Can Transit-Oriented Development Work for a Redeveloping Bridgeport?

By:

Jay Habansky

A Terminal Project Submitted in
Partial Fulfillment of the Requirements
For the Degree of

Master of Arts in Urban & Regional Planning

At
The University of Florida
August 2015
To GFH
The past three years have been some of the most challenging and rewarding times of my life. I could not have made the necessary sacrifices without the unwavering support of my wife and best friend, Katherine. To my son, Jay Patrick, you inspired me to be better than I ever imagined I could be. And to Janet and Gery, who have always encouraged me to pursue my dreams regardless of how outlandish they may have been. You all have helped to shape me into the person I am today. Thank you.

I would also like to thank my Committee Chair, Dr. Ruth Steiner, and my Committee Members, Dr. Ferdinand Lewis and Dr. Joseli Macedo, for your guidance, advice, patience and encouragement over the last three years. You have all played a significant role in my current and future successes and I truly appreciate all your efforts. Thank you.

It's supposed to be hard. If it wasn't hard, everyone would do it. The hard...is what makes it great!

* -Jimmy Dugan
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>6</td>
</tr>
<tr>
<td>List of Tables</td>
<td>7</td>
</tr>
<tr>
<td>Abstract</td>
<td>8</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>9</td>
</tr>
<tr>
<td>Chapter 2: Literature Review</td>
<td>12</td>
</tr>
<tr>
<td>Chapter 3: Methodology</td>
<td>33</td>
</tr>
<tr>
<td>Chapter 4: Results</td>
<td>37</td>
</tr>
<tr>
<td>Chapter 5: Discussion</td>
<td>48</td>
</tr>
<tr>
<td>Chapter 6: Conclusion</td>
<td>64</td>
</tr>
<tr>
<td>References</td>
<td>67</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1. Transit-Oriented Development & Core Density

Figure 2. Neighborhood Map of Bridgeport, Connecticut

Figure 3. City of Bridgeport, Connecticut: Downtown, East Side & East End

Figure 4. Brownfields in East Side & East End of Bridgeport

Figure 5. Steelpointe Harbor Concept Plan

Figure 6. Fairfield Metro Station

Figure 7. Barnum Station Concept Plans

Figure 8. Neighborhood Context: Bridgeport’s East Side & East End
List of Tables

Table 1. Advantages of Transit-Oriented Development

Table 2. Variable Present/Absent in Blue & Gold Transit Corridors

Table 3. Property Appraisals Near Downtown Transit Hub

Table 4. Property Appraisals Near Fairfield Metro Station

Table 5. Comparable Developments Outside ¼ Mile Walkshed
Abstract

Community leaders are constantly searching to leverage public investments in transportation, which in turn foster private investment in particular land development techniques. One specific style of land development, transit-oriented development (TOD), has been widely discussed among urban planners and elected officials as a potential strategy to combat the symptoms associated with urban sprawl while creating an atmosphere that promotes high quality economic development. This study discusses ways in which TODs can impact value premiums on parcels within a defined district and then assess how the results can support the redeveloping city of Bridgeport, Connecticut. Although the benefits of TODs in the community are real, an experienced land-value premium cannot be directly linked to TODs as the silver bullet solution. Instead, TODs can maximize their potential benefits to the community with support from related, yet external, factors. The selected methodology for this study is cross-sectional, non-experimental and retrospective-prospective in nature. Research conducted has determined that TOD alone cannot create an environment that produces land-value premiums and that a robust collection of urban planning techniques need to be present in conjunction with TODs to promote a successful real estate market. This research adds to the existing case studies that have been completed and serve as a tool for municipalities to help determine what planning interventions serve their community in the most effective manner possible.
Chapter 1: Introduction

Planning concepts and strategies such as high density development, mixed-use development, walkability, connectivity, placemaking and comprehensive planning in general, all parallel the end product that transit-oriented developments (TODs) ultimately look to achieve. Although it seems obvious, evaluating the multitude of viable transportation options is key the success of any particular TOD. It can be disputed that one approach may in fact be more effective than another contextually, yet all forms tend to share the same approach of mixed use development in conjunction with getting people out of their privately owned motor vehicles and walking, biking, or making use of public transportation. Context plays a critical role in the success of TODs, in that implementation needs to be specifically tailored to the subject location (Jacobson & Forsyth, 2008).

In an effort to cultivate a prosperous economic climate, city planners and elected officials are constantly searching for innovative planning strategies that can increase a community’s marketability and produce predictable land-value premiums. Anytime a residential premium in terms of property value can be created, it is usually a well received endeavor. The general consensus between transportation experts is that the closer proximity a development is to quality public transportation often leads to higher property values and higher rents (Wardrip, 2011), thus creating a “premium” on land values in this vicinity. So, one could imagine why the interest in TODs and their ability to promote land-value premiums is so great among city planners and elected officials.

Given the challenging economic climate that nearly all municipalities have faced over the last decade, implementing the highest value planning interventions is critical to overall success
of the community. Residents are increasingly holding elected officials and their policies to higher standards, expecting tax revenues be spent on initiatives that produce sustained growth which can transform their community to a place where people want to work and live. Given that these higher expectations are not minimally met, residents have proverbially started to “vote with their feet” and relocate to a different village, town or city. This is a worst case scenario for elected officials, as depopulation is the generally a sign of a city trending in the wrong direction.

The issue that this study looks to identify is whether or not TOD has the ability to affect the economic stability of a reemerging city like Bridgeport, Connecticut. Considering the multitude of planning interventions available, why would municipal officials consider TOD as an effective planning tool? Many claims have been made that suggest we tailor our urban areas to align with the core values of TOD, resulting in the revitalization of a neighborhood through increase land-value premiums (Cervero, 2004; Loukaitou-Sideris, 2001). On the other hand, other literature refutes the aforementioned concepts, claiming that the “T” (transit) in TOD may not even be the most critical component (Chatman, 2013). Given the mixed results, it is difficult to say with any certainty whether or not TOD is the silver bullet to reviving a challenged, yet promising city. In fact, as observed in the numerous case studies documented around the world, one could suggest that the TOD is most likely not the engine of revitalization that it was previously considered. This study also identifies other planning techniques to be implemented simultaneously with TODs and how that combination may create an environment where land-value premiums are more common and predictable.

The study design for this research is cross-sectional, non-experimental and retrospective-prospective in nature. The secondary data that has been collected to support the research is readily available to the public and a vast majority has been sourced digitally. The data that was
collected was sourced from the Tax Assessor’s offices from the municipalities of Bridgeport and Fairfield, Connecticut. The expected results of the research are that although many of the potential benefits associated with TOD are in fact attainable, linking land-value premiums solely to the establishment of a nearby TOD is not definitive. Instead, a multitude of variables need to be present in supporting a successful TOD.
Chapter 2: Literature Review

While it is difficult to make precise connections between TODs and a definitive increase or decrease in value premiums, one can draw from more focused research to help develop a more concrete consensus. TODs have the opportunity to create many community benefits regardless of contrary beliefs found in some literature. Yet as more research has been conducted it has become more evident that given the right circumstances, TODs have the ability to create a healthy economic environmental in the immediate surrounding area (Cervero, 2004). This chapter highlights the existing literature that has surrounded the debate on how TODs interact with the land-value premiums.

Transit-oriented development and its variations have been defined in so many different ways that finding a single definition can be difficult. Generally speaking, a transit-oriented development is a, “moderate to high-density residential development that also includes employment and shopping opportunities and is located within easy walking distance of a major transit stop” (Parker et al., 2002). TOD usually maintain the following characteristics: 1) a balanced mix of uses, 2) moderate to high-density development, 3) pedestrian and bicycle friendly connection, 4) transportation choices that include walking, biking, and the use of transit, and 5) urban design techniques and landscape features that look to integrate immediate land uses with corridors (New Haven-Hartford-Springfield Rail Program, 2015). Transit-oriented development can be distinguished from transit-adjacent development, which may include many of the same characteristics without the integration of transit and land use (Cervero, Ferrell, & Murphy, 2002). The ¼ mile or ½ mile walkshed radius is one of the first prerequisites when evaluating a TOD. Historically, this has been the gold standard as it is generally seen to represent the maximum distances that people are willing to walk to utilize public transportation,
although this number varies depending on the country and city (Walker, 2011). TODs also tend to be evaluated under a more relaxed set of zoning regulations, which include reduced parking requirements, floor-area-ratios, and an allowance of increased densities (Cervero, 2001). Such forms of development have commonly been associated with an increase in economic development, small business opportunity, commercial variety for consumers and an increase in ridership numbers for public transportation.

The method and effectiveness by which a development is interconnected with other features of the environment, whether it is locally, regionally, nationally, or even internationally all factor into the overall connectivity of that site. Connectivity can be defined as one’s ability to use, “transit service that connects the origin and destination of the trip at the user’s desired time, as well as provides return a trip that meet the user’s schedule” (Jin, 2005, p. 38) Urban environments, in particular TODs, should offer high levels of permeability in terms of movement of people and connectivity to a wide range of destinations (Cervero & Sullivan, 2011). In general, connectivity is one of the primary factors that allow public transportation to remain competitive with the private motor vehicle. Without highly efficient connectivity, there is no discussion regarding TOD.

Alongside connectivity, another city planning technique that potentially supports the long term success of TODs is placemaking. Placemaking can be defined as, “the process of creating quality spaces that people want to live, work, play and learn in” (Wyckoff, 2013). Placemaking can take form in the human-scale of development, public art, historic preservation and thematic architecture, and looks to promote an intuitive connection or bond between visitors and the built environment. As stated by Muriby (2007, p. 3-4), “Simply put, Placemaking capitalizes on a
local community’s asset, inspiration, and potential, ultimately creating good public spaces that promote people’s public health, happiness and well being.” If quality placemaking interventions are utilized in any type of development, one could assume that it would remain an attractive and desirable place to call home.

