MATRIX ISOLATION SPECTROSCOPY: MAGNETIC CIRCULAR AND LINEAR DICHROISM

BY

ROBERT C. PELLOW

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

1990
To Donna and Alex
ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Martin Vala, for all of his support, encouragement, and guidance. The pursuit of a Ph.D. in chemistry is not an easy task, and a good research director is an essential ingredient for success.

I would also like to thank my coworkers Dennis, T.M., and Bill for their friendship and experimental expertise. They certainly made the life of this pseudo-theoretician more enjoyable.

I would also like to thank Mr. Marc Eyring for performing the absorption and MCD experiments on Re matrix isolated in Kr.

My parents also deserve a great deal of credit for allowing me to pursue my interest in chemistry. It was their guidance and support over many years that enabled me to reach this point.

Finally, a great deal of thanks goes to my wife, Donna, for all of her patience, understanding, encouragement, and love. Without her, it is unlikely that this work would have been completed.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>x</td>
</tr>
<tr>
<td>CHAPTERS</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 THE EXTERNAL HEAVY ATOM EFFECT: THEORY OF SPIN-ORBIT COUPLING OF ALKALI AND NOBLE METAL ATOMS IN RARE GAS MATRICES</td>
<td>6</td>
</tr>
<tr>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>Background</td>
<td>9</td>
</tr>
<tr>
<td>Theoretical Approach</td>
<td>14</td>
</tr>
<tr>
<td>Basis Functions</td>
<td>17</td>
</tr>
<tr>
<td>SO Matrix</td>
<td>21</td>
</tr>
<tr>
<td>SO Splitting and Reduction Factors</td>
<td>22</td>
</tr>
<tr>
<td>Overlap Integrals and SO Coupling Ratios</td>
<td>26</td>
</tr>
<tr>
<td>Mixing Coefficients</td>
<td>28</td>
</tr>
<tr>
<td>Quantitative Estimation of SO Reduction Factors</td>
<td>31</td>
</tr>
<tr>
<td>Discussion</td>
<td>40</td>
</tr>
<tr>
<td>Conclusion</td>
<td>46</td>
</tr>
<tr>
<td>3 MAGNETIC CIRCULAR DICHOISM OF ATOMIC RHENIUM IN A KRYPTON MATRIX: LARGE GROUND STATE CRYSTAL FIELD SPLITTING</td>
<td>49</td>
</tr>
<tr>
<td>Introduction</td>
<td>49</td>
</tr>
<tr>
<td>Theory</td>
<td>51</td>
</tr>
<tr>
<td>Ground State Wavefunctions</td>
<td>51</td>
</tr>
<tr>
<td>Crystal Field and Zeeman Splitting</td>
<td>54</td>
</tr>
<tr>
<td>MCD Saturation Expressions</td>
<td>59</td>
</tr>
<tr>
<td>Evaluation of Mixing Coefficients</td>
<td>62</td>
</tr>
<tr>
<td>MCD Moments for Overlapped Multiplets</td>
<td>64</td>
</tr>
<tr>
<td>Results</td>
<td>66</td>
</tr>
<tr>
<td>Spectral Assignments</td>
<td>66</td>
</tr>
<tr>
<td>Jahn-Teller Activity</td>
<td>75</td>
</tr>
<tr>
<td>MCD Saturation Results</td>
<td>79</td>
</tr>
<tr>
<td>Discussion</td>
<td>81</td>
</tr>
</tbody>
</table>
ATOMIC MCD AND MLD SATURATION THEORY

MCD Saturation Theory.................................
MLD Saturation Theory.................................
Application to Octahedral 3^D^3 Ni..................
Conclusion..

MAGNETIC CIRCULAR DICHOIISM AND MAGNETIC
LINEAR DICHOISM LINEAR MOLECULE FARADAY
PARAMETERS...

Introduction.. 114
MCD Expressions for Linear Molecules.............. 116
 $\Delta \Omega = +1$ Transitions.................... 120
 $\Delta \Omega = -1$ Transitions.................... 121
 $\Delta \Omega = 0$ Transitions..................... 122
 $\Omega = 1/2$ to $1/2$ or $3/2$ Transitions........ 122
MLD Expressions for Linear Molecules.............. 124
 $\Delta \Omega = +1$ Transitions.................... 126
 $\Delta \Omega = 0$ Transitions..................... 127
 $\Omega = 1/2$ to $1/2$ or $3/2$ Transitions........ 128
Extraction of the MCD and MLD Terms via Moment
 Analysis.. 130
Discussion... 132

G FACTOR SUM RULE.................................... 136

ISOTOPOMERIC CLUSTERS................................ 143
 Linear Molecules................................... 143
 General Symmetry Case............................. 145

CONCLUDING REMARKS.................................. 154

APPENDICES

A SIX COORDINATE SPIN-ORBIT REDUCTION FACTOR.... 158
B S STATE CRYSTAL FIELD SPLITTING................ 160
C ZERO FIELD SPLITTING OF AN ORBITALLY
 NONDEGENERATE MOLECULAR STATE................. 162

REFERENCES.. 164

BIOGRAPHICAL SKETCH.................................. 169
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Experimental Spin-Orbit Coupling Constants and Spin-Orbit Reduction Factors For Selected Metals of the Three Major Categories</td>
</tr>
<tr>
<td>2</td>
<td>Rare Gas Atom Group Orbitals of the MX$\text{_{12}}$ Supermolecule</td>
</tr>
<tr>
<td>3</td>
<td>Metal-Rare Gas Overlaps and Spin-Orbit Constant Ratios</td>
</tr>
<tr>
<td>4</td>
<td>Metal-Rare Gas Overlap Ratios, Spin-Orbit Constant Ratios, and Predicted and Experimental SO Reduction Factor Classes</td>
</tr>
<tr>
<td>5</td>
<td>Experimental Energies Used to Calculate H_{11} for an np1 Configuration</td>
</tr>
<tr>
<td>6</td>
<td>Experimental Energies Used to Calculate H_{22} for an np5(n + 1)p1 Configuration</td>
</tr>
<tr>
<td>7</td>
<td>Empirical Orbital Energies for Metals(H_{11}) and Rare Gases (H_{22}), Computed Mixing Coefficients (c), and SO Reduction Factors (k)</td>
</tr>
<tr>
<td>8</td>
<td>Atomic Covalent Radii for the Noble and Alkali Metals and the Rare Gases</td>
</tr>
<tr>
<td>9</td>
<td>Overlap Integrals, Mixing Coefficients, and SO Reduction Factors for Cu and the Rare Gases with a 25% Collapsed Lattice</td>
</tr>
<tr>
<td>10</td>
<td>Octahedral Symmetry Adapted Wavefunctions in the $</td>
</tr>
<tr>
<td>11</td>
<td>Crystal Field and Zeeman Matrix Elements for the Ground State Perturbed by the Nearby State</td>
</tr>
<tr>
<td>12</td>
<td>Positions, Assignments, and Matrix Shifts of the MCD Bands of Re Atoms Isolated in a Krypton Matrix at 12 K</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>13</td>
<td>$(3j)^2$ for Electric Dipole Transitions</td>
</tr>
<tr>
<td>14</td>
<td>Crystal Field Mixing Coefficients as a Function of Magnetic Field Strength</td>
</tr>
<tr>
<td>15</td>
<td>$SO_3-O-D_4-C_4$ Basis Set Statevectors</td>
</tr>
<tr>
<td>16</td>
<td>Crystal Field Energies for the $J = 3$ Atomic State in Octahedral Symmetry</td>
</tr>
<tr>
<td>17</td>
<td>Calculated C_0/D_0 and G_0/D_0 Terms for Randomly Oriented Linear Molecules</td>
</tr>
<tr>
<td>18</td>
<td>Calculated A_1/D_0, C_1/D_0, and A_2/D_0 Terms for Randomly Oriented Linear Molecules</td>
</tr>
<tr>
<td>19</td>
<td>Comparison of Experimental and Theoretical g Values for Excited Terms of Atomic V, Mo, and Re</td>
</tr>
<tr>
<td>20</td>
<td>Total Isotopomers, N_T, as a Function of Cluster Size, n</td>
</tr>
<tr>
<td>21</td>
<td>Construction of the Cycle Index for C_5 (D_{5h}) Using the Rotational Subgroup, D_5</td>
</tr>
<tr>
<td>22</td>
<td>Matrix Induced $^2S \rightarrow ^2P$ Transition Energy Shifts</td>
</tr>
</tbody>
</table>

vii
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>58</td>
</tr>
<tr>
<td>7</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>78</td>
</tr>
<tr>
<td>9</td>
<td>93</td>
</tr>
<tr>
<td>10</td>
<td>110</td>
</tr>
</tbody>
</table>

1. Energy Level Diagram for an Alkali or Noble Metal Atom in the Gas Phase and in Matrices.
2. Supermolecule MX$_{12}$: Geometrical Arrangement for Metal Atom M12Embedded in a Tetradecahedral Substitutional Site of Rare Gas Atoms X...
3. Schematic of the z Components of the Three t$_{1u}$ Rare Gas Atom Group Orbitals of the MX$_{12}$ Supermolecule.
4. Pictoral Representation of the Overlap Integrals S$_1$ (Between Atoms M and 1), S$_2$ (Between Atoms M and 4), and S$_n$ (Between Atoms M and 9).
5. Orbital Perturbation Scheme for the Interaction of the Metal p Orbitals with the Rare Gas (n + 1)p Group Orbitals.
6. Schematic Energy Level Diagram for a J = 5/2 State Showing the Influence of a Crystal Field (H$_{CF}$) and a Magnetic Field (H$_B$).
7. Absorption and MCD Spectra of Re in a Kr Matrix at 10 K.
8. Reduced Moment Plots vs. Inverse Temperature.
10. Predicted MCD Saturation Curves for a 3D3 Ni Atom Embedded in an Octahedral Crystal Field. The Solid Line Corresponds to the Exact Curve While the Dashed Line Corresponds to Eq. 85. D = -5.556cm$^{-1}$, g = 4/3, B = 1T.
Predicted MLD Saturation Curves for a $^{3D3}_{Ni}$ Atom Embedded in an Octahedral Crystal Field. The Solid Line Corresponds to the Exact Curve While the Dashed Line Corresponds to Eq. 86. $D = -5.556cm^{-1}$, $g = 4/3$, $B = 1T$.

112
MATRIX ISOLATION SPECTROSCOPY:
MAGNETIC CIRCULAR AND LINEAR DICHROISM

By

Robert C. Pellow

May, 1990

Chairman: Martin Vala
Major Department: Chemistry

Magnetic Circular Dichroism (MCD) and Magnetic Linear Dichroism (MLD) are powerful techniques which can be used to study matrix isolated atoms and molecules. These spectroscopic probes allow one to thoroughly characterize the nature of entrapped species by measuring such quantities as their ground/excited state spin-orbit coupling constants, Lande g factors, site symmetry, and Jahn-Teller couplings with the rare gas cage.

Application of the method of moments to the lower energy $2S \rightarrow 2P$ absorption and MCD transitions of matrix isolated alkali and noble metal atoms has revealed 1) a decrease in the excited spin-orbit constant in the order Ar>Kr>Xe, (2) spin orbit constants which are greater than the gas phase value in some cases (Ex. Au/Ar,Kr,Xe), (3) less than the gas phase value in other cases (Ex. Cu/Ar,Kr), and (4) negative in still other cases (Ex. Li/Ar,Kr,Xe). A supermolecule model nicely accounts for all of these observations.
The MCD saturation technique applied to Re isolated in a Kr lattice shows that Re occupies a substitutional site and possesses a large ground state crystal field splitting. The ground state, which is nominally $^6S_{5/2}$, is SO and crystal field mixed with higher lying states thus resulting in the large matrix splitting.

A general MCD/MLD saturation theory similar to that used for Re/Kr is developed to treat the case of an arbitrary atomic ground state ($^{2S+1}L_J$) trapped in a matrix site of any symmetry. This is applied to the case of Ni which is known to possess a 3D_3 ground state in Ar, Kr, and Xe matrices.

Orientationally averaged MCD and MLD Faraday parameters are derived for matrix isolated randomly oriented linear molecules. These should prove useful in assigning observed electronic transitions of rare gas entrapped linear molecules.

In the course of our MCD/MLD work, a heretofore unknown Lande g factor sum rule was discovered. Experimental g factors were found to obey this rule with increasing deviation as one proceeds from the first to third transition series. Finally, expressions are derived for computing the number of isotopomers of a given cluster. Isotopically mixed clusters are an important means of identifying the size and geometry of matrix isolated clusters.
Matrix isolation is a technique whereby reactive atoms, molecules, and ions may be trapped in an inert matrix at cryogenic temperatures. Developed in 1954, this method typically isolates the species to be studied in a large excess of rare gas. By rigidly isolating reactive species in such a cage, one can study their behavior at leisure. The low temperature and rigid host insure that the guest is normally present in its ground electronic and vibrational states. Due to the inert nature of the rare gases, perturbation of the guest species by the matrix is usually considered to be small. In fact, infrared frequency shifts of matrix entrapped species are typically 1-2 percent of their gas phase values. Hence the behavior of the trapped atom or molecule usually parallels that of the isolated gas phase species. In certain cases however, matrix effects can be substantial, and these are discussed below.

The methods used to investigate matrix isolated species are usually spectroscopic in nature and include electronic absorption and emission, IR, Raman, and ESR. In addition, the powerful techniques of magnetic circular dichroism (MCD) and magnetic linear dichroism (MLD) are ideally suited to the
study of matrix isolated species as we now demonstrate. Whereas MCD corresponds to the differential absorption of left and right circularly polarized light propagating in the direction of an applied magnetic field, the complementary technique, MLD, corresponds to the differential absorption of light polarized parallel and perpendicular to the applied field. Using these spectroscopic probes, it is possible to study the following features of matrix isolated species:

1. spin-orbit coupling
2. crystal field splittings
3. spectral assignments
4. g factors
5. vibronic (Jahn-Teller) perturbations

In subsequent chapters, these various aspects of MCD and MLD are explored.

In chapter 2, trends in the 2P excited state spin-orbit (SO) constants for various matrix isolated metals are analyzed. A supermolecule model is developed in which the metal atom is perturbed by a tetradecahedral array of rare gas atoms. Using a basis set of p orbitals on each atom, the matrix perturbed metal atomic orbitals are constructed and subsequently used to construct the SO matrix. Diagonalization results in a SO reduction factor, k, which depends upon the rare gas mixing coefficients, overlap integrals, and the free atom SO constants for both the metal and rare gas atoms. The resulting master equation for k qualitatively accounts for the
3 major classes of k values experimentally observed. In addition, numerical evaluation of the reduction factor produces results which are in reasonable accord with experiment.

In chapter 3, the crystal field splitting of the nominal 6S ground state of Re matrix isolated in Kr is investigated using MCD saturation theory. Since the 6S state is spherically symmetric, it is necessary to mix in higher electronic states to account for such a crystal field effect. Using both the crystal field (O_h) and SO Hamiltonians, one can mix the 4P and 4G excited states into 6S. The resulting eigenstates are used to evaluate the required ground state eigenvalues and transition moments. It is then a simple matter to derive a theoretical expression for the MCD as a function of both the temperature and crystal field parameter. By fitting the temperature dependent MCD data to the theoretical equation, a crystal field splitting of 7.5 cm$^{-1}$ is found. This is large enough to preclude the observation of any low temperature X-band ESR spectrum.

Chapter 4 represents a generalization of the approach used in chapter 3 to the case of any atom matrix isolated in a crystal field of arbitrary symmetry. Unfortunately, since the off diagonal Zeeman matrix elements (crystal field basis) had to be neglected, the general MCD and MLD saturation equations derived will not be very useful except for the case of very small magnetic fields. It appears that an accurate
analysis of saturation data requires a complete diagonalization of the full Zeeman-crystal field matrix.

In chapter 5, we look at yet another manifestation of the utility of MCD and MLD. The assignment of atomic spectral transitions (angular momentum changes) is easily made from the signs of the observed MCD and MLD bands. The Faraday parameters, C_0(MCD) and G_0(MLD), are the important theoretical quantities that govern the observed band signs for low temperature paramagnetic atoms. In this chapter, the atomic formalism is extended to the case of linear molecules randomly oriented in a rare gas matrix. The linear molecule Faraday parameter expressions associated with degenerate ground and/or excited states are developed. From these results, it is seen that the spectral band signs can be used to unambiguously assign linear molecule transitions in analogy to the atomic case.

During the course of our MCD work on matrix isolated Re, an apparently unknown g sum rule was serendipitously discovered. It is shown in chapter 6 that the average g factor associated with a particular Russell-Saunders term is exactly equal to the free spin value, g_S $(S>L)$, or the pure orbital value, g_L $(L>S)$. Comparison of this prediction with experimental values for various spectroscopic terms of V, Mo, and Re is then made. The agreement is good with increasing deviation observed as one proceeds to the heavier elements; this is due to the well known departure from Russell-Saunders
coupling associated with elements of high atomic number. Extension of this sum rule to the case of nuclear hyperfine coupling is then made resulting in a similarly simple result.

In chapter 7, we digress from our work on MCD and MLD, and instead consider another aspect of matrix isolation spectroscopy. Whereas MCD and MLD tend to probe the electronic nature of atoms and molecules, infrared (IR) spectroscopy is more suited to the study of molecular structure; the utility of isotopically labelled molecules in this context is well known. Simple formulae are derived for computing the total number of isotopomers of a monoelemental linear molecule. Subsequently, a more general treatment, based upon the Polya enumeration method, is developed for the general symmetry case. The resulting equations should prove useful in elucidating both the size and shape of a matrix isolated cluster based on the number of IR bands observed in the spectrum of the isotopically labelled molecule.
CHAPTER 2
THE EXTERNAL HEAVY ATOM EFFECT: THEORY OF SPIN-ORBIT COUPLING OF ALKALI AND NOBLE METAL ATOMS IN RARE GAS MATRICES

Introduction

The heavy atom effect is the perturbation of the spin-orbit coupling in an atom or molecule due to a nearby atom of high atomic number. The internal heavy atom effect,1-2 first studied by McClure,3 involves a heavy atom perturber chemically bound to the species under study. If the heavy atom perturber is not bound but resides in the solvent environment, a phenomenon initially investigated by Kasha,4 it is referred to as the external heavy atom effect.1-2 Since these pioneering works, a large number of studies, both theoretical5-11 and experimental,1,2,12-20 have been performed, particularly on aromatic hydrocarbons. It is now well known1,2 that in aromatics the heavy atom effect greatly influences such processes as singlet-triplet absorption probabilities, excited singlet to triplet intersystem crossing rates, and phosphorescence lifetimes. The mechanism governing the perturbation by the heavy atom, while not precisely known, is generally acknowledged to involve the spin-orbit enhanced admixture of singlet and triplet states.
These processes reflect only indirectly the influence of the heavy atom perturber. The direct measurement of the heavy atom effect, i.e. the spin-orbit splitting in an aromatic molecule, is a more difficult task due to the inherent smallness of the effect in first row atoms, as well as to the simultaneous presence of spin-spin splittings of similar magnitude.

Direct spin-orbit splittings have been observed \(^{21-24}\) for F centers in alkali halide lattices (e.g. KI, KCl, RbBr) and, although not couched in the terminology of the heavy atom effect, are generally seen to increase with the atomic number of the cation and anion of the host lattice. Elegant theoretical developments have been reported \(^{25-28}\) to explain these observations, the most successful of which employs a vacancy centered wavefunction which is orthogonalized to the crystal ion functions.

