Pilots assist with wildfires

By Jay Levine
X-Press editor

An effort by multiple NASA centers to assist with suppressing California wildfires included capturing satellite data of the smoke plumes and aircraft flights over burned areas to collect information for recovery planning.

The California Air National Guard asked the NASA Earth Science Disasters Program for support with the wildfires that have destroyed more than 410,000 acres and 11 disaster program members arrived July 29. The NASA contingent coordinates NASA resources to provide detailed information, maps and images.

“Our goal is to provide the best support possible to our long-standing partners in the state of California,” said Carver Struve, Emergency Management co-lead.

From Armstrong, a high-altitude aircraft and two pilots assisted in two separate efforts to collect infrared imagery of California’s raging wildfires and the damage they caused.

The most intense of those wildfires is in the Mendocino Complex, which became the largest wildfire in California history. The data collected through the two efforts were used to fight the current fires, to provide data to recover from the fire, as well as identify some potential dangers from challenges such as mudslides this winter, said Jeffrey Myers, manager of NASA’s Ames Research Center Airborne Sensor Facility in California. The facility is managed by Universities Space Research Association.

An ER-2 based at Armstrong flew a NASA thermal imaging camera to assess some of the fire damage to help officials estimate the resources needed to recover from the fire, as well as identify some potential dangers from challenges such as mudslides this winter, said Jeffrey Myers, manager of NASA’s Ames Research Center Airborne Sensor Facility in California. The facility is managed by Universities Space Research Association.

An ER-2 based at Armstrong flew a NASA thermal imaging camera to assess some of the fire damage to help officials estimate the resources needed to recover from the fire, as well as identify some potential dangers from challenges such as mudslides this winter, said Jeffrey Myers, manager of NASA’s Ames Research Center Airborne Sensor Facility in California. The facility is managed by Universities Space Research Association.

Bridenstine makes first AFRC visit

By Jay Levine
X-Press editor

NASA Administrator Jim Bridenstine, during his first visit to Armstrong Aug. 28, said he supported new X-planes, increasing research into hypersonic flight and continuing to develop technology that will change people’s lives.

Bridenstine made the remarks during an hourlong question and answer session with employees.

“You are part of a very impressive heritage that continues in the work you are currently doing,” he said. The center’s founding and early work centered on iconic research vehicles such as the Bell X-1 that exceeded the speed of sound and the X-15 rocket plane. Soon that legacy will include the X-57 Maxwell that will validate distributed electric propulsion and the X-59 Quiet Supersonic Technology (QueSST) for the Low-Boom Flight Demonstration mission.

“X-59 will be faster than the speed of sound, but will do so with more of a rumble and less of a crack,” Bridenstine said. “It has the potential
Students make Prandtl fly

By Jay Levine X-Press editor

Abigail Waddell leaned over bundles of wires and circuit boards to see if a system she had helped develop with other interns for two summers at Armstrong was ready for testing.

Waddell, who attends North Carolina Agricultural and Technical State University, where she is studying electrical engineering, adjusted the electronic pressure measurement system, or EPM, and nodded it was ready. Chris Jensen, who is a mechanical engineering major at Embry-Riddle University in Prescott, Arizona, blew air through a large rubber tube and a gauge indicated the pressure was rising as he continued to blow.

Nathaniel Boisjolie-Gair, who is studying mechanical engineering at North Dakota State University, monitored a computer screen to see if the system was measuring the pressure of Jensen’s breath. Stephen Harris, who is studying electrical engineering at John Brown University in Siloam Springs, Arkansas, made sure data were recording. The test was a success.

Along with nine other interns, the students assisted Armstrong Chief Scientist Al Bowers with developing, testing and integrating the system into the subscale Preliminary Research Aerodynamic Design to Lower Drag, or Prandtl-D 3C glider. A flight series Aug. 1 demonstrated their system could measure pressure from the surface of the aircraft’s wing. Providing additional evidence that a wing design method using twist can dramatically increase aircraft efficiency.

Before the aircraft was ready for flight, however, there was more work to do. With the system validated, students crafted a box for it with a 3D printer. Then the system was installed in the aircraft. Deborah Jackson, an aerospace engineering student at Embry Riddle, Prescott, Arizona, was one of the students who meticulously helped connect each of the 89 tubes from the system along the aircraft’s wingspan. The small plastic tubes were also attached to transducers, which convert the air pressure on the wing to electronic data, and then to pressure points all along the wing.