As indicated by transportation experts (Landis, Guathakurta, Huang & Zhang, 1995; Cervero, 2001, 2002, 2002a; Cervero, Ferrell & Murphy, 2002; Parker, McKeever, Arrington, & Smith-Heimer, 2002; Loukaitou-Sideris, 2010; Pan, 2013), **land-value premiums** that can result from TOD project tend to garner the most attention when considering the potential advantages for implementation of a TOD. When a premium is present on parcels that surround a TOD or any type of successful development, it is the expectation that property values will increase. This premium is welcomed by large and small scale developers, large and small scale investors, local governments and homeowners as it promotes market confidence and financial flexibility. Although the varying results concerning the relationship between TODs and land-value premiums tend to be mixed, determining how to create a replicable formula to establish these premiums seems worth the effort.

So, is TOD just another trendy planning idea or is there some sense of longevity to the concept? As climate change becomes a more readily accepted concept by the scientific community and the general public, residents and community leaders have begun to evaluate how their decisions impact not only themselves, but future generations. TODs look to increase ridership numbers for public transportation, resulting in the removal of motor vehicles from already congested roadways, a reduction in carbon emissions from the reduce motor vehicle use, the encouragement of pedestrian and bicycle friendly landscapes and an increase of physical fitness as a result of the increased cardiovascular activity. As the global population continues to
grow, public transportation will become more and more vital to health, accessibility and mobility.

All of the above mentioned advantages that come along with TODs, preference is sometimes dismissed from the overarching equation. Transportation scholar, Robert Cervero and colleagues (2002), identify three major demographic trends that confirm the ongoing need for TOD. First, as the baby boomer generation continues to age, many of the United State’s aging population is looking to reduce costs and increase ease of life by downsizing. As this specific generation looks for the needed combination of convenience and mobility, the attractiveness of TOD will only increase. Secondly, trends have suggested that a younger generation of couples and urban professionals (usually without dependents) are looking for residences that provide more compact accommodations within an exciting and diverse urban environment. Lastly, the United State’s expatriate community, having a rich history of public transportation utilization, is likely to embrace mixed-use developments like TODs as they offer many of the same amenities and convenience that is familiar to them. Combining the above mentioned factors with the seemingly inevitable swell in motor vehicle congestion on highways and local roads, it becomes increasingly important to consider how TODs can improve quality of life.

The literature available regarding the impacts that transit-oriented development has on land-value premium is mixed. Some researchers have come to the conclusion that the effect TODs have on communities can be quite impactful (Cervero, 2002; Loukaitou-Sideris, 2001) while others feel there is little impact on the community (Chatman, 2013; Loukaitou-Sideris, 2010). Much of this distinction lies in the fact that TODs are not easily comparable or transferable from place to place. As scholars contend, “There is no universally accepted definition of TOD because development that would be considered dense, pedestrian-friendly, and
transit-supportive in a middle-size city in the Midwest would be viewed quite differently in the heart of Manhattan or the District of Columbia” (Cervero, 2001: 5). Additionally, the term itself, transit-oriented development has come under scrutiny as many TODs offer characteristics; such as parking, and floor area ratio and densities that are similar to traditional suburban development practices. This particular viewpoint has termed many of the newly established TODs as transit-adjacent developments (TAD), which tend to be a less desirable in their form and composition (Cervero, 2001). Although the results of how TODs or TADs are impacting communities, the picture becomes clearer as more research is conducted. It should be pointed out that before transit-oriented development had been deemed so important, that it received its own acronym, the general concept has been implemented around the world for quite some time. As seen in Figure 1, high-density living in the city center that was within walking distance to one’s transportation source or daily needs was, and still is a common way of life throughout Europe and other parts of the world.

Figure 1. Transit-Oriented Development & Core Density

Source: Habansky, 2015
As some proponents of TOD initiatives rely on firsthand accounts or second hand storylines to validate the potential advantages of such development, affects of on ridership and the real estate market have been quantified in several studies (Cervero, 2001). The question is: How much of the identified change can be attributed to TOD? Table 1. outlines the identified advantages of TOD-styled projects to private and public actors (Cervero, 2001). Some of the benefits

Table 1. Advantages of Transit-Oriented Development

<table>
<thead>
<tr>
<th>Beneficiaries of TODs</th>
<th>Public</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in ridership and farebox revenues</td>
<td>Increase land values, rents & real estate market</td>
<td></td>
</tr>
<tr>
<td>Joint venture development opportunities</td>
<td>Increase affordable housing stock</td>
<td></td>
</tr>
<tr>
<td>Revitalize neighborhoods</td>
<td>Increase retail sales</td>
<td></td>
</tr>
<tr>
<td>Economic development</td>
<td>Increase is labor pool access</td>
<td></td>
</tr>
<tr>
<td>Less traffic, pollution & fuel consumption</td>
<td>Reduced parking costs</td>
<td></td>
</tr>
<tr>
<td>Increase property- & sales-tax revenues</td>
<td>Increase health & physical activity</td>
<td></td>
</tr>
<tr>
<td>Reduce sprawl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduce infrastructure costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduce crime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase public involvement</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Habansky, 2015 (Adapted from Cervero, 2001)

mentioned are also more difficult to quantify. For example, one could compare the farebox or property- and sales-tax revenues before and after the establishment of a TOD, whereas it may be
difficult to quantify a reduction in sprawl because it can take many decades to realize the changing pattern of development. This research mentioned next focuses on how TODs can have the ability to impact land-value premiums.

As mentioned prior, inconsistency in research results tends to cloud the debate as to whether TODs impact land-value premiums in any meaningful way. This is likely due to the vast range in variables that are present in the existing conditions. For example, one must consider the type of transit technology being used, the existing state of traffic congestion, the local real estate climate, fluctuations in business markets, and other contributing variables (Cervero, 2001). However, some research has concluded that the nexus between TODs and property values has a strong correlation. As mentioned in the Statewide Transit-Oriented Development Study: Factors for Success in California (Parker, McKeever, Arrington, & Smith-Heimer, 2002), research over the last twenty years show that average housing value premiums associated with proximity to transit station (within ¼ to ½ mile walkshed of a station) are 6.4% in Philadelphia, 6.7% in Boston, 10.6 % in Portland, 17.6% in San Diego, 20% in Chicago, 24% in Dallas, and 45% mentioned in Santa Clara County. However, one must be reminded that correlation does not necessarily imply causation.

A study (Nelson, 1992) discussed in Cervero’s TCRP Report 102, that focuses on types of transit options and their link to the residential real estate market showed that:

The San Francisco Bay Area found that heavy-rail systems conferred the highest capitalization benefits to single-family housing because of the faster speeds, more frequent services, and wider spatial coverage than light-rail and commuter rail systems. The study found that for every meter closer a single family home was to a BART station, its sales price increased by $2.29, all else being equal. Alameda county homes several blocks from BART stations sold, on average, for 39% more
than otherwise comparable ones 20 miles from the nearest station. In the case of
light-rail systems, however, capitalization benefits (i.e., added-value) were far
smaller, and, in some instances, single-family homes within 900 feet of a station
actually sold for less because of transit’s nuisance effect. (p. 162)

Interestingly, a more recent study has been conducted to assess how light rail has
impacted residential housing values along Houston’s METRORail transit line. This study
is somewhat contradictory to Nelson’s as it suggests that the opening of the rail line has
had significant net positive impacts on the local property values (Pan, 2013). This could
be due to a change in economic climate, a new employment generator in the area, an
evolution of personal living preferences, or even a change in attitude toward the
convenience verses disamenity dichotomy.

Adding to the complexity of the discussion is the contradictory evidence to the
above mentioned research. For example, a study of Portland’s MAX light-rail line found
significant positive land-value effects within a 500-meter walk of stations (Al-Moisand,
Dueker & Strathman, 1993), while San Francisco’s Bay Area actually noticed lower land
values within a few blocks of rail stops as opposed to several block further away (Lewis-
Workman & Broad, 1997). Additionally, another study for the Bay Area found that there
was no “disamenity effect” on single-family residences that were within 300 meters of
BART stations (Landis, Guhathakurta, & Zhang, 1994). So, while having excellent
accessibility to transportation is key to the success of ridership numbers for public transit,
there seems to be a fine line between close and too close.

Commercial properties have also experienced the positive effects of being located
in close proximity to transit lines. In suburban Dallas, Texas and Santa Clara, California,
premiums in rent of 8%-16% were experienced when located near light-rail lines as
opposed to comparable developments elsewhere (Cervero & Duncan, Weinstein & Clower, 2002a). The experienced premiums had even more significance when the commercial properties were located near heavy-rail corridors, although with less consistency (Cervero, 2002). Research conducted by Damm et al (1980) in metropolitan Washington, D.C. found interesting land-value premium trends in relation to proximity to transportation hubs. The study noticed that property values fell by 7% for every 10% increase in distance from Metrorail stop, up to a radius of 2,500 feet (Damm, 1980). Unfortunately, no long term analysis has been continued in Washington, D.C. to track whether this observed trend have produced any longevity. Although much of the above mentioned research is more directly related to proximity to transportation corridors and less about physical TODs, their significance still adds value to this study because urban planning is less about finding the “silver bullet” solution (if it even exists), and more about organizing the pieces to the urban puzzle.

While there is some of research in the past and present being conducted on how transportation lines impact land-value premiums, there are relatively few studies that have examined the relationship between TODs and their impact on land-value premiums. Although much of the observed evidence for TODs parallels the findings when considering transit stations, the steadfast consistency is again, inconsistent results. With that being said, a majority of the minimal research done found that mixed-use developments in pedestrian-oriented environments with a close proximity to quality public transportation, “produce[d] healthy real-estate markets” (Cervero, 2001).

During the mid-1990s, a study of the San Francisco Bay Area noticed impacts of TODs on land-value premiums. The research found that multifamily residences within
TODs produced higher rent averages when compared to similar developments not in or adjacent to TODs (Cervero, 2001). The observed sites carried the standard qualities sought in traditional TODs; including high-density residential, a healthy mix of retail offerings, walkable streets, proximity to transportation and other amenities that catered to convenience. The study (Cervero, 2001) found the following:

In 1994, rents for one-bedroom units near Pleasant Hill BART station were $1.20 per square foot compared with an average of $1.09 so similar projects (in terms of size, age, and amenities) that were in the same geographic submarket but away from BART. Two-bedroom units near the Pleasant Hill Bart leased for $1.09 per square foot compared with $0.94 per square foot for comparable units away from BART. On average, rents for one- and two-bedroom units in TOD apartments in the East Bay were 10% to 15% higher than non-TOD units in the same municipality that were otherwise comparable. (p, 164)

In this particular case, there appears to be a clear premium attached to rentals within or adjacent to TODs.