Recently, experimental results from magnetic circular dichroism (MCD) and U.V./Visible absorption studies \(^{29-34}\) of the noble and alkali metal atoms in rare gas matrices (Ar, Kr, and Xe) have been analyzed using a band moment analysis method, originally applied by Henry, Schnatterly, and Slichter \(^{25}\) to the study of F centers. This analysis permits the extraction of the excited \(^3\)P state spin-orbit splitting and its dependence on rare gas matrix atom type, and thus affords a direct measure of the external heavy atom effect. Sufficient data have now been reported to show that there is
a profound influence by the rare gas atoms on the metal's spin-orbit splitting. Certain trends have begun to emerge. 1) The spin-orbit (SO) reduction factor, k, decreases for all metals as the rare gas atomic number increases. 2) For Au, k greater than one are observed34 in all of the rare gases. 3) Positive k are observed for Cu in Ar and Kr while a negative k is found for Cu/Xe29, and 4) negative k are found for Li in all of the rare gases, $^{31,32} k$ in Kr and Xe 32,33 and Na in Xe,32 There are still significant gaps in the experimental data available. Nevertheless the observations to date point to a complex phenomenon which depends not only on the properties of the rare gas and metal atom, but also on properties due to their interaction.

Our goal is to explain on a unified theoretical basis the trends in the observations set forth above. We do this by introducing a supermolecule model and calculating the SO splitting directly. Our approach has features which differ from older, previous studies. In the next section a short background of the spectroscopic observations, analysis methods and results for the noble and alkali metals in matrices is given. This is followed by the theoretical approach used here. After discussing certain aspects of the theory and some of its limitations, conclusions are drawn.
Background

The particular electronic transition studied here is the $^2P \leftarrow ^2S$ (electronic configuration ... np$^1 \leftarrow ...$ ns1). SO coupling in the gas phase atom splits the 2P state into 1/2 and 3/2 multiplets; the separation between these free atom states is $3\zeta \hbar^2 / 8\pi^2$, where ζ is the SO coupling constant. Although a doublet is expected and observed in gas phase studies, matrix investigations have invariably exhibited three optical bands. Initially ascribed to a distorted site (D$_3$ or D$_4$) splitting, this triplet is now known to arise from the Jahn-Teller (JT) splitting of the 3/2 (U' in O$_h$ symmetry) component. Figure 1 shows the situation schematically. For the atomic species whose intrinsic SO splitting is very large (e.g. Au) the SO constant may be extracted from the absorption spectral data using

$$\zeta = 2/3[1/2(T_2 + T_3) - T_1]$$

But for atomic species whose intrinsic SO coupling is not very large and may be of the same order of magnitude as the JT splitting, it is necessary to use an MCD/absorption moment analysis approach.
Figure 1

Energy Level Diagram for an Alkali or Noble Metal Atom in the Gas Phase and in Matrices
S.O. = Spin-Orbit, J.T. = Jahn-Teller
The diagram illustrates a level scheme for the states $2S$ and $2P$, with the quantum numbers $J=1/2$ and $J=3/2$, respectively. The transitions between these levels are indicated by the labels T_1, T_2, and T_3. The states are labeled with $S_{O}=0$, $J_{T}=0$ for $2S$ and $S_{O}
eq 0$, $J_{T}=0$ for $2P$. The energy levels are depicted with solid and dashed lines, indicating the coupling of spin and orbital angular momentum.
The ratio of the first MCD moment, $\langle \Delta A \rangle_1$, to the zeroth absorption moment, $\langle A \rangle_0$, is

$$\frac{\langle \Delta A \rangle_1}{\langle A \rangle_0} = 2(g - \zeta / 2kT) \mu_B B$$

(2)

where g is the orbital g factor of the excited state, μ_B is the Bohr magneton and B is the magnetic field strength. The SO coupling constant, ζ, may be obtained from the slope of a plot of the moment ratio vs. $1/T$. In Table 1 are collected the experimentally observed SO constants for a few metal-rare gas systems. Here the trends referred to in the introduction can easily be discerned.

To understand the trend in Cu the initial approach29 was to use the theory developed by Ammeter and Schlosnagle.38 By orthogonalizing the metal atomic orbitals to the rare gas orbitals, they derived the following expression for the SO reduction factor

$$k = 1 - 4 \frac{\zeta_X}{\zeta_M}(2S_\sigma S_\pi - S_\pi^2)$$

(3)
Table 1
Experimental Spin-Orbit Coupling Constants and Spin-Orbit Reduction Factors for Selected Metals Representative of the Three Major Categories

<table>
<thead>
<tr>
<th>Metal Atoms</th>
<th>Cu<sup>a</sup></th>
<th>Au<sup>b</sup></th>
<th>Li<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ζ/cm<sup>-1</sup> k</td>
<td>ζ/cm<sup>-1</sup> k</td>
<td>ζ/cm<sup>-1</sup> k</td>
</tr>
<tr>
<td>Gaseous</td>
<td>166 --</td>
<td>2543 --</td>
<td>0.23 --</td>
</tr>
<tr>
<td>Ar</td>
<td>124 0.75</td>
<td>3215 1.26</td>
<td>-16 -70</td>
</tr>
<tr>
<td>Kr</td>
<td>95 0.57</td>
<td>2943 1.16</td>
<td>-70 -304</td>
</tr>
<tr>
<td>Xe</td>
<td>-23 -0.14</td>
<td>2570 1.01</td>
<td>-196 -852</td>
</tr>
</tbody>
</table>

^a Ref. 25,26.

^b Ref. 30.

^c Ref. 27,28.
where the \(S_\sigma \) and \(S_\pi \) refer to \(\sigma \) and \(\pi \) type overlap integrals and the \(\zeta_X \) and \(\zeta_M \) are the rare gas and metal SO constants, respectively. Previous results,\(^{29,30}\) though dependent to some degree on the radial extent of the excited state Cu 4p orbital, correctly mimicked the downward trend (from Ar to Xe) and the negative sign for Xe. However, if one attempts to apply this same expression to the Au results,\(^{34}\) the experimentally observed SO reduction factors with \(k>1 \) cannot be reproduced. Since \(2S_\sigma S_\pi > S_\pi^2 \), the calculated reduction factors are all necessarily less than one. Because of this situation, this model was abandoned and another sought. In the simple model proposed here, it is shown that all of the major trends are predictable, and that they are dependent simply upon the metal-rare gas overlap integrals, the relative magnitudes of the metal and rare gas SO constants, and the metal-rare gas MO mixing coefficients.

Theoretical Approach

The supermolecule model used here assumes that the metal atom (M) resides in a tetradecahedral substitutional site composed of a first shell cage of twelve rare gas atoms (X). The supermolecule formula is therefore \(\text{MX}_{12} \), cf. Fig. 2. This model has experimental validity for at least one metal-rare gas combination.
Figure 2

Supermolecule MX_{12}: Geometrical Arrangement for a Metal Atom M (Black Sphere) Embedded in a Tetradecahedral Substitutional Site of Rare Gas Atoms X (Open Spheres).
Kasai and McLeod have demonstrated that the superhyperfine splitting of the Cu 2S ground state ESR signal is due to the Xe matrix atoms arranged in a tetradecahedral substitutional site.

Basis Functions

The basis set consists of the metal atom excited state p orbitals plus the excited state rare gas ($n + 1)p$ orbitals. The metal atom p orbitals (of t_{1u} symmetry in O_h) mix with the three sets of t_{1u} rare gas cage group orbitals. The cage group orbitals are given in Table 2 and their z components illustrated in Figure 3. (The y and z components are identical to within a rotation.) Using these components the LCAO supermolecular orbitals are

\[
\phi_{t_{1u}(x)} = c_1p_x^M + c_2t_{1u}^1(x) + c_3t_{1u}^2(x) + c_4t_{1u}^3(x)
\]

\[
\phi_{t_{1u}(y)} = c_1p_y^M + c_2t_{1u}^1(y) + c_3t_{1u}^2(y) + c_4t_{1u}^3(y)
\]

\[
\phi_{t_{1u}(z)} = c_1p_z^M + c_2t_{1u}^1(z) + c_3t_{1u}^2(z) + c_4t_{1u}^3(z)
\]
Table 2

Rare Gas Atom Group Orbitals of the MX$_{12}$ Supermolecule

<table>
<thead>
<tr>
<th>Designation</th>
<th>Group Orbital</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{1u}^{1}(x)$</td>
<td>$x_2 + x_3 + x_6 + x_8$</td>
</tr>
<tr>
<td>$t_{1u}^{1}(y)$</td>
<td>$y_1 + y_3 + y_5 + y_7$</td>
</tr>
<tr>
<td>$t_{1u}^{1}(z)$</td>
<td>$z_9 + z_{10} + z_{11} + z_{12}$</td>
</tr>
<tr>
<td>$t_{1u}^{2}(x)$</td>
<td>$-(x_1 + x_3 + x_5 + x_7 + x_9 + x_{10} + x_{11} + x_{12})$</td>
</tr>
<tr>
<td>$t_{1u}^{2}(y)$</td>
<td>$-(y_2 + y_4 + y_6 + y_8 + y_9 + y_{10} + y_{11} + y_{12})$</td>
</tr>
<tr>
<td>$t_{1u}^{2}(z)$</td>
<td>$-(z_1 + z_2 + z_3 + z_4 + z_5 + z_6 + z_7 + z_8)$</td>
</tr>
<tr>
<td>$t_{1u}^{3}(x)$</td>
<td>$z_1 - z_3 - z_5 + z_7 + y_9 - y_{10} + y_{11} - y_{12}$</td>
</tr>
<tr>
<td>$t_{1u}^{3}(y)$</td>
<td>$-z_2 + z_4 + z_6 - z_8 + x_9 - x_{10} + x_{11} - x_{12}$</td>
</tr>
<tr>
<td>$t_{1u}^{3}(z)$</td>
<td>$x_1 - x_3 - x_5 + x_7 - y_2 + y_4 + y_6 - y_8$</td>
</tr>
</tbody>
</table>
Figure 3

Schematic of the z Components of the Three t_{1u}
Rare Gas Atom Group Orbitals of the MX$_{12}$
Supermolecule.

a) $t_{1u}^1(z)$ orbital
b) $t_{1u}^2(z)$ orbital
c) $t_{1u}^3(z)$ orbital
Here the superscripts M, 1, 2, 3 refer to the metal and different rare gas group orbitals, respectively. The c_i are the mixing coefficients.

These space orbitals may now be combined with either α or β spin functions and the resulting spin MOs used to construct a 6×6 SO matrix.

\textbf{Spin-Orbit Matrix}

The elements of the SO matrix have the form

\[\langle \phi_{tlu}(i)|H_{SO}|\phi_{tlu}(j)\rangle \]

(5)

where $\sigma, \sigma' = \alpha$ or β spins and $i,j = x, y, \text{ or } z$. The SO operator is

\[H_{so} = \zeta_M \rightarrow \cdot \rightarrow \text{ + } \zeta_X \sum_k \rightarrow \cdot \rightarrow \]

(6)

where ζ_M and ζ_X are the metal and rare gas SO coupling constants, respectively. The sum is over all rare gas atom centers. Making use of the standard angular momentum operator relations,\(^2\) e.g. $s_x|\alpha\rangle = h |\beta\rangle/4\pi$, $s_y|\alpha\rangle = i\hbar |\beta\rangle/4\pi$, $l_xp_y = i\hbar p_z/2\pi$, etc. and retaining only single center orbital angular momentum terms, the following SO matrix is found
where

\[
A = h^2 (c_1 \zeta_M \varphi - 4c_1 c_2 \xi_x S_1 - 4c_1 c_3 \xi_x S_\pi
+ 4c_1 c_3 \xi_x S_1 - 4c_4 c_4 \xi_x S_2 + 4c_1 c_2 \xi_M S_\pi
+ 8c_1 c_3 \xi_M S_1 + 8c_1 c_4 \xi_M S_2)/8\pi^2
\]

and \(S_1 = <p_z^M|-z_1>, S_2 = <p_z^M|-y_2>,\) and \(S_\pi =<p_z^M|z_\pi>\). These overlap integrals are pictured in Figure 4.

Spin-Orbit Splitting and Reduction Factor

The above SO matrix has the same structure as the free atom \(^2p\) SO matrix; for the free atom case \(c_1 = 1\) and \(c_2, c_3,\) and \(c_4 = 0\) and \(A\) is equal to \(h^2 \zeta_M/8\pi^2\).
Figure 4

Pictoral Representation of the Overlap Integrals

S_1 (Between Atoms M and 1), S_2 (Between Atoms M and 4) and S_{π} (Between Atoms M and 9).
Expanding the corresponding determinant and solving the characteristic equation leads to the eigenvalues, \(E_1 = A \) (fourfold degenerate) and \(E_2 = -2A \) (doubly degenerate). Thus spin-orbit coupling in the excited \(^2P \left(^2T_{1u} \right) \) state results in a splitting (3A) with one multiplet (U' in O, \(J = 3/2 \) in the free atom) lying at +A and the other (E' in O, \(J = 1/2 \) in the free atom) at -2A. In analogy to the free atom case, the splitting between these components is defined by

\[
\Delta E = E_1 - E_2 = 3A \equiv 3\zeta_{\text{Eff}} \hbar^2 / 8\pi^2
\]

(9)

The spin-orbit reduction factor, \(k \), is defined as

\[
k = \frac{\zeta_{\text{Eff}}}{\zeta_M} = c_1^2 + 4c_1c_2S_\pi + 8c_1c_3S_1 + 8c_1c_4S_2
\]

\[-4c_1c_2S_1Q - 4c_1c_3S_\pi Q + 4c_1c_3S_1Q - 4c_1c_4S_2Q\]

(10)

where \(Q = \zeta_X / \zeta_M \). This expression for \(k \) shows that the magnitude and sign of the metal atom SO splitting and its dependence on the rare gas originates in three quantities: the mixing coefficients (\(c_1 \)), the overlap integrals (\(S_\pi \)), and the ratio of the rare gas to metal SO coupling constants (\(Q \)).
Overlap Integrals and SO Coupling Ratios

Following Burdett, the S_1 and S_2 overlaps are easily obtained as

$$S_1 = \frac{(S_\sigma - S_\pi)}{2}$$

and

$$S_2 = \frac{(S_\sigma + S_\pi)}{2}$$

where S_σ and S_π are the standard two center $p\sigma$ and $p\pi$ overlap integrals. To evaluate these integrals numerically for the various metal/rare gas combinations, available Slater basis functions for the np rare gas orbitals were used. The $(n + 1)p$ rare gas orbitals would have been preferred, but to the best of our knowledge, they are unavailable. Similarly, wavefunctions for the ground state unoccupied metal valence np orbitals are also not available. Exponents and coefficients for the valence ns orbitals of the metals were used instead. The known rare gas interatomic separations and the overlaps computed using them are given in Table 3.
Table 3

Metal-Rare Gas Overlaps and Spin-Orbit Constant Ratios

<table>
<thead>
<tr>
<th>System</th>
<th>Interatomic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metal</td>
</tr>
<tr>
<td>Cu</td>
<td>Ar</td>
</tr>
<tr>
<td></td>
<td>Kr</td>
</tr>
<tr>
<td></td>
<td>Xe</td>
</tr>
<tr>
<td>Ag</td>
<td>Ar</td>
</tr>
<tr>
<td></td>
<td>Kr</td>
</tr>
<tr>
<td></td>
<td>Xe</td>
</tr>
<tr>
<td>Au</td>
<td>Ar</td>
</tr>
<tr>
<td></td>
<td>Kr</td>
</tr>
<tr>
<td></td>
<td>Xe</td>
</tr>
<tr>
<td>Li</td>
<td>Ar</td>
</tr>
<tr>
<td></td>
<td>Kr</td>
</tr>
<tr>
<td></td>
<td>Xe</td>
</tr>
<tr>
<td>Na</td>
<td>Ar</td>
</tr>
<tr>
<td></td>
<td>Kr</td>
</tr>
<tr>
<td></td>
<td>Xe</td>
</tr>
<tr>
<td>K</td>
<td>Ar</td>
</tr>
<tr>
<td></td>
<td>Kr</td>
</tr>
<tr>
<td></td>
<td>Xe</td>
</tr>
</tbody>
</table>

\(a\) Ref. 39; atomic units
\(b\) \(R = S_\sigma/S_\pi\)
\(c\) \(Q = \zeta_X/\zeta_M\)
It is interesting to note that for any one metal with the three rare gases the overlaps of a particular type are practically constant (e.g., for Cu/RG, $S_\pi=0.031$ and $S_\sigma=0.11$). Also given in Table 3 are the rare gas to metal SO coupling constant ratios, ξ. All of the SO constants were obtained from the relation

$$\xi = 2\Delta E/3$$ \hspace{1cm} (12)

where $\Delta E = E(J=3/2) - E(J=1/2)$ for the metal np\(^1\) electronic configuration\(^{43}\) and $\Delta E = E(^3P_0) - E(^3P_2)$ for the rare gas np\(^5\)(n+1)s\(^1\) configuration.\(^{44,45}\) Spectroscopic energies were taken from Moore's tables.\(^{35}\)

Mixing Coefficients

The remaining obstacle to obtaining a parameter-free theory for the SO splitting of metals in rare gas matrices is the estimation of the mixing coefficients (c_i, $i = 1 - 4$). Although a "complete" energy calculation on the MX\(_{12}\) supermolecule could have been attempted, we adopt a number of simplifying approximations here. First, it is assumed that the rare gas mixing coefficients (c_2, c_3, and c_4) are proportional to their respective metal atom-rare gas orbital overlaps.
\[
\begin{align*}
\text{c}_2 & \propto S_{\pi} \\
\text{c}_3 & \propto (S_o - S_{\pi})/2 \\
\text{c}_4 & \propto (S_o + S_{\pi})/2
\end{align*}
\] (13)

and that the metal atom coefficients, \(\text{c}_1 = 1 \). It is then possible to express two of the above rare gas coefficients as a function of the third. Let \(\text{c} = \text{c}_2 \) and \(R = S_o/S_{\pi} \) (cf. Table 3); then \(\text{c}_3 = (R - 1)c/2 \) and \(\text{c}_4 = (R + 1)c/2 \). Thus the evaluation of three mixing coefficients has been reduced to the estimation of only one, \(c \).

Insertion of (11) and the expressions above for \(\text{c}_2, \text{c}_3, \) and \(\text{c}_4 \) into (10) yields after simplification

\[
k = 1 + 4cS_{\pi}(2R - 1)((R^2 + 2)/(2R - 1) - Q)
\] (14)

This expression is the master equation of the present theory. It is instructive to analyze this expression briefly to determine whether the three major classes of spin-orbit reduction factors may be predicted from it. These classes are I) \(k > 1 \) (i.e., SO constants > than gas phase values), II) \(0 < k < 1 \) (SO constants positive and less than gas phase values), and III) \(k < 0 \) (SO constants negative and less than gas phase values). The pivotal factor in expression (14) above is the quantity in square brackets, that is, the relative
magnitudes of the ratio \((R^2 + 2)/(2R - 1)\) and the ratio \(Q\)
\((\equiv \zeta_X/\zeta_M)\). The former depends solely on the ratio of overlap
integrals \((R = S_\sigma/S_\pi)\) while the latter is simply the ratio of
rare gas and metal SO coupling constants. The limiting
conditions under which the three classes may be expected are
simply stated. They are I) for \((R^2 + 2)/(2R - 1) > Q\), \(k\) will
be greater than 1, II) for \((R^2 + 2)/(2R - 1) < Q\), \(k\) will fall
between 0 and 1, and III) for \((R^2 + 2)/(2R - 1) \ll Q\), \(k\) will
be less than 0. The numerical values for the ratio \((R^2 + 2)/(2R - 1)\) for the metal-rare
gas combinations studied here are presented in Table 4. Interestingly, the ratio is
practically constant (and equal to \(\approx 2.3 \pm 0.3\)) for any
combination of one metal with the rare gases. This is, of
course, a reflection of the fact noted above that \(S_\sigma\) and \(S_\pi\) do
not vary substantially from one combination to the next. Thus,
the assignment of a certain metal-rare gas combination to a
particular SO reduction factor class (I, II, or III) is
primarily dependent upon \(Q\).