During the previous two summers Jackson worked on the Fiber Optic Sensing System (FOSS) flown on the aircraft, which gathered data last summer on strain on the aircraft’s wing. This summer she is helping seek similar data through pressure on the wing. So far, it looks like the two methods are yielding the same answer.

“The variety of experience that I have been able to get is the best part,” Jackson said. “I worked in the electrical engineering lab and now I am working as an aerospace engineering student. I have learned so many things that are going to make me a better engineer and a better individual. I can also see the bigger picture.”

With all of the connections made and additional ground testing and the necessary preflight checks complete, the students were ready for flight. The weight of the new system made the aircraft heavier toward the nose, and without a breeze the July 26 flight was limited, but data were acquired on the first try. The team tried again Aug. 1 and this time a light breeze helped the flight tests. After a few successful attempts, students carefully made measurements and computations and shifted the weight for the aircraft to fly even better.

“The wind picked up and it began flying faster, which allowed us to get clean pressure data for the whole wing,” said flight operations leader Victoria Hawkins, who is a graduate student focusing on unmanned and autonomous systems engineering at Embry-Riddle in Daytona Beach, Florida.

Administrador visits

By Leslie Williams

Armstrong News Chief

Arriving at one of the driest spots in North America, the Mojave Desert, NASA Administrator Jim Bridenstine toured Armstrong and visited the Mojave Air and Space Port Aug. 28.

The center is located in an ideal environment for flight research on Edwards Air Force Base. For over 70 years, Armstrong has collaborated with Edwards, starting with the X-1 program, to fly a plane faster than the speed of sound. This program kicked off the partnership to follow that tests aeronautical concepts on numerous experimental aircraft, known as X-planes, throughout the years to the present.

Bridenstine started his day meeting with Brig. Gen. E. John Teichert from Edwards. Discussion centered on how NASA has benefited from the partnership with access to established infrastructure, runways, tower and range access for flight test operations, often jointly.

Afterward, he met with Armstrong management and held a town hall for employees who asked the new administrator questions.

During his tour of the center, he listened to engineers talk about a number of aeronautical research projects at Armstrong. He also visited the mission control rooms that monitor flights and gather data, saw research support aircraft such as the F/A-18s and learned they are crucial as another set of eyes for safety to monitor flights and as research test platforms. As a former navy pilot, he looked comfortable back in the cockpit, where he did a Facebook Live.

Among the other stops along his tour was the Dale Reed Subscale Flight Research Lab that is used for rapid prototyping for flight testing on a smaller scale. Bridenstine also checked out the Flight Loads Lab where mechanical loads and thermal studies are performed on components or complete flight vehicles.

Bridenstine finished his center tour at the center’s flight simulators for the X-59 QueST (Quiet Supersonic Technology) and the X-57 all electric airplanes. These pair of aircraft are the first new NASA piloted X-planes since the X-55 Active Aerelastic Wing in 2002.

When he left the center, Bridenstine headed to a meeting at the Mojave Air and Space Port to meet with commercial space industry representatives from companies such as Lockheed Martin, which is building the X-59.Scaled Composites representatives hosted Bridenstine’s press briefing in their Mojave hangar where the X-57 is undergoing its initial modification into an electric aircraft from a combustion Tecnam P2006T airplane. Scaled Composites is known for its unconventional aircraft design. The company was founded in 1982 by Burt Rutan.

Human computer turns 100

As Katherine G. Johnson’s 100th birthday (Aug. 26) approached, many NASA Langley Research Center in Virginia employees expressed admiration for the woman whose math powered some of America’s first triumphs in human space exploration.

Johnson did trajectory analysis for Alan Shepard’s May 1961 mission Freedom 7, America’s first human spaceflight. At a time when digital computers were relatively new and unused, she famously checked the computer’s math for John Glenn’s historic first orbital spaceflight by an American in February of 1962.

These are just two higher points in a brilliant career that stretched from 1953 to 1986. Her 100th birthday was recognized throughout NASA and around the world. But at Langley, the milestone created an extra measure of pride and joy.

Graduate research assistant Cecilia Stoner, stopped on her way to Langley’s cafeteria, said she admires how Johnson remained humble, even when showered with accolades ranging from the Presidential Medal of Freedom to toys made in her likeness.