Dallas’s Mockingbird Station has experienced similar impacts of transit-oriented development initiatives in the metro area. In a study done by Lockwood (2003), rents within TOD districts were averaging $1.60 per square foot, while rents outside TOD districts were getting only $1.30. Although this 20% difference seems minimal when comparing $1.60 to $1.30 ($0.30), a 20% increase in net profits for a developer is the difference between barely breaking even and making enough profit to fund the next big project.

At CityCenter, a TOD located in Englewood, Colorado, units had been valued at double the asking price for comparable units located in other areas of the city (Lockwood, 2003). CityCenter has been categorized as a transit-oriented village that houses a vibrant mix of civic uses, entertainment and retail services. Moreover, the Class A office space (the standard for
modern office amenities) at CityCenter has an inherent value premium. In the early 2000s, the
gross annual lease rate of Class A office space in CityCenter was $21 - $25 per square foot,
compared to $13.50 - $17 per square foot in other areas of Englewood (Lockwood, 2003). As the
difference in this particular example is in dollars, rather than cents, it is clear that the TOD
project at CityCenter is doing something correct. Observed occupancy rates at CityCenter are
another indication of a successful transit-themed project. The Denver metropolitan area had an
occupancy rate of 90% (quite strong), compared to the nearly 100% occupancy rate experienced
at CityCenter (Lockwood, 2003).

Denver’s 16 Market Square is another excellent example of how TODs can command
land-value premiums when compared to other new developments in a metropolitan region. 16
Market Square, which abuts Denver’s downtown-bound bus system hub, is a five-story
renovated office building that houses ground floor retail space. This particular project
experienced a 60% premium over comparable office space located within the downtown with a
100% occupancy rate for leased units, an achievement that no other development has been able
to accomplish (Lockwood). In sum, what all of the above mentioned research indicates is that
although proximity to high-quality transportation is an important characteristic to producing a
more lucrative real estate market, TOD projects need to be a delicate blend of density,
walkability, scale, and accessibility to retail services to secure the value-premiums that are so
often associated with such initiatives.

Timing also appears to play a factor in the overall impacts experienced from a transit-
oriented development. In some instances, it could be possible that these transit-oriented
developments were undertaken a “right time, right place” scenario in terms of the local business
climate, transportation system maturation, revised local regulations or some combination of all
three occurrences. A convincing example of such a storyline could be seen when looking at property values in the Alameda County and San Jose in the 1990s. In a study that focused on Alameda County, for every meter that a residence was closer to the local BART station, the property value experienced an increase of $2.39 (Landis, Guathakurta, Huang, & Zhang). As described by Cervero in his review of TODs in the United States, the experiences of San Jose were in stark contrast to Alameda County (2001). In fact, it was determined that homes located within 300 meters of a light-rail station stop, sold for $31,424 less than homes that were more than 300 meters away (2001).

So why have the characteristics of the transportation network in relation to property values experienced such variation in terms of success in these two regions? According to Cervero, much of the experienced deviation can be attributed to the overall, “condition of the regional economy; levels of traffic congestion; system maturation and extensiveness; and institutional commitments to TOD” (p. 166, 2001).

At the time Landis published his study, the San Francisco’s Bay Area was experiencing a decline in economic stability, explain why parcels located near BART transit stations (Cervero, 2001). Furthermore, when Cervero & Duncan’s study was published (2002a), the LOCAL economy had been experiencing the dramatic economic impact of the “dot-com” boom of the late 1990s. Interestingly, during the time of financial turmoil in the early 1990s traffic within the Bay Area was virtually nonexistent, whereas traffic during the late 1990s was rated as the nation’s second worst (Cervero, 2001). This could potentially explain the absence and presence of land-value premiums in the Bay Area during this timeframe.
Another potential explanation for the vast disparity in research results for property values in the Bay Area is the fact that the existing light-rail system in place was still in its infancy. In the early 1990s, the overarching transit network was still in its developmental phases, while competing with the superior connectivity, accessibility, and lack of traffic congestion on local freeways and collectors (Cervero, 2001). This scenario is an accurate portrayal of transportation hierarchy in the Bay Area during the early and late 1990s. Thus, it is certainly plausible that the above mentioned conditions played a significant role in the real estate values while the transportation system matured.

Lastly, the absence and presence of institutional support may have served as a potential reason why the research shows such variation. During the early 1990s, the Santa Clara Valley Transportation Authority (VTA) had no public private partnerships or initiatives in place that looked to promote TOD programs in the region. As observed in prior research (Lomax & Shrank, 2001), Cervero explains that (2002), by the end of the late 1990s, the VTA had increased the number of full time staff that worked directly with the developer community, local industry and other public agencies for further innovation of TOD. Due to the fact that very few urban areas in the United States experienced the same level of development around light-rail transit during the late 1990s in Santa Clara County, it appears as if the institutional support had made noticeable contributions. During the booms years of 1997 and 1999, 4,500 housing units and 9 million square feet commercial office space were created within walking proximity of the newly established Tasman West Corridor. Additionally, the housing market within the Silicone Valley experienced an 87% spike from only five years earlier, creating a foundation for smaller and more affordable residential units within walking distance of transit stops. Lastly, as described by Cervero (2002: 168), “Among the instruments successfully introduced by local governments to
leverage TOD were tax-exempt financing, public assistance with land assembly, and overlay zones that permitted higher densities that the norm. Although institutional support could not be directly linked as the determining factor, it seems as though a dedication of focused resources has the prospective to increase the potential impacts on the ultimate success of a TOD program. In this case, the planning and economic development strategies implemented, as well as the amendments made to the local zoning regulations, provided an atmosphere that fostered TOD and general economic growth in addition to the increase in resource dedication.

Other research examples discuss the trends observed by Cervero in his review of the TOD literature (Loukaitou-Sideris, 2010). One such case study examined two light-rail lines (Blue Line and the Gold Line) that we establish in Los Angeles County in the early 1990s and the early 2000s. Each of these light-rail corridors tells a different story of their transit and TOD experience and helps to further explain the relationship between land values and TOD.

The 22-mile Blue Line was established in July of 1990 and was praised by transit advocates as the potential savior to revitalize neighborhoods along its route from Long Beach to downtown Los Angeles (Loukaitou-Sideris, 2010). Similar to the discussion regarding existing conditions (regional economy, traffic congestion; system maturation, and institutional commitments), there are a four major issues that played a role in the struggles experienced by the Blue Line. First, there was a general lack of intuitive planning and economic development communication between responsible municipalities, potential development agencies and the private real estate development community (Loukaitou-Sideris, 2010). The missed opportunities to capitalize on joint venture projects should have been an integral part of the planning process, so that the development community was out ahead of the project. Secondly, the corridor was flanked by sites rife with either incompatible uses or environmental contamination. These two
factors often scare off potential developers as the challenge of remediation undercuts the project’s bottom line. As more advantageous parcels around Los Angeles County we highlighted for potential projects, the more challenging properties along the Blue Line were neglected. Thirdly, as experienced by many of the more challenged cities and communities around the United States, the neighborhoods within Long Beach, Signal Hill, Compton, Lynwood, South Gate, and Huntington Park carried with them, both real and perceived, negative images of poverty, violent crime, unemployment and gang activity (Loukaitou-Sideris, 2010). This poor community reputation had the potential to scare off any development opportunities for fear of being unable to charge the rents needed to make investment in the project feasible. Lastly, the economic climate during the early 1990s played a role in the exorbitantly high cost of land near transit stations. Loukaitou-Sideris and Banerjee (2000) had additionally concluded that:

The Blue Line corridor had represented a clear case of ‘missing antecedents’ or lacking the preconditions for TODs. These included: (1) the back door location of many stations…away from the center of communities; (2) an absence of critical mass of density near station areas; (3) a lack of good interface with other transportation modes that led to poor accessibility of many stations; (4) pedestrian unfriendly stations lacking good pedestrian connections to the surrounding neighborhoods; (5) a lack of an overall urban design framework or vision for station area development; (6) a landscape of deprivation in the immediate station neighborhoods and a general lack of desirable neighborhood amenities; (7) regulatory barriers such as antiquated zoning and a length permitting process; (8) a lack of institutional commitment and miss opportunities for land acquisition and joint development from the part of municipalities and transportation agency; and (9) a lack of community involvement and participation in the planning process. (p, 114)
The circumstance of the four major problems coupled with the nine missing antecedents may have thwarted any opportunity for meaningful development along the transit corridor appropriately titled as having the Blue Line Blues.

If the Blue Line Blues is a fitting nickname for Los Angeles County’s Blue Line, than the Gold Line with its golden opportunities could not have been more appropriately named. The 13.7-mile Gold Line connects the cities of Pasadena and East Pasadena to the northerly limits of downtown Los Angeles. The corridor traverses a wide variety of neighborhoods with equally diverse demographics, including Chinatown, the diverse Arroyo Seco and the palatial communities of South Pasadena and Old Town Pasadena (Loukaitou-Sideris, 2010). Other than the Gold Line’s first day of service (which nearly shut down the system based on handling double the amount of riders that the line was designed to serve), the ridership numbers were actually substantially less than the Blue Line’s after day one (Loukaitou-Sideris, 2010). In 2005, the Gold Line was experiencing ridership numbers of 22,390 passengers for a weekday boarding, as compared to the average of 72,010 riders on the Blue Line (Los Angeles County Metropolitan Transportation Authority, 2009).