In Table 4 are listed two \(Q\) values for each metal-rare
gas combination. The first, labelled \(Q_{np}\), uses the well-known
rare gas SO constant \((\zeta_X)\) for the \(np^5(n + 1)s^1\) configuration
obtained from the lowest excited \(^3P\) state. The predicted
classes, labelled np, are also in the table.
It can be seen that all 3 classes are predicted and, where experimental data are available, are in good accord. For 2 cases (Cu/Kr and K/Ar) some ambiguity exists since the crossover point from class II to class III is not well defined (since it depends upon the factor $4cS_n$).

The second Q, labelled Q_{ave}, is an energy-weighted average of Q_{np} and $Q_{(n + 1)p}$, the latter obtained using $\xi_{(n+1)p}$ for the rare gas $np^5(n + 1)p^1$ configuration. The rationale for using an average Q and its definition are given in the next section after a description of the terms which comprise it. The predicted classes (labelled ave) using this Q are also given in Table 4. In this case the predicted classes for the alkalis and gold are the same as above. The Ag/Kr prediction is now class I and Ag/Xe class I or II. The only discrepancy with experimental observation is for Cu/Ar which is predicted to be class I and is known to be class II. Despite this, we conclude that the present model is capable of predicting qualitatively the major features of the SO coupling of metals in rare gas matrices.

Quantitative Estimation of SO Reduction Factors

We next turn to a quantitative estimation of the mixing coefficient (c) and thence to the numerical prediction of the SO reduction factors. To calculate c, a perturbation approach, as outlined schematically in Figure 5, is adopted.
<table>
<thead>
<tr>
<th>System</th>
<th>R<sup>a</sup></th>
<th>R<sup>2</sup> + 2<sup>b</sup></th>
<th>Q<sub>np</sub></th>
<th>Predicted<sup>c</sup></th>
<th>Exper.</th>
<th>Class(Ave)</th>
<th>Class</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu/Ar</td>
<td>3.374</td>
<td>2.328</td>
<td>5.687</td>
<td>II</td>
<td>.998</td>
<td>I</td>
<td>II</td>
<td>29,30</td>
</tr>
<tr>
<td>Cu/Kr</td>
<td>3.628</td>
<td>2.424</td>
<td>20.96</td>
<td>II or III</td>
<td>4.172</td>
<td>II</td>
<td>II</td>
<td>29,30</td>
</tr>
<tr>
<td>Cu/Xe</td>
<td>3.862</td>
<td>2.516</td>
<td>36.63</td>
<td>III</td>
<td>8.883</td>
<td>III</td>
<td>III</td>
<td>29,30</td>
</tr>
<tr>
<td>Ag/Ar</td>
<td>3.339</td>
<td>2.316</td>
<td>1.564</td>
<td>I</td>
<td>0.263</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag/Kr</td>
<td>3.626</td>
<td>2.423</td>
<td>5.668</td>
<td>II</td>
<td>1.089</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag/Xe</td>
<td>3.914</td>
<td>2.536</td>
<td>9.902</td>
<td>II</td>
<td>2.324</td>
<td>I or II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au/Ar</td>
<td>3.475</td>
<td>2.366</td>
<td>0.370</td>
<td>I</td>
<td>0.074</td>
<td>I</td>
<td>I</td>
<td>34</td>
</tr>
<tr>
<td>Au/Kr</td>
<td>3.821</td>
<td>2.499</td>
<td>1.368</td>
<td>I</td>
<td>0.311</td>
<td>I</td>
<td>I</td>
<td>34</td>
</tr>
<tr>
<td>Au/Xe</td>
<td>4.183</td>
<td>2.647</td>
<td>2.391</td>
<td>I</td>
<td>0.659</td>
<td>I</td>
<td>I</td>
<td>34</td>
</tr>
<tr>
<td>Li/Ar</td>
<td>2.998</td>
<td>2.199</td>
<td>4100</td>
<td>III</td>
<td>611.8</td>
<td>III</td>
<td>III</td>
<td>31,32</td>
</tr>
<tr>
<td>Li/Kr</td>
<td>3.252</td>
<td>2.285</td>
<td>15000</td>
<td>III</td>
<td>2543</td>
<td>III</td>
<td>III</td>
<td>31,32</td>
</tr>
<tr>
<td>Li/Xe</td>
<td>3.512</td>
<td>2.380</td>
<td>26000</td>
<td>III</td>
<td>5422</td>
<td>III</td>
<td>III</td>
<td>31,32</td>
</tr>
<tr>
<td>Na/Ar</td>
<td>2.779</td>
<td>2.133</td>
<td>82.02</td>
<td>III</td>
<td>9.364</td>
<td>III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na/Kr</td>
<td>3.023</td>
<td>2.207</td>
<td>303.7</td>
<td>III</td>
<td>39.05</td>
<td>III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na/Xe</td>
<td>3.283</td>
<td>2.296</td>
<td>531.1</td>
<td>III</td>
<td>85.38</td>
<td>III</td>
<td>III</td>
<td>32</td>
</tr>
<tr>
<td>K/Ar</td>
<td>2.133</td>
<td>2.005</td>
<td>24.43</td>
<td>II or III</td>
<td>2.253</td>
<td>II</td>
<td>II</td>
<td>32,33</td>
</tr>
<tr>
<td>K/Kr</td>
<td>2.363</td>
<td>2.035</td>
<td>90.43</td>
<td>III</td>
<td>9.397</td>
<td>III</td>
<td>III</td>
<td>32,33</td>
</tr>
<tr>
<td>K/Xe</td>
<td>2.629</td>
<td>2.093</td>
<td>158.2</td>
<td>III</td>
<td>20.90</td>
<td>III</td>
<td>III</td>
<td>32,33</td>
</tr>
</tbody>
</table>

a R = S_s/S_n
b Q = c_X/c_M
c Class I: k>1; Class II: 0<k<1; Class III: k<0
Figure 5

Orbital Perturbation Scheme for the Interaction of the Metal p Orbitals with the Rare Gas (n+1)p Group Orbitals.
Here "1" is a metal valence p orbital of energy H_{11} and "2" is a rare gas $(n + 1)p$ orbital of energy H_{22}. Note that the $(n + 1)p$ unoccupied orbitals, not the occupied np orbitals, are chosen to interact with the excited metal p electron. The major reason for this choice is the closer proximity of the p metal and $(n + 1)p$ rare gas orbitals (measured for the ionization limit as zero) compared to the p metal and np rare gas orbitals. For example, the H_{22} energy of the 4p orbital of Ar lies at -2.588 eV compared to -15.76 eV (127109.9 cm$^{-1}$) for the 3p Ar orbital. The 2p orbital of Li lies at -3.543 eV (H_{11}, cf. Table 6,7) with all the other metal p orbitals lying within ± 0.8 eV of this value. Another reason for choosing the $(n + 1)p$ orbital is that for the rare gases in their ground states it is unoccupied and is able to accept electron density from the metal p orbital, thereby facilitating the metals' interaction with the rare gas cage.

In the spirit of the Wolfsberg-Helmholtz approximation, the interaction Hamiltonian is assumed to have the form

$$H_{12} = (H_{11} + H_{22})S_{12}$$ \hspace{1cm} (15)

Solution of the secular equation yields

$$E_\pm = \{H_{11} + H_{22} - 2(H_{11} + H_{22})S_{12}\}^2$$

$$\pm \frac{[(H_{11} - H_{22})^2 + 4H_{11}H_{22}S_{12}^2]^{1/2}}{2(1 - S_{12}^2)}$$ \hspace{1cm} (16)
from which \(c \) may be obtained as

\[
c = \left[\frac{H_{22}}{(E_{n} - H_{11}) - 1} \right] S_{12}^{-1}
\]

(17)

The \(H_{11} \) and \(H_{22} \) energies are computed with atomic spectroscopic data from Moore35 using the following expressions

\[
H_{11} = \frac{(2E_{1/2}^{M} + 4E_{3/2}^{M})}{6} - E_{\text{Ion}}^{M}
\]

(18)

\[
H_{22} = \sum_{i} (2J_{i} + 1)E_{i}^{X}/36 - E_{\text{Ion}}^{X}
\]

The specific energy values used are given in Tables 5 and 6. The first term on the RHS is the weighted average excitation energy for the transition \(ns^{1} \rightarrow np^{1} \) (metal) or \(np^{6} \rightarrow np^{5}(n + 1)p^{1} \) (rare gas). Subtracting the ground state ionization energies from these averaged energies and applying Koopman's theorem46,47 gives approximate values for the desired orbital energies. These are tabulated in Table 7 along with the computed mixing coefficients. (Note that in this calculation \(S_{12} = S_{n} \) due to the way in which \(c \) was defined.)

Before evaluating the SO reduction factors, it is necessary to present the rationale for using a \(Q \) (and hence \(\xi_{X} \)) other than \(Q_{np} \).
Table 5
Experimental Energies\(^{32}\) Used to Calculate \(H_{11}\) for an np\(^i\) Configuration

<table>
<thead>
<tr>
<th>Metal</th>
<th>n</th>
<th>(J = 1/2)</th>
<th>(J = 3/2)</th>
<th>Ionization Energy/cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>2</td>
<td>14903.66</td>
<td>14904.00</td>
<td>43487.19</td>
</tr>
<tr>
<td>Na</td>
<td>3</td>
<td>16956.183</td>
<td>16973.379</td>
<td>41449.65</td>
</tr>
<tr>
<td>K</td>
<td>4</td>
<td>12985.17</td>
<td>13042.89</td>
<td>35009.78</td>
</tr>
<tr>
<td>Cu</td>
<td>4</td>
<td>30535.302</td>
<td>30783.686</td>
<td>62317.2</td>
</tr>
<tr>
<td>Ag</td>
<td>5</td>
<td>29552.05</td>
<td>30472.71</td>
<td>61106.50</td>
</tr>
<tr>
<td>Au</td>
<td>6</td>
<td>37358.9</td>
<td>41174.3</td>
<td>74410.0</td>
</tr>
</tbody>
</table>
Table 6
Experimental Energies $^32\ (\text{cm}^{-1})$ Used to Calculate H_{22} for an $(n + 1)p^1$ Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>J</th>
<th>Ar$(n = 3)$</th>
<th>Kr$(n = 4)$</th>
<th>Xe$(n = 5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>104102.144</td>
<td>91169.313</td>
<td>77269.649</td>
</tr>
<tr>
<td>np$^5(n + 1)p^1$</td>
<td>3</td>
<td>105462.804</td>
<td>92295.197</td>
<td>78120.303</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>105617.315</td>
<td>92308.177</td>
<td>78403.562</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>106087.305</td>
<td>92965.194</td>
<td>78956.538</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>106237.597</td>
<td>93124.140</td>
<td>79212.970</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>107054.319</td>
<td>94093.662</td>
<td>80119.474</td>
</tr>
<tr>
<td>np$^5(n + 1)p^1$</td>
<td>1</td>
<td>107131.755</td>
<td>97596.718</td>
<td>88379.647</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>107289.747</td>
<td>97945.970</td>
<td>89162.880</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>107496.463</td>
<td>97919.951</td>
<td>89279.233</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>108722.688</td>
<td>98855.871</td>
<td>89860.538</td>
</tr>
<tr>
<td>Ionization Energy</td>
<td></td>
<td>127109.9</td>
<td>112915.2</td>
<td>97834.4</td>
</tr>
</tbody>
</table>
Table 7

Empirical Orbital Energies for Metals \((H_{11})\) and Rare Gases \((H_{22})\) Computed Mixing Coefficients \((c)\) and \(SO\) Reduction Factors \((k)\)

<table>
<thead>
<tr>
<th>System</th>
<th>(-H_{11}) (ev)</th>
<th>(-H_{22}) (ev)</th>
<th>(c)</th>
<th>(k_{np})</th>
<th>(k_{ave})</th>
<th>(k_{exp})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu Ar</td>
<td>3.919</td>
<td>2.588</td>
<td>0.0612</td>
<td>0.85</td>
<td>1.06</td>
<td>0.75(^a)</td>
</tr>
<tr>
<td>Kr</td>
<td>3.919</td>
<td>2.307</td>
<td>0.0451</td>
<td>0.34</td>
<td>0.94</td>
<td>0.57(^a)</td>
</tr>
<tr>
<td>Xe</td>
<td>3.919</td>
<td>1.959</td>
<td>0.0305</td>
<td>0.14</td>
<td>0.84</td>
<td>-0.14(^a)</td>
</tr>
<tr>
<td>Ag Ar</td>
<td>3.835</td>
<td>2.588</td>
<td>0.0745</td>
<td>1.05</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>Kr</td>
<td>3.835</td>
<td>2.307</td>
<td>0.0542</td>
<td>0.84</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>Xe</td>
<td>3.835</td>
<td>1.959</td>
<td>0.0361</td>
<td>0.75</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>Au Ar</td>
<td>4.277</td>
<td>2.588</td>
<td>0.0561</td>
<td>1.06</td>
<td>1.11</td>
<td>1.26(^b)</td>
</tr>
<tr>
<td>Kr</td>
<td>4.277</td>
<td>2.307</td>
<td>0.0399</td>
<td>1.05</td>
<td>1.09</td>
<td>1.16(^b)</td>
</tr>
<tr>
<td>Xe</td>
<td>4.277</td>
<td>1.959</td>
<td>0.0288</td>
<td>1.01</td>
<td>1.06</td>
<td>1.01(^b)</td>
</tr>
<tr>
<td>Li Ar</td>
<td>3.543</td>
<td>2.588</td>
<td>0.1113</td>
<td>-380</td>
<td>-55.6</td>
<td>-70(^c)</td>
</tr>
<tr>
<td>Kr</td>
<td>3.543</td>
<td>2.307</td>
<td>0.0777</td>
<td>-1.08x10(^3)</td>
<td>-181.8</td>
<td>-304(^c)</td>
</tr>
<tr>
<td>Xe</td>
<td>3.543</td>
<td>1.959</td>
<td>0.0509</td>
<td>-1.32x10(^3)</td>
<td>-273.4</td>
<td>-852(^c)</td>
</tr>
<tr>
<td>Na Ar</td>
<td>3.035</td>
<td>2.588</td>
<td>0.2510</td>
<td>-16.1</td>
<td>-0.55</td>
<td></td>
</tr>
<tr>
<td>Kr</td>
<td>3.035</td>
<td>2.307</td>
<td>0.1471</td>
<td>-41.8</td>
<td>-4.22</td>
<td></td>
</tr>
<tr>
<td>Xe</td>
<td>3.035</td>
<td>1.959</td>
<td>0.0855</td>
<td>-46.9</td>
<td>-6.52</td>
<td>-18.6(^d)</td>
</tr>
<tr>
<td>K Ar</td>
<td>2.725</td>
<td>2.588</td>
<td>0.6473</td>
<td>-10.6</td>
<td>+0.87</td>
<td>>0(^e)</td>
</tr>
<tr>
<td>Kr</td>
<td>2.725</td>
<td>2.307</td>
<td>0.3144</td>
<td>-25.7</td>
<td>-1.22</td>
<td><0(^e)</td>
</tr>
<tr>
<td>Xe</td>
<td>2.725</td>
<td>1.959</td>
<td>0.1641</td>
<td>-28.1</td>
<td>-2.50</td>
<td>-.42(^e)</td>
</tr>
</tbody>
</table>

b. Ref. 30.
c. Ref. 27,28.
d. Ref. 28.
e. Ref. 28,29.
The ζ_X used in Q_{np} is not entirely appropriate since the overlaps described in the present theory are between the $(n + 1)p$ orbitals, not the np orbitals, of the rare gas and the p orbital of the metal. This is diagrammed in Figure 5. The interaction of the metal p orbital will be primarily with the rare gas $(n + 1)p$ orbitals due to their energetic proximity. To account for this twofold interaction, we have taken an energy weighted average of the Q_{np} and $Q_{(n + 1)p}$. The expression used is

$$Q_{\text{Ave}} = \frac{(E_{\text{Ion}}^X + H_{11})Q_{(n + 1)p}}{(E_{\text{Ion}}^X + H_{22})} + \frac{(H_{22} - H_{11})Q_{np}}{(E_{\text{Ion}}^X + H_{22})}$$

where E_{Ion}^X is the ionization energy of the rare gas. The ζ_X used for the $Q_{(n + 1)p}$'s are taken from Ref. 2 with the unknown value for Ar interpolated from the other rare gas values.

The SO reduction factors may now be evaluated using (14). This has been done using the two sets of Q discussed above. The k so obtained are labelled k_{np} and k_{ave} and are given in Table 7, together with a listing of the experimental values, k_{exp}, where known.

Discussion

Confining our discussion initially to the k_{np} results, it can be seen from Table 7 that most of the trends noted in the
Introduction are predicted by the present supermolecule approach. That is, 1) k and hence ξ_{Eff} for all metals decrease in the order $\text{Ar} > \text{Kr} > \text{Xe}$, 2) the k for Au are all greater than one, indicating that its SO constant is greater in matrices than in the gas phase, and 3) the alkali metal k reported to date are predicted to be negative in all the rare gases (i.e. the $U' (J = 3/2)$ state lies below the $E'(J = 1/2)$ state; c.f. Fig. 1).

While encouraging, the results for k_{np} are not without some problems, the major of which is the failure to predict a negative k for Cu/Xe. We postpone discussion of this point until after presentation of the k_{ave} results. Another problem arises in the predictions for the alkali metals. Although all are of the correct sign, the predicted magnitudes are too large by factors in the range $2 - 9$. Perhaps because of their smaller size relative to the noble metals, the alkalis (particularly Li and Na) may occupy sites other than the twelve-coordinate tetradecahedral one assumed here. In Appendix A it is shown that the SO reduction factor expression for a six coordinate octahedral site is identical to (14) except that the numerical coefficient in the second term is 2 instead of 4. Therefore, occupation of a six or possibly four coordinate site would improve our prediction by a factor of 2 or 3, respectively. This is however not sufficient to bring theoretical and experimental k values into agreement. The k_{np} predictions are based on Q_{np} values found using ξ_{np} constants for the $np^5(n + 1)s^1$ electronic configuration.
If, however, the ζ_X for the $(n + 1)p^l$ configuration are used, smaller SO constants are expected because of the screening effect associated with the larger principal quantum number. Then should be smaller and the predicted k's more in line with experiment. This is in fact the case. However, rather than report the k computed from these $Q_{(n + 1)p'}$, we choose instead to give the k_{ave} which provide better overall results. Table 7 shows that the k predicted for the alkalis are much reduced and indeed are now of the correct order of magnitude. The Li/Ar prediction is now within $\pm 20\%$ of the observed value and, significantly, the K/Ar prediction is now just positive, in accord with experiment. For the alkalis, as the rare gas atomic number increases, the agreement with experiment seems to worsen. However, the K/Xe result is less than a factor of two from the experimental value. This probably reflects the fact that Li and Na fit most snugly into the Ar substitutional MX$_{12}$ site, whereas K fits best into Xe. The relevant covalent radii are given in Table 8. For the noble metals, the predictions are good except for Cu. The prediction for Ag is now that the k's for all the rare gases will be greater than one, as in Au.