Langley’s acting chief technologist, Julie Williams-Blyrd, echoed that thought. “She opened the doors for the rest of us,” Williams-Blyrd said. “It’s typical NASA culture, right? We have a mission. Everybody’s going to join in and do what they can to make that mission successful.”
Avionics technicians David Johnson, in the above photo, and Johnny Bryant, middle photo at right, both work on rewiring the fixed nose and cockpit. Top middle, Hector Rosas works on fabricating a part for the ER-2 instrumentation panel.

Avionics technician David Johnson, in the above photo, and Johnny Bryant, middle photo at right, both work on rewiring the fixed nose and cockpit. Top middle, Hector Rosas works on fabricating a part for the ER-2 instrumentation panel.

ER-2 cockpit effort will enhance pilot safety

By Jay Levine
X-Press editor

It’s all about the pressure, or in this case increasing the pressure. The Cockpit Altitude Reduction Effort (CARE) modifications to the ER-2s at NASA Armstrong will enhance pilot safety. Once complete, the overhaul will increase cockpit pressure, which will reduce the effective cockpit altitude from 29,000 feet to 15,000 feet when the aircraft is operating at its cruise altitude of 65,000 feet.

Lowering the effective cockpit altitude reduces the chances of decompression sickness known to have short and long-term effects on the pilot. Decompression sickness is also suffered by divers, who refer to it as the bends, which causes such symptoms as dizziness, muscle and joint pain, cramps, numbness and even paralysis.

To accomplish the goal, the cockpit frame, bulkheads in front of and in back of the pilot, cockpit sill, longeron tie fittings, windshield and instrument panel will be structurally reinforced, replaced or both. In addition, changes in the cockpit oxygen regulation system and environmental control systems are planned.

The new instrument panel is an integral structural component requiring existing cockpit instruments to be relocated. The Armstrong Operations Engineering Branch designed the necessary adapter plates and the Experimental Fabrication Branch fabricated the parts. Those parts will be installed by the ER-2 maintenance team. Team members continue to work through miles of wires that snake through the ER-2 to indicators and components in the cockpit, while removing legacy cockpit equipment that is no longer used.

Lockheed Martin completed the structural modifications before NASA teams took over the current effort to reassemble the first of NASA’s two ER-2 aircraft. Once ER-2 No. 809 is complete, the modifications are also planned for ER-2 No. 806.
Happy birthday, Hugh!

By Christian格尔
Seattle Times

Armstrong Social Media Manager
Hugh L. Dryden was a prominent aeronautical engineer for the National Advisory Committee for Aeronautics (NACA) and NASA. He was also a key member of transforming the core of the new agency, ensuring that NASA would be a worldwide leader in air and space exploration.

For those at Armstrong, where the center was named after him for more than 25 years and the Hugh L. Dryden Aeronautical Test Range carries his name, it is remembered on what would have been his 120th birthday. Dryden is perhaps best known at the center for his support of the X-15 rocket program that yielded 199 missions and his advocacy for flight research to “separate the real from the imagined” between theory and the reality of flight.

Dryden’s Youth

Dryden was born July 2, 1898, in Pocomoke City, Maryland—often boasted “The airplane and I grew up together.” At 12 years old he saw an aircraft for the first time. It was an Autroplane, a 40-mph monoplane with a 50-horsepower engine. He wasn’t impressed with its performance. A few days later he wrote an essay for his English class at school entitled “The Advantages of an Airship over an Airplane” in which he compared the greater passenger and cargo payloads an airship has over winged machines for commercial and recreational use. His teacher thought the paper was “illogical.” He received an “F.”

Fast Start

At the age of 14 he entered Johns Hopkins University, graduated with honors three years later and earned his degree in 1918. His thesis was “Airplanes: The Physical Principles Embodied in Their Use.” Dryden caught the attention of many prominent leaders in the aeronautical industry. He earned his first position at 20 and followed that with his doctorate degree while working on research that led to the design of the first US military anechoic chamber. His data – used by the NACA and Dryden was appointed as first deputy director. His data – used by the NACA and Dryden was appointed as first deputy director. He was given the charge of the Bureau of Ornithology at the US National Museum at the NBS where he worked on guided missiles for the Navy. The missile, called "The Bat," consisted of an aircraft-aeronautic industry. He earned his launched gravity bomb capable of self-correction in flight.

In late 1945 Hugh Dryden joined Theodore von Kármán as director of the Experimental Unit at the NBS. His new role was to work with engineers and scientists in Europe to establish the Aeronautical Research and Development Board. He was given the charge of the Bureau of Ornithology at the US National Museum at the NBS where he worked on guided missiles for the Navy. The missile, called "The Bat," consisted of an aircraft-aeronautic industry. He earned his launched gravity bomb capable of self-correction in flight.