As seen in Table 2, some identifiable distinctions between the Blue Line and Gold Line provide insight to each corridor’s experienced success or struggle. In contrast to the Blue Line, the Gold Line had the following scenarios working in its favor: (1) an eclectic mix of demographics and economic circumstances; (2) a wide distribution of existing land uses adjacent to station stops; and (3) a noticeable mobilization of development movement to capitalize on TOD projects (Loukaitou-Sideris, 2010). An advantage of have a rich demographical mix along the Gold Line is that each group contributes to the overall robust health of the communities. More affluent residents help to anchor property values while middle- and lower-class residents
force municipalities to account for affordable housing opportunities, creating a balanced housing and real estate market. A wide distribution of land uses lends itself to promoting future TOD development because the convenience and desirability variables are already in place, cultivating an environment that is inviting to private development programs. Evidence of development mobilization could be observed in parcel sale rates along the Gold Line. For example, every station stop noticed an average increase of 23% in property sale rates between 1996 and 2000. Between 2000 and 2004, that parcel sales rate increased to 28% (Loukaitou-Sideris, 2010).

Table 2. Variables Present/Absent in Blue & Gold Transit Corridors

<table>
<thead>
<tr>
<th>Variables Present/Absent</th>
<th>Blue Line</th>
<th>Gold Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stations w/ Well Designed Orientation</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Neighborhood Amenities</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Critical Mass Near Station</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Multimodal Connectivity</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Health Mix of Demographics</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Land-Use Distribution</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Institutional/Regulatory Support</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Source: Habansky, 2015

Applications for building permits doubled during this sequence, from 200 applications received in 2000 to 400 applications received in 2004 (Loukaitou-Sideris, 2010). It is still unclear exactly
how these ancillary variables impacted the inconsistency in land-value premiums along the separate transit corridors, yet the research appears to indicate a relationship exists.

Stability of the hard commodities market, more specifically oil prices, may also have an effect on how TODs are linked to land-value premiums. Prior to the burst of the housing bubble in the United States, sprawling suburban growth was fueled by consistently low and stable gas prices (Cortright, 2008). As fuel prices remained low, there was little financial incentive for people to live in dense and highly accessible urban areas, thus increasing the premiums for land in far flung suburban communities. As the prices for oil rose around 2005, suburban housing prices were badly hit (Cortright, 2008). Many of the distant suburbs were most drastically impacted when measured against the change in housing prices over 2005, while communities closer to the urban center held firm or even increased in overall value. These urban neighborhoods had experienced the smallest decline in property values as fuel costs had become more unstable. This ultimately resulted in a shift in the residential development paradigm as private development firms started to focus on the revitalization of neighborhoods closer to the urban core. As explained by Cortright (2008):

Land use planning that accommodates more mixed-uses in existing neighborhoods and transportation investments that provide people with more alternatives to auto travel can help accommodate these new market realities. Indeed, the regions with these characteristics, in the form of string urban cores, have been the ones that have weathered the downturn on housing markets best. (p. 2)

Although fuel prices have recently dropped due to market manipulation abroad, the volatility of the commodities market will likely cycle back to the conditions described above, restoring premiums to development that mirrors TOD characteristics.
Similar to the circumstances that have been echoed in the research above, challenged inner city environments like Bridgeport, Connecticut have shared in the complexities that surround TOD. In a survey done by Loukaitou-Sideris (2001), which polled senior planning and economic development experts regarding TOD capabilities in inner cities, many of the observations paralleled previous findings (Cervero, 2001; Cervero, 2002; Loukaitou-Sideris, 2010; Loukaitou-Sideris & Banerjee, 2000) that were identified as being critical to a successful TOD project. The panelists surveyed by Loukaitou-Sideris (2001) found that most inner cities face a common set of obstacles. First, there appeared to be a general indifference from the private sector to focus on projects that invested in the inner city. Secondly, there was a lack of interest from the public sector, which had the capability to absorb the higher costs associated with mixed-used development projects in the urban core. Thirdly, panelists felt there was a misconception of competitive disadvantage that surrounded urban development at the time. Fourthly, panelists felt that preconceived prejudices regarding marketability and profitability of development within the inner city setting created a stagnant atmosphere for TOD projects. Lastly, due to a lack of public private relationships in place coupled with a challenging lending landscape, there was a lack financing for projects that looked to capitalize on TOD ventures (p. 91-92).

The panelists were then asked how they would propose combating these impediments. It was identified that there has traditionally been a lack of neighborhood marketing campaigns that looked to highlight the strengths of these challenged neighborhoods (Loukaitou-Sideris, 2001). One panelist mentions, “If a market exists, jumpstarting a few good projects can create a buzz and positive images to counteract the negativity and prejudice that surrounds inner city living” (Loukaitou-Sideris, 2001, p. 94). Ensuring financing was also a key point addressed by the
panelists. Municipalities need to foster and maintain relationships with lending organizations that can finance projects in overlooks neighborhoods. Regulatory requirements such as the Community Reinvestment Act have helped to increase the amount of funding in challenged neighborhoods around the United States, ensuring that lending institutions fulfill their mandated quotes (Bhutta, 2008).

In sum, much of the difficulties of achieving the suggested benefits of TODs lie with the need to ensure that a variety of factors are present in the planning strategies. To start, the average person would find a multitude of various definitions for the term TOD, making it difficult to replicate with any real semblance of consistency. Partly due to the general lack of consistency in definition, the potential for resulting land-value premiums and anticipated returns desired are spotty and inconsistent, leading the municipal, development and academic community being skeptical of the opportunity for value capture associated with TOD. An evolution for lifestyle preference has also played a key role in the experienced momentum of TODs. As demographics in the US cities evolve, the private development sector has begun to recognize the need for transit-themed projects and TOD has become popular. Similarly, municipalities have realized this trend and look to attract high quality residents and businesses to TODs. One of the most intimidating obstacles surrounding TODs is the abundance of mixed results, which can be attributed to variables such as poor planning, lack of institutional support, difficult existing land-use layouts, prejudice about inner-city locations, fuel costs, poor transit networks, and general market timing. Some of these variables, such as timing, are often inevitable roadblocks. However, by focusing on many of the barriers that often hinder effective TOD, there is an opportunity for success. Through the creation of comprehensive transit networks that are readily accessible, a cohesive land-use strategy that promotes market diversity, and commitment of
institutional support, TODs appear to have the ability to make contributions to the quality of life for all surrounding residents.
Chapter 3: Methodology

The research conducted has been built on the theory that proximity to TODs would result in an expected land-value premium. In particular, the research sought to determine how TODs impacted land-value premiums in a city that has struggled socially and economically for nearly four decades. Regional planning organizations and local municipal offices were selected as primary sources for data to compare sites from both the City of Bridgeport and the Town of Fairfield, Connecticut. Giving context to the identified municipalities and sites in the research also helps to rationalize the assumptions made and anticipated results.

The study design for this research is cross-sectional, non-experimental and retrospective-prospective in nature. The primary methodology for data collection is by way of secondary data, such as, historical documents and publicly accessible government documents. This research used the zoning and subdivision regulations, master plans, feasibility studies, fiscal budget summaries, public meeting presentations, and tax assessor data from Bridgeport and Fairfield, Connecticut.

This assessment of how transit-oriented development has the potential to impact land-value premiums in the challenged, yet emerging neighborhoods of Bridgeport, Connecticut. The inherent value of this particular research is its ability to serve as a guide for other reemerging municipalities as to which planning interventions have been successful in cultivating a stable local economy. As many post-industrial cities, like Bridgeport, struggle to rebrand themselves as an example of Smart Growth, such a template could prove to be valuable to urban centers looking to capitalize on transit-oriented development.

Evaluating whether or not a TOD is deemed to have been successful is a challenge in itself. As Cervero (2004) has pointed out, much of the variables that indicate “success” include:
an increase in ridership rates; a noticeable revitalization of neighborhoods, increased property- and sales-tax revenues; an increase in land values, rents and real estate performance; reduction in crime and a general improvement in the quality of life.

Much of the data has been collected from publicly accessible documents that have been drafted by the City of Bridgeport or the local regional planning organization, the Greater Bridgeport Regional Council. The research will first look at the existing transit hub, located in the Downtown Village District of Bridgeport and how those focused improvements have impacted the land-value premiums in the surrounding urban core. This research observes projects that range from the adaptive reuse of historic commercial buildings into mixed-use, high-density developments, to supporting infrastructure improvements that will serve the growing population of the downtown. Next, the data is analyzed as to how the proposed heavy commuter rail stop, the Barnum Station, can have similar impacts on the challenged East End neighborhoods.

An analysis of Bridgeport’s Tax Assessor data provided insights into how transportation improvements and subsequent TODs have impacted land-value premiums in the surrounding area by observing property value increases through municipal appraisals and assessments. The defined study scope for each site entails a ¼ mile radius from the one existing transit node located in the Downtown and a proposed second heavy-rail platform in the East End. Publicly accessible regional data has also been collected from the Greater Bridgeport Regional Council in an effort compare how Bridgeport’s potential land premiums surrounding transportation nodes could be compared to similar TODs. The recently completed, Fairfield Metro train station site, located within Greater Bridgeport Region, is analyzed as a point of comparison. Similar to research completed for Bridgeport, data was collected from publicly available municipal appraisal and assessment documents from the town of Fairfield’s Tax Assessor Office.
When considering site selection for the experienced land-value premium analysis, it is important to be sure that each development presented a reasonable match for comparison. The fifteen sites selected for comparison represent typical development that typically supports a healthy TOD (Dunphy, Myerson, Pawlukiewicz, 2003). The selected sites were comprised of high-density residential, commercial office and retail uses, all falling within the ¼ mile walkshed of each respective transportation facility. Although comparative uses and existing values differed slightly per location, each meets the foundational criteria for supporting a successful TOD. The two TOD sites were also chosen as they are both representatives within the Greater Bridgeport Region. It would have been possible to select a more comparative TOD than Fairfield, such as New Haven, Stamford, or Norwalk, Connecticut, but this would have introduced too many additional factors that are absent from the greater Bridgeport Region. The two abutting municipalities of Bridgeport and Fairfield, although different in many respects demographically, still offer interesting comparisons. For example, Bridgeport houses 79% of the regions high-density residential land uses and faces many of the common problems associated with the inner-city (Greater Bridgeport Regional Council, 2013). On the other hand, the Town of Fairfield has a much more suburban feel with 41% of its land uses belonging to low-density single family residential (Greater Bridgeport Regional Council, 2013). Although these municipalities seem quite incompatible in terms of demographics and maturity of TODs, the actual neighborhood where the Fairfield Metro Station presides is quite industrial and somewhat similar to those neighborhoods in Bridgeport. It is certainly plausible that the area surrounding the Fairfield Metro could look similar to the existing urban feel of Bridgeport’s downtown intermodal area. To go even further, as Fairfield’s other train station has virtually no residential nearby, it appears...
as though this is the municipality’s gesture to embracing higher-densities and benefits associated with it, thus becoming even more similar to Bridgeport’s existing TOD.