The Cu results are perplexing for several reasons. First, the Cu/Ar k is now greater than one, contrary to experiment, and secondly, the Cu/Xe k is not negative, as observed. In the case of this metal only, the prediction using k_{ave} is poorer than using k_{np}. Interestingly, of all the six metals studied here Cu has the smallest atomic radius (1.28Å, cf. Table 8). Indeed it is
more than 30% smaller than even Ar. It could be that because of its small size the matrix cage collapses around the Cu as the matrix isolation process proceeds. To test the effect of such a collapse, the interatomic distances in the Cu-rare gas cage were reduced by 25% and new overlap integrals and mixing coefficients computed. From them, new k_{ave}'s were determined. The results are shown in Table 9. The k from Cu/Xe is now negative as observed and the k for Cu/Kr is in good agreement with experiment. (For a 27% decrease, the Cu/Xe k becomes -0.17.) The Cu/Ar result remains greater than one however. This highlights an important feature of expression (14). The major effect of the recalculation of overlap integrals and mixing coefficients due to interatomic distance changes or changes in the radial portion of the wavefunctions employed will be on the coefficient in front of the term in square brackets (i.e., $4cS_\pi(2R - 1)$). Of the terms within the square bracket, the ratio $(R^2 + 2)/(2R - 1)$ changes little and Q not at all. This means that those metal-rare gas combinations in Class I will remain in Class I and their k values will become larger. For those combinations in Class II, since the quantity in square brackets is negative, a larger coefficient in front will decrease the k value and may even cause it to become negative.
Table 8

Atomic Covalent Radii for the Noble and Alkali Metals and the Rare Gases

<table>
<thead>
<tr>
<th>Atom</th>
<th>Atomic Radius/Å</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>1.90</td>
<td>3</td>
</tr>
<tr>
<td>Kr</td>
<td>2.00</td>
<td>4</td>
</tr>
<tr>
<td>Xe</td>
<td>2.20</td>
<td>5</td>
</tr>
<tr>
<td>Li</td>
<td>1.52</td>
<td>2</td>
</tr>
<tr>
<td>Na</td>
<td>1.85</td>
<td>3</td>
</tr>
<tr>
<td>K</td>
<td>2.31</td>
<td>4</td>
</tr>
<tr>
<td>Cu</td>
<td>1.28</td>
<td>4</td>
</tr>
<tr>
<td>Ag</td>
<td>1.44</td>
<td>5</td>
</tr>
<tr>
<td>Au</td>
<td>1.44</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 9
Overlap Integrals, Mixing Coefficients, and SO Reduction Factors for Cu and the Rare Gases with 25% Collapsed Lattice

<table>
<thead>
<tr>
<th>System</th>
<th>Metal</th>
<th>Rare Gas</th>
<th>(S_\sigma^a)</th>
<th>(S_\pi^a)</th>
<th>(c)</th>
<th>(k_{ave}^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu Ar</td>
<td>Cu</td>
<td>Ar</td>
<td>0.2033</td>
<td>0.09344</td>
<td>0.1734</td>
<td>1.220</td>
</tr>
<tr>
<td>Kr</td>
<td>Kr</td>
<td>Kr</td>
<td>0.2267</td>
<td>0.09830</td>
<td>0.1363</td>
<td>0.585</td>
</tr>
<tr>
<td>Xe</td>
<td>Xe</td>
<td>Xe</td>
<td>0.2462</td>
<td>0.10037</td>
<td>0.0984</td>
<td>-0.054</td>
</tr>
</tbody>
</table>

\(a\) Calculated for a 25\% decrease in the metal to rare gas atom distance.

\(b\) Computed using \(Q_{ave}\), cf. Table 4.
And for Class III combinations, their k will become more negative, so the discrepancy in the Cu/Ar value cannot be corrected by using better wavefunctions or more accurate cage dimensions. It most likely results from the Q_{ave} used. $Q(n + 1)p$ for Cu/Ar is 0.471 which leads to a $k = 1.08$ (with no lattice contraction). Apparently in this case the Cu p orbital interactions with the Ar np orbitals are greater than accounted for by the expression for Q_{ave}. Using Q_{np} alone yields a k value (0.85) in good agreement with experiment (0.75).

Conclusion

Three classes of spin-orbit splitting in the excited 2P states of alkali and noble metals in rare gas matrices have been recognized. They comprise values which are (I) positive and greater than gas phase values, (II) positive and smaller than gas phase values and (III) negative and smaller than gas phase values.

To account theoretically for these classes a supermolecule model of the metal in the matrix is proposed. The model assumes that only the first shell of rare gas atoms is important and that the supermolecule is composed of a metal in a substitutional site surrounded by twelve rare gas atoms. The relevant MOs are formed using metal p orbitals and rare gas $(n + 1)p$ orbital. The spin-orbit matrix is constructed using a Hamiltonian which includes one center SO operators on the metal and each rare gas atom.
Solution of the secular equation shows that the SO splitting in the matrix is dependent on three factors: the metal rare gas overlap integrals, the MO coefficients, and the relative magnitudes of the metal and rare gas SO coupling constants.

With some approximations, a simple master equation for the SO reduction factor is derived. It is shown that for certain limiting conditions this expression is capable of predicting the three major classes.

Quantitative estimates of the SO reduction factors for the noble and alkali metals in the rare gases, Ar, Kr, and Xe are made using a semiempirical approach. Two different sets of SO reduction factors are computed, the first \((k_{np})\) utilizing the rare gas SO coupling constants derived from the np\(^5\)(n + 1)s\(^1\) electronic configuration and the second \((k_{ave})\) involving an energy weighted average of the np and (n + 1)p SO constants. Both mimic the following experimental observations well: 1) decreasing k's for all metals in the order Ar > Kr > Xe, 2) k's for Au greater than one for all rare gases, and 3) alkali metal k's all negative with the exception of K/Ar which \(k_{ave}\) predicts correctly but \(k_{np}\) does not. Both approaches have trouble with Cu, however. It is pointed out that a collapsed rare gas cage in this case is a reasonable possibility.

This work represents an attempt to account both qualitatively and quantitatively for the external heavy atom effect of noble and alkali metals in rare gas matrices.
A wide variety of experimental observations can be accounted for by this simple parameter-free theory. Extension of the present theory to other systems such as F centers or aromatic hydrocarbons would be interesting.
CHAPTER 3
MAGNETIC CIRCULAR DICHROISM OF ATOMIC RHENIUM IN A
KRYPTON MATRIX: LARGE GROUND STATE CRYSTAL FIELD SPLITTING

Introduction

Manganese and rhenium, as first and third row partners in
group VII B, are expected to have the same electronic ground state
in various media. Spectroscopic studies35 show that both possess a
$^6S_{5/2}$ ground state in the vapor phase. Matrix studies of Mn concur
with this assignment48,49 but a recent matrix study has called into
question an analogous assignment for Re in argon matrices.
Recently, Weltner and co-workers attempted to observe an ESR
spectrum of Re in an Ar matrix but found no signal.49 This
surprising result led to several questions: Was the vapor phase
work35 in error in assigning the ground state to $^6S_{5/2}$? Was there
a matrix induced inversion of electronic states, as had recently
been seen50-54 for Ni atoms in Ar, Kr, and Xe matrices? Or, was a
large matrix-induced crystal field splitting of the $^6S_{5/2}$ ground
state responsible? There have been several other matrix studies on
Re but they cast little light on this problem. Klotzbucher and Ozin
have reported55 the optical absorption spectrum (550-200 nm region)
of Re matrix-isolated in Ar and, by comparison to vapor phase

49
results, tentatively assigned the observed bands. A $6S_{5/2}$ ground state was assumed by these authors. Ozin and Kundig56 reported on the reactions of Re atoms isolated in a CO matrix.

Here we present the results of our magnetic circular dichroism (MCD)/absorption study of Re atoms isolated in a Kr matrix. To investigate the electronic ground state, use has been made of the MCD saturation method. This method, in which one or more optical transitions are monitored as a function of temperature and/or magnetic field strength, possesses the advantage that it may be used to probe paramagnetic samples, even though the sample may be ESR-silent. It is shown from the analysis of our MCD saturation results that a spin-orbit induced mixing of a low lying $4P_{5/2}$ state into the $6S_{5/2}$ ground state gives rise to a large matrix-induced zero field splitting. This splitting of 7.5 cm$^{-1}$ is sufficient to preclude the observation of any X-band ESR spectrum at 4 K.

Initially, the theoretical expressions necessary to extract the crystal field splitting are developed. The spectral assignments and saturation results are then presented followed by a discussion of our findings.
Theory

Ground State Wavefunctions

The Re atom is assumed (1) to occupy a substitutional site of octahedral symmetry in the krypton matrix and (2) to have a $^6S_{5/2}$ ground state in this matrix. Since the $^6S_{5/2}$ state possesses only spin angular momentum and the crystalline electric field is spin independent, the state will not split to first order. When an appropriate orbital angular momentum bearing state is coupled to it, however, the $^6S_{5/2}$ state will split into E'' and U' (O symmetry) components. These components may be expanded in a $|J M_J\rangle$ basis as follows:

$$|Gg\rangle = \sum_{M_J} \Gamma_{Gg}(M_J) |5/2 M_J\rangle$$

where $|Gg\rangle$ stands for $E''\alpha$, $E''\beta$, $U'\kappa$, $U'\nu$, $U'\mu$, $U'\lambda$, and the coefficients $\Gamma_{Gg}(M_J)$ have been given by Griffith; they are tabulated in Table 10.

Mixing of the lowest lying excited state, the $^4P_{5/2}$ (located at 11584 cm$^{-1}$), into the $^6S_{5/2}$ ground state may occur via spin-orbit coupling. While this state does possess orbital angular momentum, it is nonetheless insufficient to produce any ground state splitting.
Since a Re atom has a half filled ground state configuration, it is possible to group its d^5 Russell-Saunders terms into two classes bases upon their seniority quantum number (lower left hand index).

<table>
<thead>
<tr>
<th>Class I</th>
<th>Class II</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^D_1</td>
<td>$2^P_{DFG}H$</td>
</tr>
<tr>
<td>2^S_{DFGI}</td>
<td>4^F_3</td>
</tr>
<tr>
<td>$4^D_{DG} 6^S_5$</td>
<td></td>
</tr>
</tbody>
</table>

The only nonvanishing spin-orbit or crystal field matrix elements have the form $\langle\text{Class I State}| H |\text{Class II State}\rangle$; there are no diagonal matrix elements of these two operators for a half filled shell (viz. $\langle 4^P|H_{\text{CF}}| 4^P \rangle = \langle 6^S|H_{\text{CF}}| 6^S \rangle = 0$).

It is important to note that since the ground state has a nominal spin, $S = 5/2$, it cannot mix via the spin independent crystal field Hamiltonian with higher lying doublet ($S = 1/2$) and quartet ($S = 3/2$) states. Therefore, admixture of orbital angular momentum into the ground state occurs via states such as the 4^G (viz. $\langle 4^P|H_{\text{CF}}| 4^G \rangle$) which are crystal field coupled to the 4^P excited state. Hence we write for the ground state wavefunction

$$|5/2 \ M_J> = \Sigma_{i=1}^{i=3} c_i |5/2 \ M_J, i> \quad (21)$$
Table 10
Octahedral Symmetry Adapted Wavefunctions in the $|J M_J>$ Basis for $J = 5/2$

<table>
<thead>
<tr>
<th>O_h Label</th>
<th>Wavefunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>E''\alpha'>$</td>
</tr>
<tr>
<td>$</td>
<td>E''\beta'>$</td>
</tr>
<tr>
<td>$</td>
<td>U'\kappa>$</td>
</tr>
<tr>
<td>$</td>
<td>U'\lambda>$</td>
</tr>
<tr>
<td>$</td>
<td>U'\mu>$</td>
</tr>
<tr>
<td>$</td>
<td>U'\nu>$</td>
</tr>
</tbody>
</table>

* Reference 58.
where the 1, 2, and 3 subscripts and labels in the kets refer to the \(6s_{5/2} \), \(4p_{5/2} \), and \(4g_{5/2} \) states, respectively. The \(|G_o>\) wavefunctions may now be written

\[
|G_o> = \sum \Gamma_{G_0}(M_J) \left[\sum c_i |5/2, M_J, i> \right] \tag{22}
\]

Crystal Field and Zeeman Splitting

These wavefunctions can now be used to calculate the crystal field and Zeeman splitting. The Hamiltonian is

\[
H = H_{CF} + H_B \tag{23}
\]

where \(H_{CF} = B_4 (4^0_0 + 50^4_4) \) and \(H_B = g_u B J_z \). Here the crystal field Hamiltonian is expressed in terms of equivalent operators with the axis of quantization assumed to be along the crystalline site's fourfold axis. Similar results are obtained with the axis of quantization assumed to lie along the threefold axis.\(^59\)

Evaluating the matrix element \(<G_o|H|G_o>\) gives
\[
\langle G_\sigma | H | G_\sigma \rangle = \sum \sum \sum \Gamma_{G_\sigma} (M_j) \Gamma_{G_\sigma} (M_j') c_i c_j \langle 5/2 M_j, i | H | 5/2 M_j', j \rangle
\]

(24)

Using the octahedral component states given in Table 10, the Zeeman and crystal field matrix elements in Eq. (24) are readily evaluated. The results are given in Table 11. Due to the relatively small magnetic fields used here (0.5 T), the off diagonal Zeeman matrix elements \(\langle E''\alpha | H_B | U'\nu \rangle \) and \(\langle E''\beta | H_B | U'\kappa \rangle \) have been neglected. The results are sketched in Fig. 6 where it can be seen that the crystal field splitting is equal to \(3A \). Here \(A = 240B_4c_2c_3 \) and \(c_2 \) and \(c_3 \) represent the mixing coefficients of the \(^4P_{5/2} \) and \(^4G_{5/2} \) states, respectively. For a sufficiently large splitting no ESR transitions would be expected at low temperatures between the individual \(U' \) components or between the \(E'' \) and \(U' \) components. Transitions between the \(E''\alpha \) and \(E''\beta \) Kramer's doublet components are expected to be very weak, if observable at all.
Table 11

Crystal Field and Zeeman Matrix Elements for the $^6S_{5/2}$
Ground State Perturbed by the Nearby $^4P_{5/2}$ State

<table>
<thead>
<tr>
<th>Ground State Component</th>
<th>$\langle Go \mid H_{CF} + H_B \mid Go \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E"a"</td>
<td>$-2A - \frac{5}{6}(c_1^2x_1 + c_2^2x_2 + c_3^2x_3)^a$</td>
</tr>
<tr>
<td>E"b"</td>
<td>$-2A + \frac{5}{6}(c_1^2x_1 + c_2^2x_2 + c_3^2x_3)$</td>
</tr>
<tr>
<td>U'k</td>
<td>$A - \frac{11}{6}(c_1^2x_1 + c_2^2x_2 + c_3^2x_3)$</td>
</tr>
<tr>
<td>U'μ</td>
<td>$A - \frac{1}{2}(c_1^2x_1 + c_2^2x_2 + c_3^2x_3)$</td>
</tr>
<tr>
<td>U'λ</td>
<td>$A + \frac{1}{2}(c_1^2x_1 + c_2^2x_2 + c_3^2x_3)$</td>
</tr>
<tr>
<td>U'v</td>
<td>$A + \frac{11}{6}(c_1^2x_1 + c_2^2x_2 + c_3^2x_3)$</td>
</tr>
</tbody>
</table>

$^a x_1 = g_1\mu_B B$, where g_1 is the g factor for the $^6S_{5/2}$ state; $x_2 = g_2\mu_B B$, where g_2 is the g factor for the $^4P_{5/2}$ state; $x_3 = g_3\mu_B B$, where g_3 is the g factor for the $^4G_{5/2}$ state; the coefficients c_1, c_2, and c_3 are defined by Eq. (26) and the crystal field parameter $A = 240B_4c_2c_3 (+$ higher terms).
Figure 6

Schematic Energy Level Diagram for a $J = 5/2$ State
Showing the Influence of a Crystal Field (H_{CF})
and a Magnetic Field (H_B).
MCD Saturation Expressions

The general expression for the differential absorbance (ΔA) observed in MCD is given by

\[
\Delta A = \frac{q f c y}{Z} \sum_{\alpha \beta} \exp\left(-\frac{\langle \alpha | H | \alpha \rangle}{kT}\right) x \\
\left[|\langle \alpha | m_- | J \beta \rangle|^2 - |\langle \alpha | m_+ | J \beta \rangle|^2 \right]
\]

where \(\Delta A = A_- - A_+ \), \(q \) is a constant, \(f \) is the bandshape function, \(c \) is the sample concentration, \(y \) the pathlength, and \(Z \) the electronic partition function. \(A \) denotes the ground electronic state with components \(\alpha \) while \(J \) and \(\beta \) refer to the excited electronic state on which the optical transition terminates. The electric transition dipole operators are defined by \(m_\pm = (m_x \pm \imath m_y)/\sqrt{2} \).

The transition moment matrix elements are easily evaluated using the Wigner-Eckart theorem.
\[|\langle G\sigma | m_\pm | J\beta \rangle|^2 = \sum_{i=1}^{5/2, 1} |m||J\rangle|^{2} \times \Gamma_{G\sigma}^2(\beta \pm 1) \left(\begin{array}{ccc} 5/2 & 1 & J \\ -\beta+1 & \pm 1 & \beta \end{array} \right)^2 \] (26)

Inserting Eq. (26) into Eq. (25), substituting \(|G\sigma\rangle\) for \(|A\alpha\rangle\) and factoring out the reduced matrix element term we find

\[\Delta A \propto (1/2) \sum_{\sigma\beta} \exp(-\langle G\sigma | H | G\sigma \rangle/kT)x \] (27)

\[[\Gamma_{G\sigma}^2(\beta - 1) \left(\begin{array}{ccc} 5/2 & 1 & J \\ -\beta+1 & -1 & \beta \end{array} \right)^2 \]
\[\Gamma_{G\sigma}^2(\beta + 1) \left(\begin{array}{ccc} 5/2 & 1 & J \\ -\beta-1 & 1 & \beta \end{array} \right)^2 \]]

Finally, substituting the CF/Zeeman energies from Table 11 into Eq. (27) and computing the 3j coefficients,\(^{61}\) we obtain the following MCD saturation expression for the transitions \(J = 5/2(E''', U') \rightarrow J = 3/2, 5/2, 7/2.\)
\[\Delta A = \pm [5\exp(2A/kT)\sinh(5x/6)] + \exp(-A/kT)(11\sinh(11x/6) + 3\sinh(x/2))] / Z \]

(28)

where

\[Z = 2[\exp(2A/kT)\cosh(5x/6) + \exp(-A/kT)(\cosh(11x/6) + \cosh(x/2))] \]

(29)

and \(x = (c_1^2x_1 + c_2^2x_2 + c_3^2x_3)/kT \) with \(x_1, x_2 \) and \(x_3 \) defined in Table 1. The plus sign holds for the cases \(\Delta J = 0, -1 \) while the negative sign applies to the \(\Delta J = +1 \) case. If \(c_2 \) or \(c_3 = 0 \) (\(c_1 = 1 \)) in the above expression, the CF term vanishes as expected for the orbitally nondegenerate \(^6S_{5/2} \) state. And, if it is assumed that the \(g \) factors for the \(^6S_{5/2} \) and \(^4P_{5/2} \) states are equal (from the Lande equation they are 2.0 and 1.6 respectively), \(x \) becomes \(g\mu_B B/kT \). The coefficient \(c_3 \) is expected to be small and hence the last term is dropped from the above expression for \(x \).
Evaluation of Mixing Coefficients

To evaluate c_1 and c_2 which occur in Eq. (28) and (29) the following interstate SO matrix must be evaluated

\[
\begin{bmatrix}
\langle 4P_{5/2}|H_{SO}|4P_{5/2}\rangle + \Delta E & \langle 4P_{5/2}|H_{SO}|6S_{5/2}\rangle \\
\langle 6S_{5/2}|H_{SO}|4P_{5/2}\rangle & \langle 6S_{5/2}|H_{SO}|6S_{5/2}\rangle
\end{bmatrix}
\]

(30)

where ΔE is the energy difference between the two states before SO mixing. The energy of the $6S_{5/2}$ state is taken to be zero.

