>AD 770</td>
<td>ibid (Table 8-16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ditto</td>
<td>upper</td>
<td>AD 1215</td>
<td>ibid</td>
</tr>
</tbody>
</table>

Table 7. Grenada radiocarbon dates. Depth (cms). The Pearls styles are judgemental, based on Cody's (1991) figures and two vessels displayed in the National Museum.