Bridgeport’s downtown transportation hub and the new Fairfield Metro station have each been identified as useful case studies as all contain TODs in relatively different stages of development. The Bridgeport Train Station and the adjacent Intermodal Transportation Center Bus Station have been established in the downtown for decades, with subsequent mixed-use development within the ¼ mile walkshed. The Fairfield Metro was recently completed in 2012 and has begun to see some development momentum within the ¼ mile walkshed. Each site should provide unique insight as to how the respective TODs have influenced the immediate real estate market.

Lastly, the research looked to identify any trends in property values for developments located within the ¼ mile walkshed from major public transit, against other developments located outside the ¼ mile walkshed. Similarly, data was collected from the local Tax Assessor’s for the City of Bridgeport and the Town of Fairfield.
Chapter 4: Results

The City of Bridgeport, Connecticut continues to face many obstacles before success can be achieved in the successful implementation of TODs within the city limits. As a city that once possessed a promising future during the first half of the 20th century, was mired in nearly fifty years of depopulation and unemployment, and is now a city with a recent renaissance, Bridgeport has a unique opportunity to capitalize on this recent momentum. Many of the hurdles that TODs face in Bridgeport parallel the challenges facing similar emerging cities within the United States. Factors such as market timing, institutional support, inner city prejudices, and a historic commitment to urban planning have all been integral factors in producing the existing conditions. In determining whether TODs can manifest land-value premiums in the surrounding area, the data has proven to parallel the literature discussed above, in that it remains consistently inconsistent.

Greater Bridgeport Region Profile

The Great Bridgeport Region is located along the eastern edge of Fairfield County, Connecticut. Known for its deep harbor and proximity to Long Island Sound, the core of the region, Bridgeport, was a haven for massive industrial efforts and a magnet for immigrants in search of work. At the core of the region, the city Bridgeport has played crucial roles in the world’s great wars. The Remington Arms factory, built in 1915, was a 73-acre ammunitions manufacturing complex that was at one time the largest factory in the world. As a result, large-scale World War I era planned housing development efforts were designed through the U.S. Housing Corporation to support the growing labor force. Other large businesses such as Wheeler & Wilson (later known as Singer Sowing), Frisbee Pie Company (birthplace of the Frisbee)
played pivotal roles in the rapid industrialization of Bridgeport (Grimaldi, 1986). Due to the abundance of available manufacturing jobs as a result of the threats of World War I and World War II, Bridgeport became a magnet for disillusioned immigrants in search of work and a higher quality of life. After World War II, as industry and manufacturing declined or relocated to less expensive locations, so did the population. As the trend for suburban life began to swell, many of the young intellectual minds left Bridgeport, creating breach in public leadership which fuels growing urban environs (Greater Bridgeport Regional Council, 2013). At this time, the surrounding towns of Fairfield, Stratford, Easton, Trumbull and Monroe experienced a boom in population growth. Once reserved for agriculture and watershed areas, these surrounding towns became bedroom communities for the commuters that worked in the insurance industry in Stamford, CT and the finance industry if Manhattan, NY. As time passed Bridgeport has become synonymous with the vacant factories and blighted warehouses that line the I-95 corridor. In contrast, the other towns within the Greater Bridgeport Region experienced rapid growth of primarily residential land uses.

With a land area of sixteen square miles, Bridgeport is a relatively small principal city in terms of square mileage considering that it is the most populous metropolitan area in the state (American Fact Finder, 2013). This would explain why with over 9,000 personsper square mile, Bridgeport is also the state’s most densely populated city. The city also contains 79% of the region’s high-density residential land uses (Greater Bridgeport Regional Council, 2013). The population of the remaining towns within the region are as follows; Fairfield 59,404, Stratford 51,384, Monroe 19,479, Trumbull 36,018 and Easton 7,490 (American Fact Finder, 2013).

The median age for the region is approximately 41 years old and the median household income is $95,882.00. The outliers within this group are the city of Bridgeport with a median
household income of $40,974.00 and Easton at $141,372.00 (American Fact Finder, 2013). The differences are certainly noteworthy.

When considering the demographics of the Greater Bridgeport Region, there are two factors that should be observed. First, there the large city of Bridgeport that basically houses a vast majority of the region’s low-income wage earners. Many transit users rely on the public transit system not necessarily for its efficiency, but because they do not own motor vehicles. When we examine the second scenario, we can see that only 9.1% of the residents of the remaining towns use public transit as their primary mode of transportation (American Fact Finder, 2013). As mentioned earlier, since all of the towns other than Bridgeport represent commuter townships, the reliance on personal automobiles as the primary mode of transportation is quite heavy. This may explain why the I-95 corridor and the scenic Merritt Parkway that run through this region are at a gridlock during the morning and evening rush hour. As with most metropolitan regions in the Northeast, a vast majority of households depend on the automobile due to disjointed sprawling development. It is also important to mention that due to the efficiency of the automobile, many wage earners are traveling further that before to places of employment.

As mentioned in earlier chapters, population trends can be seen as an indicator for the economic health of an urban area. Over the past four decades, from 1970 to 2010, the City of Bridgeport, Connecticut has seen its population drop due to a multitude of factors (Greater Bridgeport Regional Council, 2015). A former manufacturing giant during the World War I and World War II Era, Bridgeport’s major industry employers eventually relocated oversees or to other regions in search of less expensive and more lucrative markets. As a result, the remaining labor pool has struggled to find viable forms of lasting employment. Since 2010, a resurgence of
investment in the local housing market, infrastructure and green jobs has produced a marginal increase in population, effectively reversing the depopulation of the city (Greater Bridgeport Regional Council, 2015). The recently experienced revival of Bridgeport has not resolved the multitude of brownfields left behind in the wake of the departure of industry, creating a challenged landscape for continued redevelopment.

Figure 2. Neighborhood Map of Bridgeport, Connecticut

As the City of Bridgeport continues to form public-private partnerships that look to remediate properties throughout the city that have been scarred by industrial waste contamination, an increase in direct private investment has occurred. However, some of the most
challenged neighborhoods eligible for redevelopment, such as the Downtown, East Side and East End, have often been overlooked as more manageable neighborhoods and sites have been selected. As stated the most recent edition of the Master Plan drafted in 2008, Bridgeport has begun to focus its efforts on revitalizing these aforementioned neighborhoods that have seemingly been left behind (BFJ Planning, 2008). One such strategy for revitalization has been through the focus of creating a manageable multimodal transportation network within the city that is also organized to support connectivity to regional nodes.

Much of the early development efforts have taken place within the limits of the Downtown Village District due to its easily defined boundaries and relatively small focus area. Zoning regulations had been amended to attract developers by manipulating floor area ratios (FAR), reducing parking requirements, establishing language to promote the transfer of air rights and allowing for higher densities. Much of these efforts have been focused around the city’s one train station which is linked to the regional Metro North and Amtrak rail lines. Additionally, located within one block of the train station is the Greater Bridgeport Transit’s Intermodal Transportation Center Bus Station, which connects riders to the train station and ferry terminal along Long Island Sound.

Located just adjacent to the Downtown is the 300 acre Seaside Park, which was designed by the father of American landscape architecture and designer of New York City’s Central Park, Frederick L Olmsted. Between Seaside Park and the Downtown are the Ballpark at Harbor Yard (home to an unaffiliated minor league baseball team) and the Webster Bank Area (home to the minor league hockey team for the NHL’s New York Rangers). Considering all of the above mentioned amenities, the Downtown still continues to struggle to maintain the types of business that support a slowly growing population, but appears to trending in the right direction. The East
Side and East End of Bridgeport have shared in the challenges that have stunted meaningful growth in the Downtown for so many years, yet have not experienced the same rate of reinvestment. Much of this has to do with former clustering of industrial factories that once dominated the East End and East Side neighborhood’s landscape. As seen in Figure 4, wartime ammunitions manufacturers such as GE, DuPont and Remington Arms have left the East Side and East End with a total of 74 brownfields, many of which surround the site of the proposed Barnum Station (Agrawal, 2014). Due to the extreme environmental contamination, nearly every single one of these parcels has remained dormant due to the potential for returns on private development having proven to be too great a financial risk. Although state and federal remediation programs are in place to assist in site cleanups, the city is reluctant to assume the
role of developer and take on any additional liability and risk. These blighted parcels have negatively affected property values in the surrounding high density, low income neighborhoods which has created a vicious cycle of urban degradation. While the challenging lots in the East End and Downtown pose as serious hindrances to further smart development, they simultaneously present a unique opportunity create a new landscape for Bridgeport and lay the foundation for a thriving future.

Figure 4. Brownfields in East Side & East End of Bridgeport

![Map of Bridgeport](image)

Source: City of Bridgeport, Office of Planning & Economic Development, 2014.

With the completion of the Intermodal Transportation Center Bus Station in 2010, which is directly adjacent the long existing train station, Bridgeport immediately began to notice the
benefits of proximity to transportation. However, the increase in values observed in property appraisals was certainly not the standard as seen in Table 3. For example, when analyzing Bridgeport’s Tax Assessor data for five major development sites within a ¼ mile of the transit hub, only two parcels noticed an increase in property values. One parcel located in the heart of the downtown, 991-1019 Main Street, which is a mixed-use development, experienced a 43% increase in property value, from $4.9 million to $7 million between the years 2009 and 2013. This increase in property value occurred between the completion of the newly constructed transportation hub of 2010 and 2013. At 10 Middle Street, also a mixed-use development, had experienced a 5% increase in property value, from $11.2 million to $11.8 million between the years 2009 and 2013.