Both the $6S_{5/2}$ and $4P_{5/2}$ states have $\ldots 5d^56s^2$ electronic configurations. The 6s electrons will not contribute to any SO coupling; however, the 5d ones will. The SO matrix elements of an 1^n electron configuration may be found using
Inserting tabulated values for the $6j$ coefficients61 and reduced matrix elements62 ($V^{(11)}$) leads to the secular determinant

\[
\begin{vmatrix}
E - \epsilon & -\sqrt{5}\langle \zeta \rangle_{5d} \\
-\sqrt{5}\langle \zeta \rangle_{5d} & -\epsilon
\end{vmatrix} = 0
\]

(32)

Evaluating the characteristic polynomial with $\langle \zeta \rangle_{5d} = 2229\text{cm}^{-1}$ for the $4P_{5/2}$ state35 and setting the eigenvalue difference $\Delta \epsilon$ equal to the gas phase energy separation of 11584cm^{-1}, the energy separation before SO interaction (ΔE) is found to be 5901cm^{-1}. Thus, $\epsilon_{1,2} = -356.5, 11227.5\text{cm}^{-1}$ and $c_1^2 = 0.75$ and $c_2^2 = 0.25$. In other words, we estimate that the $4P_{5/2}$ state is approximately 25% SO mixed into $6S_{5/2}$. Obviously other higher energy states could also be mixed in, but these are ignored here in the present simple treatment.
MCD Moments for Overlapped Multiplets

The above expression (33) for MCD saturation are applicable only for isolated, nonoverlapped bands. For overlapped bands, a different approach must be used. Such a case might arise if the SO splitting in a particular electronic state is not sufficiently large to separate and resolve transitions to its different multiplets. The approach chosen then is to plot the reduced first moment versus inverse temperature. The appropriate expression for P<– S transitions of any multiplicity has been given previously

\[
\frac{<\Delta A_i>}{<A>_0} = 2(g_{orb} - a_s \lambda /kT)\mu_B B
\]

(33)

where \(g_{orb} \) is the excited P state g factor, \(\lambda \) is the excited state SO splitting parameter, \(\mu_B \) is the Bohr magneton and \(B \) the magnetic induction. This expression is unaffected by any Jahn-Teller activity in the excited state.\(^{37}\) The quantity \(a_s \) above is defined by

\[
a_s = -(kT/\mu_B B)<S_z>
\]

(34)

in which \(<S_z> \) is the thermal average of the ground state spin operator \(S_z \).
For the present system we redefine \(a_s \) to account for the orbital angular momentum mixed into the ground state. Now

\[
a_s = -(kT/\mu_B B) \langle J_z \rangle
\]

(35)

and expanding we obtain

\[
a_s = -(kT/\mu_B B) \sum_\sigma <G\sigma|J_z|G\sigma> \exp(-<G\sigma|H|G\sigma>/kT)/Z \]

(36)

where all terms have been defined above, except the partition function \(Z \) which is

\[
Z = \sum_\sigma \exp(-<G\sigma|H|G\sigma>/kT) \]

(37)

Evaluating the matrix elements in (36) leads to

\[
a_s = (kT/Z \mu_B B)[(5/3) \exp(2A/kT) \sinh(5x/6) + \\
\exp(-A/kT)((11/3) \sinh(11x/6) + \sinh(x/2))]
\]

(38)

where \(x = g\mu_B B/kT \) and \(g \) is the "average" \(g \) (=1.8) value for the \(^6S_{5/2} \) and \(^4P_{5/2} \) states. Expression (38) is similar to Eq. (28) given above. A reduced first moment plot vs. inverse temperature as indicated by expression (33) is not expected to yield a straight line because of the temperature dependence in the new \(a_s \) given in
Eq. (38). For zero CF splitting in an orbitally nondegenerate state, a_s was found earlier63 to be equal to $2S(S + 1)/3$, i.e. temperature independent.

Results

Spectral Assignments

The absorption and MCD spectra of Re isolated in solid Kr are shown in Fig. 7. For each of the three regions simulated spectra are also given. The simulated absorption spectra have been calculated from the relative positions and intensities (gf values) of the gas phase bands (cf. Table 12). Gaussian band shapes have been assumed and the band widths (constant for all bands in absorption and MCD within a given region) chosen to match the observed spectra. The spectra have been shifted from gas phase positions to match the matrix ones (cf. Table 12 for shifts). The simulated MCD band strengths and signs were calculated from the gas phase intensity values multiplied by the predicted C_0/D_0 values. The later are64,65: g_a for $\Delta J = 0$ transitions, $-Jg_a$ for $\Delta J = +1$ transitions and $(J + 1)g_a$ for $\Delta J = -1$ transitions.
Figure 7

Absorption and MCD Spectra of Re in a Kr Matrix at 10 K

a) 510-450 nm Region: Left Panel, Observed MCD (Top) and Absorption (Bottom). Right Panel Simulated Spectra.
b) 360-270 nm Region: Left Panel, Observed MCD (Top) and Absorption (Bottom). Right Panel Simulated Spectra.
c) 280-220 nm Region: Observed Spectra.
d) 280-220 nm Region: Simulated Spectra.
Figure 7—continued
Figure 7—continued
Figure 7—continued
Table 12

Positions, Assignments, and Matrix Shifts of MCD Bands of Re Atoms Isolated in a Krypton Matrix (12 K).

<table>
<thead>
<tr>
<th>Assignment</th>
<th>λ(nm)</th>
<th>$\bar{\nu}_{\text{vac}}$(cm$^{-1}$)</th>
<th>Sign</th>
<th>$\bar{\nu}_{\text{gas}}$(cm$^{-1}$)</th>
<th>$\Delta\bar{\nu}$(cm$^{-1}$)</th>
<th>100gf</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z^8p_{5/2}$</td>
<td>504.0</td>
<td>19836</td>
<td>+</td>
<td>18950</td>
<td>886</td>
<td>0.76</td>
</tr>
<tr>
<td>$z^8p_{7/2}$</td>
<td>470.0</td>
<td>21271</td>
<td>-</td>
<td>20448</td>
<td>823</td>
<td>1.31</td>
</tr>
<tr>
<td>$z^6p_{7/2}$</td>
<td>466.5</td>
<td>21431</td>
<td>-</td>
<td>20448</td>
<td>983</td>
<td>1.31</td>
</tr>
<tr>
<td>$z^6p_{5/2}$</td>
<td>332.8</td>
<td>30040</td>
<td>-</td>
<td>28854</td>
<td>1186</td>
<td>88</td>
</tr>
<tr>
<td>$z^6p_{7/2}$</td>
<td>331.2</td>
<td>30185</td>
<td>-</td>
<td>28890</td>
<td>1295</td>
<td>120</td>
</tr>
<tr>
<td>$z^6p_{3/2}$</td>
<td>327.5</td>
<td>30526</td>
<td>+</td>
<td>28962</td>
<td>1564</td>
<td>36</td>
</tr>
<tr>
<td>$z^6d_{3/2}$</td>
<td>299.8</td>
<td>33346</td>
<td>+</td>
<td>32592</td>
<td>754</td>
<td>7</td>
</tr>
<tr>
<td>$z^6d_{5/2}$</td>
<td>293.1</td>
<td>34109</td>
<td>+</td>
<td>33409</td>
<td>700</td>
<td>8.2</td>
</tr>
<tr>
<td>$z^6p_{3/2}$</td>
<td>290.0</td>
<td>34473</td>
<td>+</td>
<td>33589</td>
<td>884</td>
<td>1.5</td>
</tr>
<tr>
<td>$z^6d_{7/2}$</td>
<td>284.0</td>
<td>35201</td>
<td>-</td>
<td>34520</td>
<td>681</td>
<td>2.8</td>
</tr>
<tr>
<td>$z^6g_{3/2}$</td>
<td>265.0</td>
<td>37725</td>
<td>+</td>
<td>37064</td>
<td>661</td>
<td>0.84</td>
</tr>
<tr>
<td>$z^6g_{5/2}$</td>
<td>262.2</td>
<td>38128</td>
<td>+</td>
<td>37381</td>
<td>747</td>
<td>9.6</td>
</tr>
<tr>
<td>$\Gamma_{5/2}$</td>
<td>260.5</td>
<td>38376</td>
<td>+</td>
<td>37698</td>
<td>678</td>
<td>7.2</td>
</tr>
<tr>
<td>$z^6f_{7/2}$</td>
<td></td>
<td></td>
<td></td>
<td>37766</td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>$z^4p_{3/2}$</td>
<td>257.3</td>
<td>38854</td>
<td>+</td>
<td>37916</td>
<td>938</td>
<td>6.3</td>
</tr>
<tr>
<td>$z^6g_{7/2}$</td>
<td>254.5</td>
<td>39281</td>
<td>-</td>
<td>38521</td>
<td>760</td>
<td>2.3</td>
</tr>
<tr>
<td>$z^6f_{5/2}$</td>
<td>250.4</td>
<td>39924</td>
<td>+</td>
<td>39065</td>
<td>859</td>
<td>3.2</td>
</tr>
<tr>
<td>$\Gamma_{5/2}$</td>
<td></td>
<td></td>
<td></td>
<td>39671</td>
<td></td>
<td>8.3</td>
</tr>
<tr>
<td>$x^6p_{7/2}$</td>
<td>247.0</td>
<td>40474</td>
<td>-</td>
<td>39845</td>
<td>629</td>
<td>28</td>
</tr>
<tr>
<td>$z^6f_{3/2}$</td>
<td>244.5</td>
<td>40887</td>
<td>+</td>
<td>39927</td>
<td>960</td>
<td>NG</td>
</tr>
</tbody>
</table>

Note: The last column labeled NG indicates not given.
<table>
<thead>
<tr>
<th>Assignment</th>
<th>λ(nm)</th>
<th>$\bar{\nu}_{\text{vac}}$(cm$^{-1}$)</th>
<th>MCD</th>
<th>$\bar{\nu}_{\text{gas}}$(cm$^{-1}$)</th>
<th>$\Delta\bar{\nu}$(cm$^{-1}$)</th>
<th>100gf</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma_{3/2}$</td>
<td>243.3</td>
<td>41089</td>
<td>+</td>
<td>40809</td>
<td>280</td>
<td>NG</td>
</tr>
<tr>
<td>$\Gamma_{5/2}$</td>
<td>241.5</td>
<td>41395</td>
<td>+</td>
<td>40822</td>
<td>573</td>
<td>11</td>
</tr>
<tr>
<td>$^6D_{7/2}$</td>
<td></td>
<td></td>
<td></td>
<td>40947</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Gamma_{7/2}$</td>
<td>238.7</td>
<td>41881</td>
<td>-</td>
<td>41164</td>
<td>717</td>
<td>39</td>
</tr>
<tr>
<td>$^6D_{5/2}$</td>
<td></td>
<td></td>
<td></td>
<td>41313</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>$^6D_{3/2}$</td>
<td>238.0</td>
<td>42004</td>
<td>+</td>
<td>41557</td>
<td>447</td>
<td>9.6</td>
</tr>
<tr>
<td>$\Gamma_{7/2}$</td>
<td></td>
<td></td>
<td></td>
<td>41844</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>$^4D_{3/2}$</td>
<td>233.0</td>
<td>42905</td>
<td>+</td>
<td>42254</td>
<td>651</td>
<td>11</td>
</tr>
<tr>
<td>$^4D_{5/2}$</td>
<td></td>
<td></td>
<td></td>
<td>43044</td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td>$\Gamma_{3/2}$</td>
<td></td>
<td></td>
<td></td>
<td>43342</td>
<td></td>
<td>4.3</td>
</tr>
<tr>
<td>$^4D_{7/2}$</td>
<td></td>
<td></td>
<td></td>
<td>43408</td>
<td></td>
<td>3.9</td>
</tr>
<tr>
<td>$\Gamma_{7/2}$</td>
<td></td>
<td></td>
<td></td>
<td>43815</td>
<td></td>
<td>8.6</td>
</tr>
<tr>
<td>$\Gamma_{5/2}$</td>
<td></td>
<td></td>
<td></td>
<td>43950</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>$\Gamma_{5/2}$</td>
<td></td>
<td></td>
<td></td>
<td>44054</td>
<td></td>
<td>NG</td>
</tr>
</tbody>
</table>

\(^a\) Ref. 35.

\(^b\) $\Delta\bar{\nu} = \bar{\nu}_{\text{vac}} - \bar{\nu}_{\text{gas}}$; $\bar{\nu}_{\text{vac}}$ is the matrix value corrected for the refractive index of air.

\(^d\) none given
Here, g_a is the ground state g value. It can be seen that the observed and simulated spectra in the two lower regions are in close accord. Some minor differences are discussed below. The simulated spectra in the 220-280 nm range are distorted in the 243-241 nm region since there are no available gas phase intensity values for the $z^6F_{3/2}$ and $\Gamma_{3/2}$ bands occurring there. Nevertheless, the appearance of the negative MCD peaks in the simulations enables their assignment in the observed spectrum to $J = 7/2$ multiplets.

In Table 12 are given the observed band positions, assignments, observed MCD C term signs, and matrix shifts. The assignments of the bands were guided from the vapor phase studies and the predicted signs of the MCD C terms. Transitions from a $J = 5/2$ multiplet to $J = 3/2$ and $5/2$ multiplets are predicted to have positive C terms while those to $J = 7/2$ multiplets are expected to have negative C terms. Although this expectation is usually met in practice, there is one situation seen to date where it is not. For those transitions from an S ground state to a P excited state of the same multiplicity in which an electron is promoted from an s to an p orbital, the $\Delta J = 0$ transition has been found to give a negative C term. A positive one is predicted. This is known to develop because of the vibronic mixing of the excited state components via the Jahn-Teller (JT) effect.
In the present system this is observed in the 6_p system at ≈ 330 nm. The order in the gas phase is $6_{5/2}^p$, $6_{7/2}^p$, $6_{3/2}^p$ (with increasing energy)35 so the predicted C term signs (in the absence of the JT effect) should be positive, negative, positive, respectively. The observed signs are negative, negative (unresolved) and positive. There is other evidence for JT activity in this band system. There appears to be JT activity also in the lower energy 8_p band system in the 510-450 nm region. The first band at 504.0 nm is assigned to the $z^{8^p}_{5/2}$ multiplet. It exhibits a positive C term, as expected. Two bands are observed at 470.0 and 466.5 nm (seen clearly only in MCD) when only one band (the $z^{8^p}_{7/2}$) is expected. Both show negative C terms, as predicted for a $J = 7/2$ multiplet. The appearance of two negative bands in the matrix MCD is, we believe, attributable to the lifting of the multiplet degeneracy as a result of JT activity. Further analysis would be necessary to prove this contention.

Jahn-Teller Activity

To test whether the $6_p^J \leftarrow 6_{5/2}^S$ transition (330 nm) is undergoing Jahn-Teller activity due to nontotally symmetric vibrations of the matrix cage, use was made of the following reduced moment equations63
\[
\frac{\langle \Delta A \rangle_3}{\langle A \rangle_0} = -6a_s \lambda ([<E^2>_C + <E^2>_{NC}/2] \\
+ a_s \lambda^2/2) \mu_B B/kT
\] (39)

and

\[
\frac{\langle A \rangle_2}{\langle A \rangle_0} = <E^2>_C + <E^2>_{NC} + a_s \lambda^2
\] (40)

where \(<E^2>_C\) and \(<E^2>_{NC}\) are the bandwidth contributions from lattice modes of cubic (\(a_{1g}\)) and noncubic (\(e_g\) and \(t_{2g}\)) symmetry, respectively. The SO constant (\(\lambda\)) in these expressions was taken from the fitting of the reduced first moment plot and the \(a\) parameter in the \(a_s\) Eq.(38) from the reduced zeroth moment plot (vide infra).

In Fig. 8(c) is shown the \(\frac{\langle \Delta A \rangle_3}{\langle A \rangle_0}\) vs 1/T plot. The quantity in square brackets in Eq. (39) was varied to obtain the fit shown by the solid line. The best fit result was \(<E^2>_C + <E^2>_{NC}/2 = 5.48 \times 10^4\) cm\(^{-1}\). Values of \(\frac{\langle A \rangle_2}{\langle A \rangle_0}\) over the same temperature range were independent of temperature. From Eq.(40) the quantity \(<E^2>_C + <E^2>_{NC}\) was found to be \(6.11 \times 10^4\) cm\(^{-1}\). Solving these two equations we find that \(<E^2>_C=4.86 \times 10^4\) cm\(^{-1}\) and \(<E^2>_{NC} = 1.25 \times 10^4\) cm\(^{-1}\). Thus we conclude that the JT effect is operational in this band system although the cubic mode activity is more important.
Figure 8
Reduced Moment Plots vs. Inverse Temperature

a) Zeroth Moment Plot for the $z^6_{P_{3/2}}$ Band.
 For Solid Line Fit $A = 1.5 \text{cm}^{-1}$; For
 Dash-Dot Line $A = 1.5 \text{cm}^{-1}$, and for
 Dashed Line $A = 3.5 \text{cm}^{-1}$. Use Upper Left
 Hand Ordinate.

b) Reduced First Moment Plot for the $z^6_{P_J}$
 Band. Use Middle Right Hand Ordinate.

c) Reduced Third Moment Plot for the $z^6_{P_J}$
 Band. Use Lower Left Hand Ordinate.
 Ordinate Should be Multiplied by 1.8×10^6.
MCD Saturation Results

The approach taken here has been to measure the temperature dependence (at fixed magnetic field strength) of several optical MCD/absorption bands of Re/Kr, and then fit these results to the appropriate theoretical expression (cf. Eqs. (28) and (33)). In doing so the ground state crystal field splitting and excited state \((z^6\text{P})\) spin-orbit coupling constant were extracted. For the technique to provide reliable data, it is usually necessary to choose for study bands which are reasonably strong and not overlapped with other bands. The \(z^6\text{D}_{3/2}\) band at 299.8 nm is an excellent candidate. The \(z^8\text{P}_{5/2}\) band at 504.0 nm and the \(z^8\text{P}_{7/2}\) band at 470.0/466.5 nm were also attempted, but the results were unsatisfactory (high scatter), presumably due to weak absorption. Finally the \(^6\text{P}\) band system at approximately 330 nm was also chosen although it does not fit the no overlap criterion.

Rather than plot peak heights, we choose instead to use a moment of the entire band or group of bands. The moments are defined\(^{60}\) as

\[
\langle A \rangle_n = \int \frac{A}{\varepsilon} (\varepsilon - \bar{\varepsilon})^n d\varepsilon \quad (41)
\]

\[
\langle \Delta A \rangle_n = \int \frac{\Delta A}{\varepsilon} (\varepsilon - \bar{\varepsilon})^n d\varepsilon \quad (42)
\]
where $\langle A \rangle_n$ and $\langle \Delta A \rangle_n$ are the nth absorption and MCD moments, respectively, and $\bar{\epsilon}$ is the average band energy defined so that $\langle A \rangle_1 = 0$. Also, $A = (A_+ + A_-)/2$ and $\Delta A = A_- - A_+$ where $A_+(A_-)$ is the absorbance of right (left) circularly polarized light. Reduced moment plots are preferred since they are concentration independent whereas the MCD or absorption moments alone are not. Any potential problems due to loss of sample and/or matrix material during any of the temperature runs are thereby avoided.