Legacy

Dryden died Dec. 2, 1965, three and a half years before Neil Armstrong, a former Flight Research Center research pilot, became the first person to step onto the Moon’s surface. Dryden said in reference to the X-15 project: the purpose of flight research “is to separate the real from the imagined … to make known the limits of our capabilities.”

Dryden said that the models, the FOSS data and now the pressure data, there is a compelling argument for wing twist.

Students… from page 2

"This will truly change the way the world works," he said. "The savings in energy, not just for aircraft but for ships, for fans, for pumps, turbines, compressors, all of those things are going to change because of this." The wing efficiency from the method would be 12.5 percent, with the potential for even higher efficiencies using the technology reach beyond NASA and potentially have relevance for military applications.

"We have to make the investments," he added. "We will receive dividends on those investments. We want to maintain the technological edge and our influence in the world and that’s why we take risks.”

While NASA is perceived to be a huge piece of the national budget, Dryden said it is less than half of 1 percent of the federal budget. “The return on that investment is overwhelming,” Bowers said. "It isn’t just a job well done, it is a job well done." The Administrator’s day in the desert is detailed on page 3. Concerning high-speed aircraft flying faster than Mach 5, or hypersonically, he said NASA is uniquely situated to work on the basic research necessary to advance hypersonic research. Applications of the technology reach beyond NASA and potentially have relevance to many government agencies beyond science and discovery.

"We have to make the investments," he added. "We will receive dividends on those investments. We want to maintain the technological edge and our influence in the world and that’s why we take risks.”

While NASA is perceived to be a huge piece of the national budget, Dryden said it is less than half of 1 percent of the federal budget. “The return on that investment is overwhelming,” Bowers said. "It isn't just a job well done, it is a job well done."

Dryden also inspired young people to pursue careers in science, technology, engineering and mathematics.
Wildfires... from page 1

science research in conjunction with the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite instruments.

With as many as 18 wildfires burning in the state, NASA research pilot James Nelson was tasked with flying a 3.6-hour mission in the ER-2 at 65,000 feet Aug. 9.

“The two fires near Yosemite could clearly be seen from my altitude, but the Mendocino fire was obscured by smoke,” Nelson said. “However, our instruments are multispectral and can see through much of the smoke in the infrared bands and we were able to collect data on all the fires.”

The ER-2 aircraft flew a fire mission during the Thomas blaze in Ventura County, California, in December 2017.

Nelson explained the mission focus. “We were looking at the infrared data over the active burn area to evaluate the instrument performance,” he explained. “We have colleagues in the U.S. Forest Service in Salt Lake City who wanted the data. They have an infrared mapping aircraft covering those fires, but they needed the information for their burned area emergency response plan. They have 48 hours from when the fire is declared contained to deliver a draft response plan about how to control erosion and begin revegetation. They also will look at severity of burn for areas that are most susceptible to mudslides.”

In another area of California, NASA Armstrong pilot Scott Howe, who was serving as a part-time member of the California Air National Guard, was on duty the week of Aug. 6. He assisted with the blazes by piloting the guard’s MQ-9 remotely piloted aircraft during launch and landing of aircraft used to monitor raging wildfires.

Howe explained the role of the California Air National Guard. “The aircraft shows Cal Fire (the state’s arm of the U.S. Department of Forestry and Fire Protection), where the biggest threats to people and property are located, the hottest areas and those parts of the fire that are most rapidly growing so they can deploy resources.”

He was chosen for that role the week of Aug. 6 because of his familiarity with the MQ-9. Howe was one of the pilots of NASA’s Ikhana aircraft, a civilian variant of the MQ-9 based at Armstrong until the aircraft was recently reasigned. One of the Ikhana’s missions, while based at Armstrong, was to validate technologies that could be used to monitor and map fires as they were happening during the Western States Fire Missions in 2006 and 2007.

Howe watched the infrared imaging on large screen monitors in the operations center, which is like a NASA control room, and saw how the fires were being mapped out and communicated to Cal Fire’s command center. “You can clearly see burn areas have a residual heat, even in the middle of the night, and the bright leading edge, like a string of jewels,” Howe said. “At the hottest part, you can see the flames licking off the top of it. It’s pretty intense.”

California’s Mendocino Complex fire is ongoing, as huge columns of smoke still rise from the fire complex and the smoke that has risen and drifted now clouds the skies above the state.