Table 3. Property Appraisals Near Downtown Transit Hub

<table>
<thead>
<tr>
<th>Address</th>
<th>Development</th>
<th>2009 Value</th>
<th>2013 Value</th>
<th>% of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>991-1019 Main St</td>
<td>Mixed-Use</td>
<td>$4,940,250</td>
<td>$7,062,970</td>
<td>↑ 43%</td>
</tr>
<tr>
<td>10 Middle St</td>
<td>Office/Commercial</td>
<td>$11,240,000</td>
<td>$11,873,530</td>
<td>↑ 5%</td>
</tr>
<tr>
<td>100 Fairfield Ave</td>
<td>Office/Commercial</td>
<td>$3,999,991</td>
<td>$3,999,991</td>
<td>No Change</td>
</tr>
<tr>
<td>45 Chapel St</td>
<td>Mixed-Use</td>
<td>$11,699,998</td>
<td>$11,700,000</td>
<td>No Change</td>
</tr>
<tr>
<td>1021-1025 Main St</td>
<td>Office/Commercial</td>
<td>$1,978,370</td>
<td>$1,300,000</td>
<td>↓ 34%</td>
</tr>
</tbody>
</table>

Source: Habansky, 2015
Two other similar developments located within a ¼ mile of the transit hub and just half a city block from 991-1019 Main Street and 10 Middle Street experienced virtually no change in property value. The parcel 100 Fairfield Avenue, another mixed-used development comparable in scale saw property values remain stagnant at $3.9 million between 2009 and 2013. Similarly, the parcel 45 Chapel Street experienced a negligible increase in property values between 2009 and 2013 from $11,699,998 to $11,700,000 (a total of $2).

Lastly, another similar property located within the ¼ mile walkshed of the transit hub actually experienced a significant decrease in property value during the defined study period. The parcel 1021-1021 Main Street, another mixed use development but at a smaller scale, experienced a 34% decrease in property value between 2009 and 2013. Interestingly, this parcel directly abuts 991-1021 Main Street, which experienced the most significant increase in land-value premium of 43%.

Also located in the Greater Bridgeport Region, is the Fairfield Metro station, which serves the Town of Fairfield and the Bridgeport neighborhoods of Black Rock and the West Side/West End. Following the same method of data analysis, this research examined 5 similarly valued midscale development properties located within the ¼ walkshed of the Fairfield Metro station. Although there are no mixed-use properties in this area currently, the parcels identified in Table 4 are all relevant for comparison to Bridgeport’s downtown transportation hub.

When analyzing the Town of Fairfield Tax Assessor’s data, two properties experienced a significant increase after the completion of the new Fairfield Metro in 2012. First, 25 Black Rock Turnpike, consisting of an existing large vacant commercial warehouse, experienced an increase in property value of 743%, from $245,500 to $2 million between 2011 and 2014. This
remarkable increase in land-value premium could be attributed to the initial momentum surrounding the new Fairfield Metro and the potential for lucrative TOD development. Secondly, the parcel 330 Grasmere Avenue, consisting of a new large-scale multitenant commercial development including Whole Foods, experienced an increase in property value of 15%, from $21.7 million to $24.8 million between 2011 and 2014. All other developments, located at 201 Black Rock Turnpike, 665 Commerce Drive, and 50 Stone Ridge Way, experienced no changes in property values between 2011 and 2014.

Table 4. Property Appraisals Near Fairfield Metro Station

<table>
<thead>
<tr>
<th>Address</th>
<th>Development</th>
<th>2011 Value</th>
<th>2014 Value</th>
<th>% of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Black Rock Tpk</td>
<td>Commercial</td>
<td>$245,500</td>
<td>$2,069,800</td>
<td>↑ 743 %</td>
</tr>
<tr>
<td>330 Grasmere Ave</td>
<td>Commercial</td>
<td>$21,709,000</td>
<td>$24,896,200</td>
<td>↑ 15 %</td>
</tr>
<tr>
<td>201 Black Rock Tpk</td>
<td>Commercial</td>
<td>$9,502,700</td>
<td>$9,502,700</td>
<td>No Change</td>
</tr>
<tr>
<td>665 Commerce Drive</td>
<td>Commercial</td>
<td>$2,946,400</td>
<td>$2,946,400</td>
<td>No Change</td>
</tr>
<tr>
<td>50 Stone Ridge Way</td>
<td>Condominiums</td>
<td>$613,400</td>
<td>$613,400</td>
<td>No Change</td>
</tr>
</tbody>
</table>

Source: Habansky, 2015

The research next looked to compare how the discussed developments in both Bridgeport and Fairfield have compared to similar developments that are outside the defined ¼ mile walkshed. After analysis was conducted of the City of Bridgeport’s and Town of Fairfield’s Tax
Assessor data, there were no changes in property values experienced at any of the subject parcels examined (see Table 5).

Table 5. Comparable Developments Outside ¼ Mile Walkshed

<table>
<thead>
<tr>
<th>Address</th>
<th>Municipality</th>
<th>Development</th>
<th>Change In Values 2009-2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>94 Boston Avenue</td>
<td>Bridgeport</td>
<td>Commercial/Retail</td>
<td>No Change</td>
</tr>
<tr>
<td>4531 Main Street</td>
<td>Bridgeport</td>
<td>Commercial/Retail</td>
<td>No Change</td>
</tr>
<tr>
<td>1700 Park Avenue</td>
<td>Bridgeport</td>
<td>Commercial/Retail</td>
<td>No Change</td>
</tr>
<tr>
<td>837 Post Road</td>
<td>Fairfield</td>
<td>Commercial/Retail</td>
<td>No Change</td>
</tr>
<tr>
<td>2171 Black Rock Tpk</td>
<td>Fairfield</td>
<td>Commercial/Retail</td>
<td>No Change</td>
</tr>
</tbody>
</table>

Although the results are mixed, it difficult to ignore the sizable increase in land-value premiums experienced at the four sites in Bridgeport and Fairfield. How have the existing conditions at each site played a factor in the premiums experienced? Have external factors such as nearby blight, façade improvements, urban design and institutional support played a role in the relationship? How have these advantages and disadvantages influenced the ultimate outcome? This next chapter discusses these variables in an effort to better understand the TOD paradigm.
Chapter 5: Discussion

As anticipated, the findings regarding how TODs impact land-value premiums are mixed. The transportation nodes examined in both metropolitan Bridgeport and the Town of Fairfield have experienced significant increases in property values at specific locations, while other development sites noticed no major value increase. In some cases, development sites located within the ¼ mile walkshed experienced an actual decrease in land value. This chapter will discuss why the impacts of TOD lacked consistency in the produced data and how Bridgeport’s proposed Barnum Station on the East Side can learn from such research.

Analysis of Bridgeport’s Data

The data collected for Bridgeport’s downtown transportation hub highlighted a 5 year analysis for five developments. Although the data lacked consistency, lessons can be learned about how different variable played a role in each site’s storyline. First, why did 991-1021 Main Street experience a 43% increase in appraised value between 2009 and 2013, while 10 Middle Street only experienced a 5% increase? One could assert that recent construction improvements and location may have played a key role in the increase in land premium. For example, major renovations beginning in 2008 (POKO Management) made to the site included a rehabilitation of the historic arcade, revitalizing a space that had the potential to be more attractive to potential tenants. The renovations included the adaptive reuse of the historic building by creating a vibrant mix of office, retail, and residential space, the establishing a competitive advantage when compared to other development sites. One could suppose that location potentially played a role in the resulting variety of data. 991-1021 Main Street is located on the busiest portion within the downtown with a two block walk to the both the concurrently renovated Intermodal Transit hub
and train station. Interestingly, 10 Middle Street was actually closer to the downtown’s transportation center than 991-1021 Main Street. However, 10 Middle Street is located on a one-way street with little pedestrian activity or ground level retail offerings. So, the difference in pedestrian activity and accommodation could have played a role in the difference in land-value premiums. This observation is potentially a testament to the importance of having supplemental amenities that induce less vehicular activity and aligned more pedestrian needs.

The property values for two other development sites examined in Bridgeport’s downtown, 45 Chapel Street and 100 Fairfield Avenue, remained relatively stagnant when compared to 991-1021 Main Street and 10 Middle Street. It is unclear why no meaningful land-value premium was experienced at these two properties, as they are all located within the downtown and quite comparable in size and location from the transportation hub. Additionally, each site is quite similar in their type of development when compared to successful developments, offering a vibrant mix of uses. One could suppose that several of the abutting parcels to 100 Fairfield Avenue and 45 Chapel Street have remained blighted due to long periods of tenant vacancy, thus remaining insulated from any premium experienced from the transit hub. Evidence has shown that blighted and unoccupied tenant space can have dramatic negative impacts on surround parcels (National Vacant Properties Campaign, 2005).

Most perplexing is the 34% drop in property value at 1021-1025 Main Street, which directly abuts the most successful parcel within the downtown. 1021-1025 Main Street has many of the similar desired characteristics of the downtown’s most successful development, including excellent proximity to public transit, pedestrian amenities on the ground floor, and an appropriate mix of retail and commercial office space. The building itself is cosmetically maintained, yet possibly not as aesthetically pleasing as its more successful neighbor at 991-1021 Main Street. It
is possible that the type of occupying tenants plays a role in how the building is perceived and ultimately valued. Currently, a tattoo parlor and a fast food chain restaurant occupy the two first floor units; whereas the abutting building has an upscale café and a higher-end supermarket. It is unclear exactly how these differing use types impact overall desirability, but one could assume that the higher the quality of tenant can only result in a higher value premium attributed to the parcel.