For the $^6D_{3/2}$ band (\approx3000 nm) a reduced zeroth moment ($\langle \Delta A \rangle_0 / \langle A \rangle_0$) plot was made and is shown in Fig.8(a). For a ground state which exhibits no crystal field splitting and normal Zeeman splitting such a plot is usually linear with the magnetic field (0.5 T) and the temperature range (9.2-42 K) used here. Clearly the present plot is nonlinear, indicating a substantial ground state splitting. It is also apparent from the figure that saturation (zero slope) has not yet been reached at the lowest temperatures employed here. The plot in Fig.8(a) was fit to saturation expression (28) using a least squares fitting procedure and varying the splitting parameter A. The solid line is the best fit ($A = 2.5 \text{ cm}^{-1}$). To give an indication of the sensitivity of the fit to A, we have also plotted the curves for $A = 1.5$ and 3.5 cm^{-1}. The actual crystal field splitting is thus found to be $3 \times (2.5 \pm 1.0) \text{cm}^{-1} = 7.5 \pm 3.0 \text{ cm}^{-1}$.

The approach used for the 6P band (\approx330 nm) is different. Because the three J multiplets (3/2,7/2,5/2) are severely overlapped, we used the approach outlined earlier.
The reduced first moment \((\langle \Delta A \rangle_1 / \langle A \rangle_0)\) was plotted versus \(1/T\) in Fig. 8(b). Expression (33) with \(a_s\) as defined in Eq. (38) was fit to this plot. Since \(x\) in Eq. (38) is small, the hyperbolic sine term can be expanded as \(\sinh(y) \approx y\) which leads to

\[
a_s \approx (25g/18Z)\exp(2A/kT) + (65g/9Z)\exp(-A/kT) \quad (43)
\]

The CF splitting factor \(A\) was taken from the previous fit to the \(6D_{3/2}\) band and the parameter \(\lambda\) varied until the fit shown in the figure obtained. As can be seen the fit is excellent and leads to a SO splitting parameter, \(\lambda = -102\) cm\(^{-1}\). Comparison of this value to the gas phase value is difficult since the multiplet order is perturbed, i.e. \(5/2 < 7/2 < 3/2\) (energetically) and the Lande interval rule not simply applicable.

Discussion

The question has been addressed as to why rhenium trapped in a low temperature matrix does not give an ESR spectrum even though its ground state is \(6S_{5/2}\). By using the MCD saturation method with an appropriate theoretical model, we have shown that the \(6S_{5/2}\) state is spin-orbit coupled with a low lying \(4P_{5/2}\) excited state, and that in a tetradecahedral substitutional matrix site, this mixed state is split by crystal field forces. The splitting between the \(U'\) and \(E''\) components is found to be 7.5 cm\(^{-1}\).
ESR transitions between the α'' and β'' Zeeman split components of E'' are expected to be largely forbidden since the major $|J M_J\rangle$ components of these states are $|5/2\ -3/2\rangle$ and $|5/2\ 3/2\rangle$, respectively. At low temperatures it is expected that no ESR signal should be observable between these components. The transition between an E'' component and a U' component is also not expected since the splitting ($7.5\ \text{cm}^{-1} = 225 \times 10^9\ \text{Hz}$) is approximately 24 times larger than the normal X-band ESR resonance frequency ($9.3 \times 10^9\ \text{Hz}$). Transitions between the $|U'\lambda\rangle$ and $|U'\mu\rangle$ components ($|5/2\ 1/2\rangle$ and $|5/2\ -1/2\rangle$) are, however, predicted to be observable at elevated temperatures (25-30 K).

This study reinforces the idea that rare gas matrices have a significant influence on the species isolated in them. Recent studies have shown that matrices influence the magnitude and sign of the spin-orbit coupling of metal excited P states, induce vibronic mixing of excited state multiplets, enhance spin forbidden transitions, and, as shown here, are responsible for large ground state splittings.
CHAPTER 4
ATOMIC MCD AND MLD SATURATION THEORY

MCD Saturation Theory

The magnetic circular dichroism (MCD) saturation technique, which involves the monitoring of an MCD peak intensity as a function of temperature and/or magnetic field strength, has been used in a number of cases to probe the nature (g value) of various matrix isolated atoms and molecules.\(^{66-68}\) In certain cases this method is preferred over the moment analysis procedure which involves the computation of the ratio C/D where C is a Faraday parameter associated with a degenerate ground state and D is the dipole strength. This latter method frequently suffers as a result of large experimental errors due to uncertainty in the baseline and also from diamagnetic impurities which affect the determination of D. The saturation method bypasses these two pitfalls.

In this section, general expressions for the MCD, \(\Delta A (= A_L - A_R)\) where \(A_L\) (\(A_R\)) is the absorbance of left (right) circularly polarized light) are derived for the case where the ground state is split by a crystal (matrix) field.
Our starting point is the expression 60,69

$$
\Delta A = (\sigma \epsilon f c y / Z) \Sigma \Sigma \exp(-<Aa|H|Aa>/kT)x^\alpha \beta
$$

$$
\left[|<Aa|m_a|B\beta>|^2 - |<Aa|m_b|B\beta>|^2 \right] ^{44}
$$

where $\sigma = 2N_o n^3 \log_{10} e/250hc'$, ϵ is the photon energy, Z is the electronic partition function, f the bandshape function, c the concentration, y the pathlength, A the electronic ground state (component α) and B is the excited state (component β). The total Hamiltonian, H is given by $H = H_Z + H_{CF}$ where H_{CF} is the crystal field Hamiltonian and $H_Z (= g^B \mu_B J_z)$ is the Zeeman operator. The transition moment operators are $m_a = m^- = (m_x - im_y)/\sqrt{2}$ and $m_b = m^+ = (m_x + im_y)/\sqrt{2}$ for MCD where m_x and m_y are the cartesian components of the space fixed electric dipole operator.

In the presence of a crystal field, we can expand the atomic ground state wavefunctions in a $|JM\rangle$ basis as follows

$$
|Aa\rangle = \Sigma c_{J'M'} |J'M\rangle
$$

where the expansion coefficients are tabulated in Butler70 for various crystal symmetries.
Inserting Eq. (45) into Eq. (44), defining \(\langle A\alpha|H|A\alpha \rangle \equiv E_{\alpha'} \) and using \(|B\beta> = |J\beta>\) (spectroscopic stability applies to the excited state basis.) we obtain

\[
\Delta A_{\text{MCD}} = (\sigma\varepsilon fcy/Z) \sum_{\alpha} \sum_{\beta} \exp(-E_{\alpha'}/kT)[\Sigma_{CJ',M} A\alpha M <J'M|m_-|J\beta>|^2
\]

\[
\quad -|\Sigma_{CJ',M} A\alpha M <J'M|m_+|J\beta>|^2]
\]

(46)

Application of the Wigner-Eckart theorem and the properties of the 3j symbol we find

\[
\Delta A_{\text{MCD}} = (\sigma\varepsilon fcy/Z) |<J'| |m| |J>|^2 \sum_{\alpha} \sum_{\beta} \exp(-E_{\alpha'}/kT) x
\]

\[
\quad [\Sigma_{CJ',\beta -1}^2 \left(\begin{array}{cc}
J' & 1 \\
1-\beta & -1
\end{array} \right)^2 - \Sigma_{CJ',\beta +1}^2 \left(\begin{array}{cc}
J' & 1 \\
-\beta-1 & 1
\end{array} \right)^2]
\]

(47)

where \(|J'| |m| |J> \) is the reduced matrix element. The 3j symbols can be evaluated analytically\(^7\); the pertinent expressions for the electric dipole allowed transitions \(\Delta J = \pm 1,0 \) are given in Table 13.

We now proceed with the case \(\Delta J = -1 \) (\(J' \rightarrow J'-1 \)). Inserting the appropriate expressions from Table 13 we get
Table 13

$(3j)^2$ for Electric Dipole Transitions

\[
\Delta J = +1
\]

\[
\begin{pmatrix}
J' & 1 & J'+1 \\
1-\beta & -1 & \beta
\end{pmatrix}^2
\]

\[
\frac{(J'+\beta)(J'+\beta+1)}{2(2J'+1)(J'+1)(2J'+3)}
\]

\[
\begin{pmatrix}
J' & 1 & J'+1 \\
-\beta & -1 & 1
\end{pmatrix}^2
\]

\[
\frac{(J'-\beta)(J'-\beta+1)}{2(2J'+1)(J'+1)(2J'+3)}
\]

\[
\begin{pmatrix}
J' & 1 & J'+1 \\
-\beta & 0 & \beta
\end{pmatrix}^2
\]

\[
\frac{2(J'+\beta+1)(J'-\beta+1)}{2(2J'+1)(J'+1)(2J'+3)}
\]

\[
\Delta J = 0
\]

\[
\begin{pmatrix}
J' & 1 & J' \\
1-\beta & -1 & \beta
\end{pmatrix}^2
\]

\[
\frac{(J'-\beta+1)(J'+\beta)}{2J'(J'+1)(2J'+1)}
\]

\[
\begin{pmatrix}
J' & 1 & J' \\
-\beta & -1 & 1
\end{pmatrix}^2
\]

\[
\frac{(J'+\beta+1)(J'-\beta)}{2J'(J'+1)(2J'+1)}
\]

\[
\begin{pmatrix}
J' & 1 & J' \\
-\beta & 0 & \beta
\end{pmatrix}^2
\]

\[
\frac{2\beta^2}{2J'(J'+1)(2J'+1)}
\]

\[
\Delta J = -1
\]

\[
\begin{pmatrix}
J' & 1 & J'-1 \\
1-\beta & -1 & \beta
\end{pmatrix}^2
\]

\[
\frac{(J'-\beta)(J'-\beta+1)}{2(2J'-1)J'(2J'+1)}
\]

\[
\begin{pmatrix}
J' & 1 & J'-1 \\
-\beta & -1 & 1
\end{pmatrix}^2
\]

\[
\frac{(J'+\beta)(J'+\beta+1)}{2J'(2J'-1)(2J'+1)}
\]

\[
\begin{pmatrix}
J' & 1 & J'-1 \\
-\beta & 0 & \beta
\end{pmatrix}^2
\]

\[
\frac{2(J'-\beta)(J'+\beta)}{2J'(2J'-1)(2J'+1)}
\]
\[
\Delta A_{\text{MCD}} = \frac{a \cdot f \cdot c \cdot y \cdot \langle J' \mid m \mid J' - 1 \rangle^2}{2Z(2J' - 1)J'(2J' + 1)} \sum \sum \exp(-E_{\alpha}/kT) \cdot \alpha \beta
\]

(48)

\[
\left[|c_{J', \beta - 1} \rangle^2 (J' - \beta)(J' - \beta + 1) - |c_{J', \beta + 1} \rangle^2 (J' + \beta)(J' + \beta + 1) \right]
\]

To simplify this, the term in brackets is written out explicitly for the ground state crystal field components 1 (let \(\beta = \beta_1 \)) and 2 (let \(\beta = -\beta_1 \))

(49)

\[
|c_{J', \beta_1 - 1} \rangle^2 (J' - \beta_1)(J' - \beta_1 + 1) - |c_{J', \beta_1 + 1} \rangle^2 (J' + \beta_1)(J' + \beta_1 + 1)
\]

(50)

\[
|c_{J', -\beta_1 - 1} \rangle^2 (J' + \beta_1)(J' + \beta_1 + 1) - |c_{J', -\beta_1 + 1} \rangle^2 (J' - \beta_1)(J' - \beta_1 + 1)
\]

At this point it is crucial to understand the qualitative behavior of the atomic eigenstates in the presence of both an external crystalline electric field as well as a magnetic field. If we evaluate the Zeeman energies \(\langle A\alpha \mid H_Z \mid A\alpha \rangle \) using Eq. (45) we find

(51)

\[
\langle A\alpha \mid H_Z \mid A\alpha \rangle = g \mu_B B \varepsilon \sum_{M} |c_{J', M} \rangle^2 M
\]
Here we have ignored any off diagonal Zeeman coupling terms between the crystal field states. For relatively small magnetic fields, this approximation should not adversely affect our results. In Table 14, we present the results of a full diagonalization of the Zeeman-crystal field matrix for the case of Fe (5D_4 ground state) isolated in a tetragonal Xe matrix site (crystal field parameters $F = 0.66 \text{ cm}^{-1}$ and $B = 0.49 \text{ cm}^{-1}$; $g = 1.5$). In a tetragonal field the $J = 4$ gas phase ground state is split into A_1, T_1, T_2, and E crystal components some of which are mixed by the magnetic field. For example, the $|T_1+1\rangle$ and $|T_2-1\rangle$ components (zero field splitting $= 11.9 \text{ cm}^{-1}$) mix to give two orthonormal eigenstates of the form

$$
\phi = c_1|T_1+1\rangle + c_2|T_2-1\rangle
$$

(52)

It is these coefficients that we tabulate in Table 14. As can be seen, the magnetic mixing is small and hence the crystal field states $|Aa\rangle$ are an excellent approximation to the true eigenstates. An exception to this involves the case where the zero magnetic field crystal states happen to be degenerate or nearly degenerate. In this situation the off diagonal Zeeman matrix elements are critical.
Table 14

Crystal Field Mixing Coefficients as a Function of Magnetic Field Strength

<table>
<thead>
<tr>
<th>B (Tesla)</th>
<th>C_1</th>
<th>C_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21</td>
<td>0.9999</td>
<td>-0.01575</td>
</tr>
<tr>
<td>0.43</td>
<td>0.9995</td>
<td>-0.03105</td>
</tr>
<tr>
<td>0.64</td>
<td>0.9990</td>
<td>-0.04461</td>
</tr>
<tr>
<td>0.86</td>
<td>0.9983</td>
<td>-0.05781</td>
</tr>
<tr>
<td>1.28</td>
<td>0.9968</td>
<td>-0.0805</td>
</tr>
<tr>
<td>1.93</td>
<td>0.9939</td>
<td>-0.1100</td>
</tr>
<tr>
<td>2.57</td>
<td>0.9910</td>
<td>-0.1339</td>
</tr>
<tr>
<td>5.35</td>
<td>0.9796</td>
<td>-0.2001</td>
</tr>
</tbody>
</table>
Application of the time reversal operator, K_t, to $|Aa\rangle$ yields

$$K_t|Aa\rangle = k_{Aa}|Aa'\rangle = \sum_{M}^{Aa} \left(c_{J'M} \right)^* (-1)^{J'-M} |J'-M\rangle$$

(53)

where k_{Aa} is a phase of modulus one, and $|Aa'\rangle$ is the Kramer's conjugate of $|Aa\rangle$. Therefore,

$$|Aa'\rangle = \sum_{M}^{Aa} \left(c_{J'M} \right)^* k_{Aa}^* (-1)^{J'-M} |J'-M\rangle$$

(54)

As a result, the contribution, $|c_{J'M}|^2$, of $|J'M\rangle$ to $|Aa\rangle$ is equal to the contribution, $|c_{J'M}^* k_{Aa}^* (-1)^{J'-M}|^2$, of $|J'-M\rangle$ to $|Aa'\rangle$. From this it follows that

$$<Aa'|H_Z|Aa'\rangle = - <Aa|H_Z|Aa\rangle$$

(55)

Hence even fold degenerate crystal field states are symmetrically split about a barycenter. Oddly degenerate states possess at least one self conjugate component for which Eq.(51) yields zero (i.e. no first order magnetic effect). In certain cases such as the $|E\theta\rangle$ and $|E\epsilon\rangle$ crystal components (O_h) of $J = 4$, both states are unaffected by a magnetic field.
This behavior is illustrated in Fig. 9 for a hypothetical \(J = 4 \) manifold (9 fold degenerate) crystal field split into one 2, one 3, and one 4 fold degenerate crystal field state (arbitrary energetic ordering).

If we allow components 1 and 2 in Eqs. (49) and (50) to represent Kramer's conjugate states and use the time reversal results

\[
|c_{J', \beta_1-1}|^2 = |c_{J', -\beta_1+1}|^2
\]

\[
|c_{J', \beta_1+1}|^2 = |c_{J', -\beta_1-1}|^2
\]

we find that Eq. (48) becomes

\[
\Delta A_{\text{MCD}} = -g\epsilon_f c_y |\langle J' | m | J'-1 \rangle|^2 \sum \sum \exp(-E_{CF_i}/kT) x 2\sinh(E_Z(i,j)/kT) x
\]

\[
2|c_{J', \beta-1}|^2 (J'-\beta)(J'-\beta +1) - |c_{J', \beta+1}|^2 (J'+ \beta)(J'+ \beta +1)
\]
Figure 9

Behavior of the Free Atom $|JM\rangle$ States in the Presence of a Crystal and Magnetic Field.

a) $H_{CF} \neq 0$, $H_Z = 0$
b) $H_{CF} = 0$, $H_Z \neq 0$
where the sum over \(\alpha \) has been split into a sum over crystal field states, \(i \), and a sum over the positive energy (Zeeman) Kramer's components, \(j \). The energies \(E_\alpha \) have been rewritten as (See Fig.9)

\[
E_\alpha = E_{CF i} + E_Z(i,j) \tag{58}
\]

with the Zeeman energies given by

\[
E_Z(i,j) = g\mu_B B \Sigma_{M} c_{j',M}^i 2M
\tag{59}
\]

Finally, each pair of Kramer's conjugate state energies has been collected as a hyperbolic sine function.

To simplify the term in brackets, we let \(\beta = M+1 \) in the first term and \(\beta = M-1 \) in the second term. Note \(M \neq \pm J' \), \(\pm(J'-1) \) because \(\beta = M+1 \) does not exist for \(M = J' \) or \(J'-1 \). Recall we are dealing with the case \(\Delta J = -1 \), i.e. \(J' \rightarrow J'-1 \) and \(M \) is the ground state magnetic quantum number ranging from \(-J' \) to \(+J' \) and \(\beta \) is the excited state magnetic quantum number ranging from \(-(J'-1) \) to \(+(J'-1) \). Similarly \(\beta = M-1 \) does not exist for \(M = -J' \) or \(-(J'-1) \).
The coefficient of $|c_{J',M}|^2$ is therefore

$$(J'-M-1)(J'-M) - (J'+M-1)(J'+M) = -2M(2J'-1) \quad (60)$$

For the 4 cases $M = \pm J'$, $\mp(J'-1)$ the term in brackets is

$$2(2J'-1)[J'(|c_{J',-J'}|^2 - |c_{J',J'}|^2)$$

$$+ (J'-1)(|c_{J',-J'+1}|^2 - |c_{J',J'-1}|^2)] \quad (61)$$

Substituting Eqs. (60) and (61) into Eq. (57) we obtain

$$\Delta A_{\text{MCD}} = \frac{-\sigma \text{e}f\gamma <J'|m||J'-1>^2}{Z(2J'-1)J'(2J'+1)} \sum_i \sum_j \exp(-E_{i}^{CF}/kT)x \sinh(E_{Z(i,j)}/kT)x$$

$$-2(2J'-1)[EM|c_{J',M}|^2 + J'(|c_{J',J'}|^2 - |c_{J',-J'}|^2)$$

$$+ (J'-1)(|c_{J',J'-1}|^2 - |c_{J',-J'+1}|^2)] \quad (62)$$
The term in brackets however is just $<M>(i,j)$. Hence we have

$$\Delta A_{\text{MCD}}^{(-1)} = \frac{2g\epsilon FC_r |<J'||m||J'-1>|}{ZJ'(2J'+1)} \sum_i \sum_j \exp(-E_{CF_i}/kT)x$$
$$<M>(i,j)\sinh(<M>(i,j)x)$$

(63)

where $x = g\mu_B B/kT$. Therefore it follows that a positive MCD is expected for a $\Delta J = -1$ transition, regardless of the crystal field symmetry.