Analysis of Fairfield’s Data

Similar to Bridgeport, properties that fell within the ¼ mile walkshed of the Town of Fairfield’s Metro station have experienced mixed results in terms of value premiums. The property located at 25 Black Rock Turnpike, which directly abuts the Fairfield Metro, experienced the greatest increase in property value (743%) of any parcel identified in this research and has likely been the recipient of the newly created land-value premiums associated with the recently constructed train station. Prior to the station’s completion, the Greater Bridgeport Regional Council had initiated research on how the surrounding parcels should be incorporated into the project scope, identifying key parcels for future TOD development including 25 Black Rock Turnpike (Greater Bridgeport Regional Council, 2008). Despite residual effects of the recent recession and the relatively challenged real estate market, values at the subject location skyrocketed. This immense value increase, although not definitively determined, was likely the result of the newly planned Fairfield Metro. Similarly, although not quite on such an astounding scale, the commercial development located at 350 Grasmere Avenue experienced a significant property value increase of 15%. Located at the far western edge of the ¼ mile walkshed, this already established development boasting high-quality tenants appears to have capitalized on its proximity to the Fairfield Metro. Although this particular development is
located at the edge of the defined study area, it appears as though 350 Grasmere Avenue has also been the recipient of land-value premiums as a result of proximity to the Fairfield Metro.

Similarly to what was experienced at 45 Chapel Street and 100 Fairfield Avenue, the parcels located at 201 Back Rock Turnpike, 665 Commerce Drive, and 50 Stone Ridge Way in Fairfield saw property values remain unwavering. 201 Black Rock Turnpike, headquarters to Bigelow Tea Company, saw its property value remain at $9.5 million. Although an abutter to the Fairfield Metro, the spotty land-value premium seems to have skipped the Bigelow site due to the fact that this parcel was already valued at a premium do to the high-quality and long-term nature of the tenant. With a site similar in size, the 665 Commerce Drive parcel also experienced no increase in value between 2010 and 2014. The one identifiable factor could be that 665 Commerce Drive, once home to a national fitness chain, had sat vacant for several years. However, with its close proximity to the Fairfield Metro (200 feet) it is still unclear the premium was not extended to this parcel. Perhaps the most puzzling absence of value increase is at the residential condominium development at 50 Stone Ridge Way. It understandable that one could presume that a high-density residential development located directly across the street from a train station, in a very desirable neighborhood, would see a noticeable increase it land-value premium. However, this is not the case as the values remained constant at $613,400. It is plausible that the lingering effects of the housing bubble burst in 2007 coupled with the recession to follow, residential property values remained insulated from the potential benefits associated with proximity to train station.
Analysis of Parcels Outside ¼ Mile Walkshed: Bridgeport & Fairfield

As expected, of the properties selected for this research that were similar in size, value and development type, all have experienced no increase in property value between 2009 and 2013 (Bridgeport) and 2010 and 2014 (Fairfield). Each property selected in this particular analysis offered typical commercial development with expansive parking located on the street frontage with the physical structures located towards the rear of the lots. A key detail that potentially explains the general stability in property values at these five locations could be attributed to the proximity to major transit hubs. Although each of these sites are situated along regional bus lines provided by Greater Bridgeport Transit, the distance away from local heavy-rail lines seems too great to produce any meaningful land-value premium. These results only strengthen the relationship between transportation, TODs and how each can impact the climate of the real estate market.

Variables Present

As observed in the research conducted around Alameda County and San Jose during the “dotcom phenomenon”, timing can also play a pivotal role for the how successful TODs can impact land-value premiums. Similarly, although on much smaller scale, the City of Bridgeport has recently experience some meaningful investment in the downtown. As the 2007 recession began to subside, momentum surrounding the Steelpointe Harbor waterfront development had begun to take shape. Steelpointe is a 2.8 million square foot mixed-used, urban-oriented waterfront development consisting of 800,000 square of retail, 200,000 square feet of commercial office space, 300,000 square feet of hotel space, a new 250 –slip marina with shore-side support, and 1,500 residential units (Bridgeport Landing Development, 2014). For nearly
three decades, the Steelpointe development had been struggling to initiate any progress until in 2014, anchor tenant Bass Pro Shop declared the site as the new home for their 150,000 square foot facility (Juliano, 2014). Since then the City of Bridgeport has announced the arrival of multiple national chain establishments, including Starbucks, Chipotle, T-Mobile, Cinepolis and several other large-scale unannounced tenants. With the most recent activity being announced around Steelpointe, the Downtown has received a recent influx of investments in the downtown, including the mixed-used developments at the Jayson-Newfield buildings, the Securities building, McLevey Square and 325 Fairfield Avenue. It is possible that much of the positive development at Steelpointe had played a role in this recent resurgence of investment within the

Figure 5. Steelpointe Harbor Concept Plans

Source: RaCo Real Estate, 2013
downtown, effectively supporting the viability for new TODs and potentially impacting land-
value premiums in the area.

Figure 6. Fairfield Metro Station

Source: Black Rock Realty, 2012

Timing may have also played a role in the land-value premiums experienced around the
Fairfield Metro station. Although the real estate market around the time of the completion of the
train station in 2012 was still challenging, volatility surrounding the potential investment in
TODs and development in general had begun to erode. As developer confidence in TODs in the
vicinity of the Fairfield Metro gained momentum, plans for mixed-use developments at several
locations with the 1/4 mile walkshed started to gain traction. Also, the successful completion of
the development at 350 Grasmere Avenue may have played a role in the experienced premiums.
The numerous high-quality tenants at 350 Grasmere Avenue in addition to the very successful
home improvement store that abutted this parcel may have provided a sense of legitimacy to the
successful development within the Fairfield Metro walkshed.
As mentioned earlier, institutional support can also be a key reason as to how effective TODs are at positively impacting land-value premiums. The City of Bridgeport has made great efforts in addressing impediments within the language of their zoning and subdivision regulations. As municipal leaders realized the newly experienced influx of investment into the downtown, the regulations were revised to accommodate for higher densities, a reduced parking requirement, transfer of air-rights, form-based codes, and other design standards, all key to creating successful TODs (Planning and Zoning Commission, City of Bridgeport, Connecticut, 2009). Coinciding with the zoning and subdivision regulations, Bridgeport had also began the process of rebranding itself through a newly formulated marketing campaign. One of the common problems of challenged urban environments was that there has traditionally been a lack of neighborhood marketing campaigns that attempt to highlight the strengths of these challenged neighborhoods (Loukaitou-Sideris, 2001). Recently the City of Bridgeport has unveiled a marketing campaign that looks to emphasize such community strengths. Over the last several years, the City of Bridgeport has also formed public-private partnerships to help remediate the multitude of brownfield sites in an effort to increase the marketability in the city’s more challenged neighborhoods. This effectively lowers the costs for private development while reducing the overall risks of any particular project. Bridgeport has also been attempting to build market demand within its more challenged neighborhoods, proposing a second Metro North commuter rail station in the East End. The Barnum Station transit stop is proposing extensive TOD projects adjacent to the station site. Prior to the construction of the Barnum Station in 2018, the city has looked to improve neighborhood perception through increased police activity, improved lighting and a lofty anti-blight program. Panelists in the Loukaitou-Sideris (2001) study also claimed that municipalities needed to tailor public policy to “create a more balanced
playing field through land-use policy and other pricing mechanisms so that TOD can become competitive to ex-urban development, which is perceived as having lower risks and costs” (p. 93). Some ways in which Bridgeport has done this is through tax abatements, TIF programs, and reduced impact fees to steer the type of development that the municipality looks to promote. Panelists also contended that the need to shed prior negative perceptions of challenged neighborhoods is key to the success of TODs in the inner city. One or two well planned projects, such as Steelpointe, McLevey Square, 325 Fairfield Avenue, or the Barnum Station has the ability to reverse the prejudices and create a new found momentum that struggling communities need to move forward.

The Town of Fairfield has also made efforts to promote smart development that can effectively support further TOD ventures. There is no greater example of this than the commitment to construct the Fairfield Metro station itself. The existing train station site is located in a transitioning neighborhood that has a disjointed mix of land uses. There are currently large strip malls, contractor storage yards, automotive repair facilities and some residential developments. As the real estate market continues to heal itself, one can see the neighborhood begin to transform itself. For example, the property at 25 Black Rock Turnpike, a former industrial warehouse, has recently been demolished in preparation for the surrounding TOD. According to the developer, the Fairfield Metro TOD will consist of 7 mid-rise office buildings that have one million square feet of Class A office space, 75,000 square feet of retail space, a hotel, and a 197 unit residential apartment complex (Black Rock Realty, 2012). The complex itself will be a vibrant mix of uses that look to promote a walkable urban campus that is attractive for commuter or those in search of lifestyle of convenience. However, outside of the proposed campus, the neighborhood is not conducive to pedestrian flow towards the Metro. At
first glance, the Metro appears to be a destination that encourages a vast majority town residents will drive to the station and park. Still, the Town of Fairfield has made the effort to pursue funding via the Connecticut Department of Transportation to construct the Metro station, which should serve as the potential foundation for the town’s future smart growth approach.

A commitment to sound urban planning practices is another variable that can potentially impact TOD success and should not be ignored. For example, the City of Bridgeport adopted new the zoning and subdivision regulations in 2009 and made amendments in 2014, which sought to rethink the strategy how the municipality was steering future development. The establishment of enterprise zones, which offer incentives such as tax abatements in struggling neighborhoods, or instituting form-based codes, which look to promote a more predictable built environment and cultivate pedestrian activity, have been newly embraced strategies implemented by Bridgeport (BFJ Planning, 2008). Each strategy attempts to cultivate a specific type of development that aids in TOD success, which is predictable and replicable. Bridgeport has also recognized that an influx of new planning leadership that is equipped with innovative strategies has the potential to encourage the desired type of development that a rising city seeks. During this transition period, the administration had announced a new Director and Deputy Director of Planning and Economic Development and a new Planning Director, with the vision to injecting a new sense of vitality and more contemporary mindset to the subject departments (Lockhart, 2012). Taking a risk, the Mayor of Bridgeport had sought to alter the city’s direction by changing the planning leadership at the municipal level.