Proceeding in a similar manner for the $\Delta J = 0,+1$ cases we obtain

$$\Delta A_{\text{MCD}}^{(0)} = \frac{2g\epsilon FC_r |<J'||m||J'+1>|}{ZJ'(J'+1)(2J'+1)} \sum_i \sum_j \exp(-E_{CF_i}/kT)x$$
$$<M>(i,j)\sinh(<M>(i,j)x)$$

(64)

$$\Delta A_{\text{MCD}}^{(+1)} = -\frac{2g\epsilon FC_r |<J'||m||J'+1>|}{Z(2J'+1)(J'+1)} \sum_i \sum_j \exp(-E_{CF_i}/kT)x$$
$$<M>(i,j)\sinh(<M>(i,j)x)$$

(65)

Hence the electric dipole transitions $\Delta J = -1,0,+1$ are expected to have the signs positive, positive, negative,
respectively, regardless of the nature of the matrix field.

It is interesting to note that for the case of zero crystal field effects, i.e. $|JM\rangle$ eigenstates instead of $|A\alpha\rangle$, Eqs. (63) - (65) reduce to the form

$$\Delta A_{\text{MCD}} \propto \sum_M M \sinh (Mx)/Z$$ \hspace{1cm} (66)

since $<M^(i,j) | M, j -> M$, and the sum over crystal field states, i, as well as $\exp(-E_{CF}/kT) \text{ vanish.}$ Once again, the negative sign holds for the $\Delta J = +1$ case, and the positive sign otherwise.

MLD Saturation Theory

Next, we extend the results of the previous section to include atomic magnetic linear dichroism (MLD). Our starting point again is Eq. (44) with $m_a = m_\parallel = m_2$ and $m_b = m_\perp = m_3 = (m_+ + m_-)/\sqrt{2}$. Inserting Eq. (45) into Eq. (44), using the Wigner-Eckart theorem and the properties of the $3j$ symbols, we obtain
\[\Delta_{\text{MLD}} = \sigma \varepsilon f c y \langle J' | m | J \rangle^2 \sum_{\alpha} \sum_{\beta} \exp(-E_{\alpha}/kT)[|c_{J',\beta}|^2 \left(\begin{array}{c} J' \ 1 \\ -\beta \ 0 \ \beta \end{array} \right)^2] \]

\[-(1/2)[|c_{J',\beta+1}|^2 \left(\begin{array}{c} J' \ 1 \\ -\beta-1 \ 1 \ \beta \end{array} \right)^2 + |c_{J',\beta-1}|^2 \left(\begin{array}{c} J' \ 1 \\ -\beta+1 \ -1 \ \beta \end{array} \right)^2] \]

As an illustration of the derivation, we proceed for the \(\Delta J = 0 \) case with the \(\Delta J = \pm 1 \) cases being similar. Inserting the appropriate 3j expressions from Table 13 we find

\[\Delta_{\text{MLD}}^{(0)} = \sigma \varepsilon f c y \langle J' | m | J' \rangle^2 \sum_{\alpha} \sum_{\beta} \exp(-E_{\alpha}/kT)[|c_{J',\beta}|^2 2\beta^2] \]

\[-(1/2)[|c_{J',\beta+1}|^2 (J'+\beta +1)(J'-\beta) \]

\[+|c_{J',\beta-1}|^2 (J'-\beta+1)(J'+\beta)] \]

If we rewrite the term in large brackets for ground state crystal components 1 (let \(\beta = \beta_1 \)) and 2 (let \(\beta = -\beta_1 \)) we find analogous to Eqs.(49) and (50)
\begin{align*}
|c_J', \beta_1\rangle^2 2\beta_1^2 &= \frac{1}{2} |c_J', \beta_1 + 1\rangle^2 (J' + \beta_1 + 1)(J' - \beta_1) \\
+ |c_J', \beta_1 - 1\rangle^2 (J' - \beta_1 + 1)(J' + \beta_1) \\
|c_J', -\beta_1\rangle^2 2\beta_1^2 &= \frac{1}{2} |c_J', -\beta_1 + 1\rangle^2 (J' - \beta_1 + 1)(J' + \beta_1) \\
+ |c_J', -\beta_1 - 1\rangle^2 (J' + \beta_1 + 1)(J' - \beta_1)
\end{align*}

Using the time reversal results for the Kramer's conjugate states 1 and 2

\begin{align*}
|c_J', \beta_1\rangle^2 &= |c_J', -\beta_1\rangle^2 \\
|c_J', \beta_1 + 1\rangle^2 &= |c_J', -\beta_1 - 1\rangle^2 \\
|c_J', \beta_1 - 1\rangle^2 &= |c_J', -\beta_1 + 1\rangle^2
\end{align*}

we find that Eqs.(69) and (70) are identical (compare to Eqs.(49) and (50) which differ by a negative sign.) Hence Eq.(68) becomes
\[
\Delta A_{\text{MLD}}^{(0)} = \sigma_{\text{fcy}} |<J'|m|J'>|^2 \sum_{i,j} \sum_{\beta} \exp(-E_{CF_i}/kT)x \]
\[
2\cosh(<M>(i,J)x)x
\] (72)

\[
[2|c_{J',\beta}|^2 \beta^2 -(1/2)[|c_{J',\beta+1}|^2(J'+\beta+1)(J'-\beta) + |c_{J',\beta-1}|^2(J'-\beta+1)(J'+\beta)]]
\]

Note that this expression is only for crystal field components forming Kramer's pairs. It will be modified later to account for non-Kramer's pair states. As before, the sum over \(\alpha\) has been broken down into a sum over crystal field states, \(i\), and a sum over the positive energy (Zeeman) Kramer's components.

To simplify the expression in large brackets (3 terms), we let \(\beta = M\) in the first term (arising from \(m_z\)), \(\beta = M-1\) in the second term (arising from \(m_+\)), and \(\beta = M+1\) in the third term (arising from \(m_-\)). Hence the coefficient of \(|c_{J',M}|^2\) is

\[
2M^2 -(1/2)[(J'+M)(J'-M+1) + (J'-M)(J'+M+1)] = 3M^2 - J'(J'+1)
\] (73)
Note $M \neq \pm J'$ above because $\beta = M+1$ (third term) does not exist for $M = J'$ nor does $\beta = M-1$ (second term) exist for $M = -J'$.

Recall that we are dealing with the case $\Delta J = 0$, i.e. $J' \rightarrow J'$. These two cases must be dealt with separately. Hence the term in large brackets gives for these 2 cases

$$(2J'^2 - J')[|c_{J', J'}|^2 + |c_{J', -J'}|^2] \quad (74)$$

It is important to realize that $2J'^2 - J' = 3M^2 - J'(J'+1)$ for $M = J'$. Inserting Eqs. (73) and (74) into Eq. (72) we obtain

$$\Delta A_{\text{MLD}}^{(0)} = \sum_{i,j} \frac{\sigma f c y |<J'| m| J'>|^2}{2J'(J'+1)(2J'+1)} \sum_{i,j} \exp(-E_{CF_i}/kT)x_i x_j \cosh(<M_x(i,j)>x)$$

$$[[\sum_{M} \Sigma'(3M^2 - J'(J'+1))|c_{J', M}|^2] + (3J'^2 - J'(J'+1))x_{(i,j)}}$$

$$|c_{J', J'}|^2 + |c_{J', -J'}|^2]$$

$$(i,j) \quad (i,j)$$

$$(i,j) \quad (i,j)$$
where the prime over the summation indicates a sum from \(M = -J' + 1 \) to \(J' - 1 \). The term in large brackets is just

\[
3 \sum_{M} M^2 |c_{J',M}|^2 - J'(J'+1) \Sigma |c_{J',M}|^2
\]

(76)

\[
\equiv 3 <M^2>_x(i,j) - J'(J'+1)
\]

where the normalization of the crystal field components has been used in the second term. Therefore,

\[
\Delta A_{\text{MLD}}^{(0)} = \sigma \text{efcy} \left| \langle J'|m|J'\rangle \right|^2 \frac{ZJ'(J'+1)(2J'+1)}{\Sigma \Sigma \exp(-E_{CFi}/kT)x} \exp(-E_{CFi}/kT)x
\]

(77)

\[
\cosh(<M>(i,j)x) [3 <M^2>_x(i,j) - J'(J'+1)]
\]

To take into account non-Kramer's pair states (\(<M>(i,j) = 0 \)) we must add a term of the form \((1/2)[3 <M^2>(i,*) - J'(J'+1)]\) for each non Kramer's pair component (note asterisk). Hence our final result is
\(\Delta A_{\text{MLD}} = 0 \) =
\[\frac{\sigma \text{fcy}\langle j' | m | j'\rangle^2}{2J'(J'+1)(2J'+1)} \sum_i \exp(-E_{CF_i}/kT)x \]

\[[\Sigma \cosh(<M>_x(i,j)) [3M^2(i,j) - J'(J'+1)]] \quad (78) \]

\[+(1/2)[3M^2(i,*) - J'(J'+1)] \]

Proceeding in a similar fashion for the \(\Delta J = \pm 1 \) cases, we find an equivalent expression to Eq. (78) with the simple changes: For \(\Delta J = +1 \), replace \(J' \) by \(-(2J'+3)\) in the denominator and change the second occurrence of \(J' \) in the reduced matrix element to \(J'+1 \). For \(\Delta J = -1 \), replace \(J'+1 \) by \(-(2J'-1)\) in the denominator and change the second occurrence of \(J' \) in the reduced matrix element to \(J'-1 \). We see therefore that \(\Delta J = \pm 1 \) transitions are expected to be negative whereas the \(\Delta J = 0 \) case is expected to yield positive MLD bands.

For the case of zero crystal field splitting, the sum over \(i \) as well as \(\exp(-E_{CF_i}/kT) \) vanish. In addition, \(<M^2>_x(i,j) \) = \(M^2 \), and the \(<M^2>(i,*) \) term, which is only present in even electron systems (odd degeneracy) equals zero. Therefore,

\[\Delta A_{\text{MLD}} a \uparrow \Sigma \cosh(Mx)[3M^2 - J'(J'+1)] - J'(J'+1)/2 \quad (79) \]
Recall that the $J'(J'+1)/2$ term is applicable only for integral J'.

Application To Octahedral $J=3$ Ni

As a specific illustration of the formalism developed above, we apply the MCD/MLD saturation technique to the 3D_3 state of atomic Ni trapped in a rare gas matrix site of O_h symmetry. The appropriate basis set to use for an octahedral crystal field with the axis of quantization along the fourfold axis is the octahedral SO_3-D_4-C_4 set tabulated in Butler. In Table 15 are presented the basis statevectors in Butler's chain of groups notation as well as the more familiar Mulliken notation. In addition, $<M>$ and $<M^2>$ as defined in Eqs. 59 and 76 are given.

Using these results, it is a simple matter to write down (using Eqs. 63 and 78) the MCD and MLD saturation expressions for Ni (3D_3) in an octahedral crystal field.

\[
\Delta A_{\text{MCD}}(0) \propto [3\exp(-E_{T_1}/kT)S(3x/2) + \exp(-E_{T_2}/kT)S(x/2)]/Z
\]

\[
\Delta A_{\text{MLD}}(0) \propto [\exp(-E_{T_1}/kT)[C(3x/2) - 1]]/Z
\]
Table 15

$SO_3\cdot O\cdot D_4\cdot C_4$ Basis Set Statevectors

<table>
<thead>
<tr>
<th>Mulliken Notation</th>
<th><M></th>
<th><M^2></th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>3\ 1\ 0\ 0\rangle$</td>
<td>T_1</td>
</tr>
<tr>
<td>$</td>
<td>3\ 1\ 1\ 1\rangle$</td>
<td>T_1</td>
</tr>
<tr>
<td>$</td>
<td>3\ 1\ 1\ -1\rangle$</td>
<td>T_1</td>
</tr>
<tr>
<td>$</td>
<td>3\ 1\ 1\ 1\rangle$</td>
<td>T_2</td>
</tr>
<tr>
<td>$</td>
<td>3\ 1\ 1\ -1\rangle$</td>
<td>T_2</td>
</tr>
<tr>
<td>$</td>
<td>3\ 1\ 2\ 2\rangle$</td>
<td>T_2</td>
</tr>
<tr>
<td>$</td>
<td>3\ 0\ 2\ 2\rangle$</td>
<td>A_2</td>
</tr>
</tbody>
</table>
Here we have defined \(S(y) = \sinh(y) \) and \(C(y) = \cosh(y) \). It is important to note that of the three \(O_h \) crystal field states \((A_2', T_1', T_2')\) arising from the \(J = 3 \) atomic multiplet, the \(T_1 \) and \(T_2 \) are MCD active whereas only the \(T_1 \) state gives rise to any MLD.

To proceed further, it is necessary to evaluate the crystal field energies in Eqs 80 and 81 in terms of a set of crystal field parameters. Using the operator equivalent method, the crystal field Hamiltonian for an octahedral field may be written\(^{73}\)

\[
V_{OCT} = D[0_4^0 + 50_4^4]/60
\]

(82)

where \(D \) is the crystal field (radial) parameter and \(0_n^m \) are the rank \(n \) spin tensors:

\[
0_4^0 = 35J_z^2 - 30(J+1)J_z^2 + 25J_z^2 - 6J(J+1) + 3J^2(J+1)^2
\]

\[
0_4^4 = (1/2)[J_+^4 + J_-^4]
\]

Therefore, we obtain the crystal field energies given in Table 16.
Table 16

Crystal Field Energies For The J=3 Atomic State in Octahedral Symmetry

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>6D</td>
</tr>
<tr>
<td>T_2</td>
<td>-2D</td>
</tr>
<tr>
<td>A_2</td>
<td>-12D</td>
</tr>
</tbody>
</table>
As a specific illustration of Eqs. 80 and 81 we let $D = -5.556 \text{ cm}^{-1}$ (total crystal field splitting$= 100 \text{ cm}^{-1}$) and g equal to the Lande value of $4/3$. In Figures 10 and 11, the approximate theoretical MCD and MLD saturation curves at 1T are given along with the exact results obtained from a complete diagonalization of the Zeeman-crystal field Hamiltonian, i.e. including the off diagonal Zeeman terms which couple the crystal field basis functions.

As can be seen, the agreement between the exact and approximate theoretical curves is satisfactory. It should be noted that the theory developed (ignoring the off-diagonal Zeeman coupling of the crystal field basis states) necessarily applies only to the case of small ($<0.5T$) magnetic fields, and as such is applicable only to the situation where the temperature dependence of the saturation is investigated. In addition the theory may not accurately predict the saturation behavior for cases where the lowest crystal field component is MCD/MLD inactive especially if this component is Zeeman coupled to higher lying MCD/MLD active components.

Conclusion

It is readily apparent that the MCD/MLD saturation technique should be of great use in studying the crystalline environment of matrix isolated atoms.
Predicted MCD Saturation Curves for a $^3D^3$ Ni Atom Embedded in an Octahedral Crystal Field. The Solid Line Corresponds to the Exact Curve While the Dashed Line Corresponds to Eq. 85. $D = -5.556 \text{cm}^{-1}$, $g = 4/3$, $B = 1 \text{T}$.

Figure 10
Figure 11

Predicted MLD Saturation Curves for a $^{3}D^{3}$ Ni Atom Embedded in an Octahedral Crystal Field. The Solid Line Corresponds to the Exact Curve While the Dashed Line Corresponds to Eq. 86. D = -5.556cm$^{-1}$, $g = 4/3$, B = 1T.
The magnetization curves provide a sensitive probe of both the ground electronic state as well as its site symmetry. Application to the case of Re matrix isolated in Kr has shown that Re may occupy an octahedral substitutional site, and possesses a large ground state splitting which precludes the observation of any X band ESR. Further experimental work to verify the theory presented would prove interesting.
CHAPTER 5
MAGNETIC CIRCULAR DICHROISM AND MAGNETIC LINEAR DICHROISM
LINEAR MOLECULE FARADAY PARAMETERS

Introduction

It is well known that magneto-optical spectroscopic methods are powerful tools for understanding the magnetic and electronic properties of atomic and molecular systems. While magnetic circular dichroism (MCD) spectroscopy has been relatively widely used, the use of other magneto-optical methods such as magnetic linear dichroism (MLD), magnetic circularly polarized luminescence (MCPL) and magnetic linearly polarized luminescence (MLPL) has not been as widespread. Each of these approaches probes different aspects of the system under study and provides much more information than available from simple absorption measurements. Indeed, the combination of MCD and MLD measurements on matrix isolated atomic systems has recently been shown theoretically and verified experimentally to provide unambiguous evidence of the total angular momentum change in the transition, simply from the sign of the spectral bands observed. Thus, if the assignment of one electronic state (e.g., the ground state) is known, the other state may readily be assigned.
In the present work a general theory for the MCD and MLD spectroscopy of linear molecules in the low field limit is developed. Specifically, expressions are presented for linear molecules which are randomly oriented and rigidly fixed as in a rare gas matrix. As for the case of atoms, it is shown that the combination of MCD and MLD provides a powerful tool for the assignment of electronic states.

In 1978 Schatz, Mowery, and Krausz77 (SMK) presented a thorough discussion of the theory of MCD and MCPL saturation and applied it to linear molecules. In the present work we adopt the approach used by SMK but limit our discussion to only the linear, low magnetic field limit, i.e. the regime where $g\mu_B B/kT \ll 1$. Our interest is not the saturation behavior but rather in the signs of the expected MCD and MLD bands for the transitions between allowed states, i.e., for $\Delta \Omega = 0, \pm 1$ (or $\Delta \Lambda = 0, \pm 1$). In the linear limit, the differential absorbance, $\Delta A = A_L - A_R$ in MCD and $= A_\parallel - A_\perp$ in MLD can be expressed by certain magneto-optical terms. Because we are interested in molecules whose ground and/or excited electronic states are degenerate, the terms of importance are the Faraday parameters A_\perp and C_0 in MCD60 and A_2, C_1, and G_0 in MLD65. The C_0 (MCD) and G_0 (MLD) terms are the most important terms for paramagnetic molecules held at low temperatures: they reflect the difference in Boltzmann populations of the two Zeeman split levels of the ground state.
The other terms above result from degeneracies in the excited (and ground) states, but usually only become important at low temperatures for diamagnetic molecules, i.e., ones whose \(C_0 \) and \(G_0 \) terms are zero.

Our results for the MCD and MLD terms are presented in the following sections. Methods of extraction of these terms from experimental data are then reviewed and a comparison of the two sets of terms is discussed. It is shown that for paramagnetic linear molecules the MCD \(C_0 \) terms are negative, absent, and positive for \(\Delta \Omega \) transitions of +1, 0, and -1, respectively, while the MLD \(G_0 \) terms are negative, positive, and negative for the same order of \(\Delta \Omega \)'s.

MCD Expressions For Linear Molecules

In this section the MCD parameters, \(A_1 \) and \(C_0 \) are derived for linear molecules which are oriented randomly in a matrix. The \(A_1 \) and \(C_0 \) terms represent the MCD signals which arise from the differential Zeeman shift of the degenerate ground and/or degenerate excited state components involved in the transition and the Boltzmann distribution in the Zeeman-split degenerate ground state, respectively.
The mixing of near-lying states by the magnetic field (i.e. the B_0 term) is neglected in the present treatment.