Similarly, the Town of Fairfield has looked to support their commitment of quality public transportation through the guidance of the zoning regulations. For example, Fairfield has increased the allowable density for residential developments within a ½ mile of any train station
from the standard 10 units to 17 units per acre (Town Planning and Zoning Commission, Fairfield, Connecticut, 2014). This regulation will look to promote the right mix of population density around the Fairfield Metro that should ultimately support the needs for future TODs. Additionally, Fairfield’s zoning regulations assert that any development that is adjacent to the train station must provide a direct link from the entrance of each building to the train station (Town Planning and Zoning Commission, Fairfield, Connecticut, 2014). Similar to the City of Bridgeport, it is planning interventions like these that will support current and future TODs within each respective municipality.

Bridgeport’s Barnum Station: Lessons to Be Learned & Creating a Strategy

As Bridgeport is in the planning phase of establishing a second train stop along the primary heavy-rail corridor, some lessons can be learned from other similar TODs within the region. Bridgeport will need to develop a comprehensive strategy for the proposed Barnum Station that can boost ridership numbers and cultivate an environment conducive for quality TOD, while serving as a catalyst to reversing the trend of degradation on the East End.

First, the municipality should craft their land use strategy in a way that produces the desired type of development required to promote neighborhood revitalization and potentially increase land-value premiums. One such strategy that could increase such development would be through the development of stringent land use and economic development plan. Such a plan should look to create flexible zoning standards, and incentivize residential and high-density infill development. The flexible zoning standards should be implemented through a defined overlay TOD district that aims to increase population densities, require an appropriate mix of residential, commercial and industrial uses, and promote connectivity at development sites surrounding the
Figure 7. Barnum Station Concept Plan

Source: City of Bridgeport, 2013

Barnum Station. Creating such a plan should assess input from community interest group, the developer community, local students and other major stakeholders and employers, such as Bridgeport Hospital. The benefits to gathering such a diverse set of perspectives should produce a robust land use strategy that considers a wide variety of variables that all contribute to the success of a community. Included in this plan should be a strategy that looks to preserve some of the historical and existing industrial character of the East Side. This might not be a common strategy for proponents of TODs, yet one must approach projects with the philosophy that each neighborhood carries with it a specific background and this context needs considered when proposing drastic changes. Since Bridgeport is the largest city in Connecticut -144,425 residents - in a relatively small geographic area -19.4 square miles - the city has the workforce density to support industrial and manufacturing uses (City of Bridgeport, 2015). Eliminating such uses could limit the East Side future growth in these sectors. In addition, rezoning back to industrial uses is often difficult once they are abandoned, so this strategic preservation could be critical.
The proposed land use and economic development plan can help in directing the development community to produce a built environment that is successful and predictable.

Figure 8. Neighborhood Context: Bridgeport’s East Side & East End

Source: Vanasse Hangen Brustlin, Inc, 2013
Similar to what has been planned at the Fairfield Metro and the existing transit hub in Bridgeport’s downtown, the Barnum Station and the surrounding developments should have a strong theme of *connectivity*. Along with the obvious connection to the regional heavy-rail that the Barnum Station will provide, the local municipality should strive to establish safe and more effective connections to the Bridgeport Hospital, the East Side’s major employment center, and the adjacent East Main Street commercial corridor. Such connectivity should increase ridership numbers from the hospital’s employee base and provide access to the retail and office options along East Main Street. Since the East Side has struggled with crime and issues of safety since the flight of industry in the post World War II Era, an important component of creating efficient connection nodes will be making pedestrians and bicyclist feel safe. One way to do this would be by programming public events in the area that are child-friendly and promote visible activity; such as city sponsored outdoor basketball or soccer tournaments or food truck parks in some of the underutilized parcels as the area builds momentum. The establishment of a bike share program could also promote local employees and visitors to use public transportation to the area and then ride a bicycle to their final destination. Improving the existing bus service also has the potential to increase the positive externalities associated with the Barnum Station. Lastly the creation of an emergency call box network along major corridors surrounding the station could ease any anxiety associated with walking or bicycling to or from the Barnum Station, thus shaping an environment where “fear for safety” is not an issue. As riders in general feel safe while using the Fairfield Metro or transit hub in Bridgeport’s downtown, this facet will be pivotal for the Barnum Station to replicate; otherwise the transportation investment will be underutilized. Each component of this connectivity strategy should improve the overall a
competitive edge for development opportunities surrounding the Barnum Station, thus increasing the potential for premiums to be created.

The final component to the proposed strategy for creating a fruitful development market and transportation hub surrounding the Barnum Station includes the implementation of innovative urban planning techniques such as *placemaking*. By creating a human bond between the residents of the East Side and the built environment, placemaking can help to promote human activity, improve public safety, and create an the economic climate that is attractive to high-quality businesses that in turn attract high-quality employees (Weisburd & Cody, 2010; Craft, 2014). Improving the streetscape along Barnum Avenue would be a much need intervention, as currently there is modest pedestrian activity, little pedestrian amenities such as sidewalk lighting or streetscape furniture, and imposing vacant industrial buildings that create an uneasy pedestrian experience (see Figure 5). Improvements to consider include more street and sidewalk lighting, street furniture, a widening and reconstruction of sidewalks, planting of street trees, public art, establishing wayfinding systems and crosswalk gateway treatments. Another tactic could be the increase inclusion and involvement of Bridgeport Hospital into the community. The hospital could engage in a public relations campaign that focuses on a physical and metaphorical “healing” of the community through self implemented programs. Potential programs could include the sponsoring of a shuttle service for patients and employees from the Barnum Station to the hospital, or through a home buying assistance within the East Side neighborhood and an employee public transit incentive program. All such strategies look to increase community investment into the Barnum Station walkshed, effectively creating premiums on the immediate real estate market.
Learning from potential shortcomings and the successful techniques applied from similar developments regionally, nationally and internationally is significant to the success of any planning project. Ensuring that tax dollars are reinvested wisely into Bridgeport is critical to sustaining the infrequent positives the city has experienced over the last five decades. Through the creation of a specifically tailored land use and economic development plan, improving nodal connectivity, and establishing a sense of “place” that residents can stand behind, the Barnum Station could be the catalyst that ultimately transforms the East Side into a once again flourishing neighborhood.
Chapter 6: Conclusion

As varying development types and city planning techniques go in and out of style, innovators are constantly searching for the next step in the evolution of creating a higher quality urban life. Although the concept of mixed-use and high-density within close proximity to transportation is not new, a more recent resurgence of transit-oriented development in the United States has been heralded as an effective strategy in promoting smart growth. This research examined whether TODs function as a catalyst towards the creation of land-value premiums for the surrounding real estate market.

The findings produced by this research have determined that TODs have not singularly impacted land-values premiums in a way that is predictable or clearly definitive. This is not suggesting that the potential benefits associated with TODs are not real, but are a component of the overall formula of smart development. Although some parcels quite close to existing or proposed TODs have experience a significant increase in property values, one cannot assume that it was directly associated to the proximity to public transportation or TODs alone. There are many variables that appear to play a role in how successful (or unsuccessful) TODs are at impacting land-value premiums, such timing, market stability, institutional support, and high quality city planning leaders. Due to the fact that the results varied across the board at each studied location, it is feasible to presume that TODs are not the “silver bullet” to a real estate market renaissance. Instead, TODs should be coupled with quality planning and a strong foundation of institutional support that encourages focused investments from the public private partnerships. The individual neighborhood case findings do indicate that all TODs and surrounding parcels are unique in their ability to absorb or deflect resulting land-value premiums based on the various factors at hand.
Considering the external variables vital to the lasting success of TODs will be a key lesson for the City of Bridgeport’s proposed Barnum Station. The fact that the State of Connecticut’s Department of Transportation has chosen the East Side of Bridgeport’s community as a viable investment in the regional transportation network is groundbreaking in itself. It is quite rare that an investment of this magnitude is made in a community that currently faces such a wide variety of societal challenges. All too often neighborhoods like Bridgeport’s East Side are overlooked as other sites present less daunting socioeconomic challenges. Many of these challenges will need to be considered during the planning phases. How do the present demographics of the East Side impact the end product of the proposed Barnum Station? How can the retail and commercial land uses establish roots in an area where the residents struggle to make ends meet on a daily basis? Will the Barnum Station and the surrounding TOD effectively gentrify the existing neighborhood and displace the existing residents to another, less desirable location? How can affordable or mixed-income housing be woven into the fabric of the Barnum TOD framework? These concerns must be evaluated during the planning phase to support the proposed TODs, as well as not to create the same challenges in adjacent neighborhoods. Through the establishment of a comprehensive land-use strategy, improved connectivity and a focus on placemaking in the station’s TOD, the district can hopefully produce a more predictable and replicable formula for successful development where people want to live, work, play and learn.

By embracing transit-oriented development, the City of Bridgeport has the potential to alleviate many of the societal problems it currently faces. As an already overtaxed city, TODs could help add to the struggling tax base, infusing capital into the overburdened school systems, social service network, public transportation and a decaying urban infrastructure. Embracing smarter development strategies could potentially reduce the cost of living for residents that
already struggle to make ends meet, by reducing transport costs dramatically. The Barnum TOD might just be the first step for Bridgeport’s East Side in their evolution of how public transportation is utilized. Something that was once only perceived as a necessity for the impoverished, could not be seen a way to reduce cost of living and improve quality of life. However, the first steps need to be well conceived and ultimately implemented in order to trigger the chain reaction.

Although transit-oriented development alone is not the singular catalyst to alleviating the many problems the urban landscape faces, it can play an important role in how that landscape functions. The prospective benefits associated with TODs are far reaching and have the ability to impact societal, environmental and economic challenges. As TODs continue to evolve over time the related benefits can potentially solidify the character and prosperity of a city at the neighborhood level.
References

Cervero & Duncan (2002a) op cit.; Weinstein & Clower op cit.; B. Weinstein, *DART Light Rail’s Effect on Taxable Property Valuations and Transit-Oriented Development* (Denton, Texas: University of North Texas, Center for Economic Development and Research

Town Planning and Zoning Commission, Fairfield, Connecticut. (2014) Zoning Regulations