We start with the general expressions for the A_1, C_0, and D_0 (dipole strength) terms:

$$A_1 = - \Sigma \frac{[\langle J\beta | \mu_z | J\beta \rangle - \langle A\alpha | \mu_z | A\alpha \rangle] \times}{\alpha \beta}$$

$$\left[|\langle A\alpha | M_- | J\beta \rangle|^2 - |\langle A\alpha | M_+ | J\beta \rangle|^2 \right] / \mu_B d_A$$

(84)

$$C_0 = \Sigma \frac{\langle A\alpha | \mu_z | A\alpha \rangle \left[|\langle A\alpha | M_- | J\beta \rangle|^2 - |\langle A\alpha | M_+ | J\beta \rangle|^2 \right] / \mu_B d_A}{\alpha \beta}$$

(85)

$$D_0 = \Sigma \frac{|\langle A\alpha | M_z | J\beta \rangle|^2 / d_A}{\alpha \beta}$$

(86)

where A is the ground electronic state and α its magnetic sublevels; J is the excited electronic state and β its magnetic sublevels; and μ_z is the space fixed magnetic moment operator. The transition moment operators are $M_\pm = (M_X \pm iM_Y)/\sqrt{2}$ where M_X, M_Y, and M_Z are the cartesian components of the space fixed electric dipole operator.

The degeneracy factor, d_A, for the ground state of a degenerate linear molecule is two.
The above expressions must now be converted from a space-fixed to molecule-fixed coordinate system. Following Schatz we obtain

\[A_1 = - \sum_{\alpha \beta} \left[\langle J\beta | \mu_Z | J\beta \rangle - \langle A\alpha | \mu_Z | A\alpha \rangle \right] \times \Omega_A^J/2\mu_B \] (87)

\[C_0 = \sum_{\alpha \beta} \langle A\alpha | \mu_Z | A\alpha \rangle \times \Omega_A^J/2\mu_B \] (88)

\[D_0 = \sum_{\alpha \beta} \left[\sin^2 \theta |\langle A\alpha | m_+ | J\beta \rangle|^2 + \cos^2 \theta |\langle A\alpha | m_- | J\beta \rangle|^2 \right. \\
+ \sqrt{2}\sin \theta \cos \theta \text{ Im}\{\langle A\alpha | m_+ | J\beta \rangle \langle A\alpha | m_- | J\beta \rangle^* \} \bigg] / 2 \] (89)

where \(\text{Im} \) stands for the imaginary part. All of the transition moment operators \(m_+, m_-, \) and \(m_Z \) are molecule-fixed. The magnetic moment operator \(\mu_Z \) remains space-fixed and is defined by

\[\mu_Z = \mu_y \sin \theta + \mu_z \cos \theta \] (90)
The term Ω_A^J is given by

$$\Omega_A^J = |<\alpha|M_-|J\beta>|^2 - |<\alpha|M_+|J\beta>|^2$$

$$= \cos\theta [|<\alpha|m_-|J\beta>|^2 - |<\alpha|m_+|J\beta>|^2]$$

$$+ \sqrt{2}\sin\theta \text{Im}\{<\alpha|m_+|J\beta><\alpha|m_z|J\beta>^* \}$$

$$+ <\alpha|m_-|J\beta><\alpha|m_z|J\beta>^* \}$$

(91)

To develop these expressions specifically for linear molecules we focus on the above magnetic moment and transition moment matrix elements for a doubly degenerate ground state A with Kramer's components $A\alpha$ and $A\alpha'$ where α and α' are the positive and negative components of the A or Ω quantum numbers of state A. (Due to an added complexity we defer for the moment those ground states A whose $\Omega = 1/2$.) The magnetic moment matrix elements can be shown to reduce to

$$<K\delta|\mu_z|K\delta> = \mp ng_{||}^K \mu_B/2$$

(92)

where K may be A or J, $n = \cos\theta$, $g_{||}^K$ is the parallel component of the Kth (A or Jth) state Lande g tensor, and the positive (negative) sign holds for the negative (positive) Kramer's components δ' (δ).
ΔΩ = +1 Transitions

For the case in which the Jth state Ω (or Λ) quantum number is one higher than the Aθ state Ω (or Λ) i.e. for the transition ΔΩ(Λ) = +1, all of the matrix elements involving the m_z transition moment operator vanish by symmetry. The only surviving transition moment matrix elements are

\[|\langle A\alpha | m_- | J\beta \rangle|^2 = |\langle A\alpha' | m_+ | J\beta' \rangle|^2 = |m|^2 \]

(93)

where the β (=a+1) and β' (=a'-1) components are defined analogously to α and α' above. Substituting into Eqs.(87) - (91) we find that

\[A_1 = -(g^A - g^J)n^2 |m|^2 /2 \]

(94)

\[C_0 = -g^A n^2 |m|^2 /2 \]

(95)

Now averaging these expressions over all angles to account for the random orientation of all molecules gives
\[\bar{\alpha}_1 = -(g_A^A - g_J^J) |\bar{m}|^2/6 \]

(96)

\[\bar{c}_0 = -g_A^A |\bar{m}|^2/6 \]

(97)

\[\bar{D}_0 = |\bar{m}|^2/3 \]

(98)

Finally, dividing by the angle averaged dipole strength, \(\bar{D}_0 \), gives

\[\frac{\bar{\alpha}_1}{\bar{D}_0} = -(g_A^A - g_J^J)/2 \]

(99)

\[\frac{\bar{c}_0}{\bar{D}_0} = -g_A^A/2 \]

(100)

\(\Delta \Omega = -1 \) Transitions

For the case in which the \(J \)th state \(\Omega (\Lambda) \) quantum number is one lower than the \(\Lambda \)th state \(\Omega (\Lambda) \), i.e. for the transition \(\Delta \Omega = -1 \), the analogous expressions are

\[\frac{\bar{\alpha}_1}{\bar{D}_0} = +(g_A^A - g_J^J)/2 \]

(101)

\[\frac{\bar{c}_0}{\bar{D}_0} = +g_A^A/2 \]

(102)
ΔΩ = 0 Transitions

For the transition in which $ΔΩ (Λ) = 0$, all transition moment matrix elements involving m_+ and m_- vanish. Thus $Ω^J_A$ vanishes, as does A_1 and C_0. However, D_0 does not. The latter survives since the second term in Eq. (89) is nonzero.

$Ω = 1/2 \rightarrow Ω = 1/2$ or $3/2$ Transitions

The analysis for transitions involving ground A states with $Ω = 1/2$ and excited J states with $Ω = 1/2$ or $3/2$ is complicated by the fact that the Zeeman Hamiltonian, $-μ_z B$, is not diagonal in the ground state $|+1/2>, |-1/2>$ basis. The Zeeman matrix is (in units of $μ_B B$)

$$
|+1/2> \begin{array}{cc}
|+1/2> & |-1/2>

g_{∥}/2 & 1g_{⊥}/2 \\
1^*g_{⊥}/2 & -ng_{∥}/2
\end{array}
$$

(103)
where \(g_\perp = -\sqrt{2} \langle \psi | \mu_+ | -1/2 \rangle \mu_B \), \(l = -\sin \theta \) and \(g_\parallel \) and \(n \) are as given previously. Diagonalizing this matrix yields the following eigenstates and eigenvalues

\[
|A_+\rangle = c_1 |+1/2\rangle + c_2 |-1/2\rangle \quad \text{with } E_+ = g_\perp \mu_B B/2 \quad (104)
\]

\[
|A_-\rangle = c_2 |+1/2\rangle - c_1 |-1/2\rangle \quad \text{with } E_- = -g_\perp \mu_B B/2 \quad (105)
\]

where \(c_2 c_1^* = (1-n^2)/2Vl \), \(|c_2|^2 - |c_1|^2 = -nS/V \), \(S = g_\parallel A/g_\perp A \) and \(V = [n^2(S^2-1) + 1]^{1/2} \). Since now \(|\langle \pm 1/2 | m_+ | \pm 3/2 \rangle|^2 = |m|^2 \) Eqs.(87)-(91) lead to

\[
\overline{A}_1/D_0 = -(g_\parallel A - g_\parallel J)/2 \quad (106)
\]

\[
\overline{C}_0/D_0 = -g_\parallel A/2 \quad (107)
\]

for the \(A \) state \(\Omega = 1/2 \) and the \(J \) state \(\Omega = 3/2 \).

Note that these results are identical to Eqs.(99)and (100) for the general \(\Delta \Omega = +1 \) case. In addition, the \(\Omega = 3/2 \) to \(\Omega = 1/2 \) results are the same as the general \(\Delta \Omega = -1 \) case (Eqs.(101) and (102)).
The corresponding expressions for the $\Omega = 1/2$ to $\Omega = 1/2$ case for randomly oriented linear molecules are as follows:

\[\bar{A}_1 = (g_A^A + g_J^J) |m| ^2 / 6 \] (108)
\[\bar{C}_0 = g_A^A |m| ^2 / 6 \] (109)
\[\bar{D}_0 = (|m| ^2 + |m_z| ^2) / 3 \] (110)

where $|m| ^2 = |<\pm 1/2|m| \pm 1/2>|^2$ and $|m_z| ^2 = |<\pm 1/2|m_z| \pm 1/2>|^2$.

Notice that although this particular transition appears to fall under the broad classification of $\Delta \Omega = 0$ transitions, the A_1 and C_0 expressions are not zero here and the D_0 expression is different (compare Eqs. (110) and (98)).

MLD Expressions For Linear Molecules

In this section the magnetic linear dichroism (MLD) Faraday parameters analogous to the previously derived MCD parameters are developed for randomly oriented linear molecules. The pertinent parameters are A_2, C_1, and G_0.

They are defined in general terms as

\[A_2 = \sum_\beta \Gamma^\beta \left[<J\beta|\mu_z|J\beta> - <Aa|\mu_z|Aa> \right] ^2 \Gamma_A^J / 2 \mu_B ^2 \] (111)
\[C_1 = - \frac{\alpha}{\beta} [\langle J\beta | \mu_Z | J\beta \rangle - \langle Aa | \mu_Z | Aa \rangle] \langle Aa | \mu_Z | Aa \rangle \Gamma_A J / 2\mu_B \]

\[G_0 = \alpha \beta [\langle Aa | \mu_Z | Aa \rangle]^2 \Gamma_A J / 4\mu_B \]

where

\[\Gamma_A J = | \langle Aa | M_Z | J\beta \rangle |^2 - [| \langle Aa | M_X | J\beta \rangle |^2 + | \langle Aa | M_Y | J\beta \rangle |^2] / 2 \]

Note that we have divided the expressions for \(A_2, C_1, \) and \(G_0 \) from Ref 65 by \(\mu_B^2 \) to be consistent with the MCD equations used. Converting to molecule fixed quantities we obtain

\[\Gamma_A J = (1/2)(3\cos^2 \theta - 1)[| \langle Aa | m_Z | J\beta \rangle |^2 - | \langle Aa | m_+ | J\beta \rangle |^2 \\
+ | \langle Aa | m_- | J\beta \rangle |^2] / 2 + (3\sqrt{2}/2)\sin \theta \cos \theta \langle Aa | m_+ | J\beta \rangle \langle Aa | m_Z | J\beta \rangle^* \\
+ \langle Aa | m_Z | J\beta \rangle \langle Aa | m_- | J\beta \rangle^* \]

As defined previously, \(\mu_Z \) in Eqs.(111) - (113) and \(M_Z, M_X, \) and \(M_Y \) in Eq.(114) are space-fixed, while the operators in \(\Gamma_A J \) (cf. (115)) are molecule-fixed.
\[\Delta \Omega = \pm 1 \text{ Transitions} \]

For all transitions, \(\Delta \Omega = \pm 1 \), except \(\frac{1}{2} \leftrightarrow \frac{3}{2} \), the \(m_z \) transition moment matrix elements are equal to zero. Designating the symmetry unique \(m_+ \) and \(m_- \) transition moment matrix elements as \(m \) (cf. Eq.(93)) and using the magnetic moment matrix elements as given in Eq.(92), we find

\[
\frac{A_2}{D_0} = -\left(g_A^A - g_J^J \right)^2 / 20 \tag{116}
\]

\[
\frac{C_1}{D_0} = -\left(g_A^A - g_J^J \right) g_A^A / 20 \tag{117}
\]

\[
\frac{G_0}{D_0} = -(g_A^A)^2 / 40 \tag{118}
\]

with again \(D_0 = |m|^2 / 3 \). Note that for low temperatures where the MLD signal is expected to be dominated by the \(G_0 \) term, negatively-signed bands are predicted for both \(\Delta \Omega = \pm 1 \) transitions. This is in contrast to the prediction for the MCD \(C_0 \) terms given in Eqs.(100) and (102) where for \(\Delta \Omega = +1 \) transitions a negative MCD band and for \(\Delta \Omega = -1 \) transitions a positive MCD band is predicted.
\(\Delta \Omega = 0\) Transitions

Next we consider the case of \(\Delta \Omega = 0\). (The \(1/2 \rightarrow 1/2\) case will be treated separately.) The only nonzero transition moments are \(\langle Aa|m_z|Aa\rangle = \langle Aa'|m_z|Aa'\rangle \equiv m_z\). Substituting into Eqs. (111)-(115) yields

\[
\frac{A_z}{D_0} = \left(g_A^A - g_J^J \right)^2 / 10 \tag{119}
\]

\[
\frac{C_1}{D_0} = \left(g_A^A - g_J^J \right) g_A^A / 10 \tag{120}
\]

\[
\frac{G_0}{D_0} = \left(g_A^A \right)^2 / 20 \tag{121}
\]

and \(D_0 = \left| m_z \right|^2 / 3\). Thus, at low temperatures the MLD signal is expected to be positive since the most important low temperature term, \(G_0\), is positive.

\(\Omega = 1/2 \rightarrow 1/2\) or \(3/2\) Transitions

As discussed above, the analysis of transitions originating from the \(\Omega = 1/2\) states are complicated due to off diagonal Zeeman coupling between the +1/2 and -1/2 sublevels. Using the same approach as adopted for the MCD derivation, we
obtain for the \(\Omega = 1/2 \rightarrow \Omega = 3/2 \) case

\[
\frac{\bar{A}_2}{\bar{D}_0} = -\left[(g^A_\parallel - g^J_\parallel)^2 - (g^A_\perp)^2 \right]/20 \tag{122}
\]

\[
\frac{\bar{C}_1}{\bar{D}_0} = -\left[g^A_\parallel (g^A_\parallel - g^J_\parallel) - (g^A_\perp)^2 \right]/20 \tag{123}
\]

\[
\frac{\bar{G}_0}{\bar{D}_0} = -\left[(g^A_\parallel)^2 - (g^A_\perp)^2 \right]/40 \tag{124}
\]

Here it is unfortunately not possible to predict the sign of the expected MLD signal since the quantities in square brackets may be positive or negative depending on the relative magnitudes of \(g^A_\parallel \) and \(g^J_\parallel \) versus \(g^A_\perp \).

For the case with \(\Omega = 3/2 \rightarrow \Omega = 1/2 \) Eq.(135) for \(\frac{\bar{A}_2}{\bar{D}_0} \) holds with \(A \) and \(J \) interchanged and Eqs.(117) and (118) hold for the important \(\frac{C_1}{D_0} \) and \(\frac{G_0}{D_0} \) terms.
The MLD expressions for the $\Omega = 1/2 \rightarrow \Omega = 1/2$ case are given below.

\[
\bar{A}_2 = [2|m_z|^2((g_{||}^A - g_{||}^J)^2 - 2((g_{\perp}^A)^2 + (g_{\perp}^J)^2)]
\]

(125)

\[-|m|^2[(g_{||}^A + g_{||}^J)^2 - \{((g_{\perp}^A)^2 + (g_{\perp}^J)^2)]/60
\]

(126)

\[\bar{G}_0 = [2|\bar{m}_z|^2\{(g_{||}^A)^2 - 2(g_{\perp}^A)^2\} - |m|^2\{(g_{||}^A)^2 - (g_{\perp}^A)^2\}] / 120
\]

\[\bar{C}_1 = [|\bar{m}_z|^2\{(g_{||}^A)^2 - 2(g_{\perp}^A)^2 - g_{||}g_{||}^A\} - (|m|^2/2)\{(g_{||}^A)^2 - (g_{\perp}^A)^2\} - (g_{\perp}^A)^2 + g_{||}g_{||}^A]/60
\]

(127)

where for the sake of simplicity, we have set the ratios of the g factors, $g_{||}^A/g_{\perp}^A$ and $g_{||}^J/g_{\perp}^J$, equal to each other.
Extraction of the MCD and MLD Terms Via Moment Analysis

The use of the method of moments in the evaluation of MCD data has been effective in recent years to extract information on excited state spin-orbit coupling constants, Jahn-Teller activity, etc.29-33,63,66,78 The use of moments with MLD data has however not been exploited, although the appropriate expressions have been reported.65 The moments for MCD or MLD and absorption are defined as:

\[
\langle A \rangle_n^E^0 = \int (A/E)(E - E^0)^n dE \tag{128}
\]

\[
\langle \Delta A \rangle_n^E^0 = \int (\Delta A/E)(E - E^0)^n dE \tag{129}
\]

where E^0 is the center of gravity of the absorption band and n is the order of the moment. Expressing the magnetic field strength as B, the sample concentration as c and the path length as y, the moments for MCD and MLD are given by
\[<A>_0 = \tau D_0 cy \]

\[<\Delta A_{\text{MCD}}>_0 = \tau (B_0 + C_0/kT)Bcy\mu_B \]

\[<\Delta A_{\text{MCD}}>_1 = \tau A_1 Bcy\mu_B \]

\[<\Delta A_{\text{MLD}}>_0 = \tau (F_0 + G_0/kT)B^2cy\mu_B^2/kT \]

\[<\Delta A_{\text{MLD}}>_1 = \tau (B_1 + C_1/kT)B^2cy\mu_B^2 \]

\[<\Delta A_{\text{MLD}}>_2 = \tau [A_2 + p(F_0 + G_0/kT)/kT]B^2cy\mu_B^2 \]

The terms not discussed here \((B_0, F_0, B_1,\) and \(p\)) are usually small; they are defined elsewhere. In practice, each of the MCD or MLD moments are divided by the zeroth order absorption moment to remove any dependence on the sample concentration or path length. The MCD \(C_0\) term is obtained from the slope of a \(<\Delta A_{\text{MCD}}>_0/<A>_0\) vs. inverse temperature plot while the MCD \(A_1\) term is gotten from a similar \(<\Delta A_{\text{MCD}}>_1/<A>_0\) plot. The MLD \(A_2\) term may be obtained from the relation

\[<\Delta A_{\text{MLD}}>_2 = \tau B^2cy\mu_B^2 A_2 + p<\Delta A_{\text{MLD}}>_0 \]

A plot of \(<\Delta A_{\text{MLD}}>_2\) vs. \(<\Delta A_{\text{MLD}}>_0\) will yield a straight line whose intercept gives \(A_2\). The \(C_1\) term may be obtained from the slope of a \(<\Delta A_{\text{MLD}}>_1/<A>_0B^2\) vs. \(1/T\) plot and the \(G_0\) term from the slope of a \(<\Delta A_{\text{MLD}}>_0T/<A>_0B^2\) vs. \(1/T\) plot.

With the digital data acquisition available in most modern
spectrometers, the calculation of any of these moments is a relatively simple task.

Discussion

The major results presented here are summarized in Tables 17 and 18. Table 17 contains the expressions of importance for paramagnetic molecules. It can be seen that MCD alone is capable of providing definitive information on the assignment of the transition since for $\Delta \Omega = -1, 0,$ and $+1$, C_0/D_0 is predicted to be positive, absent, and negative. On the other hand, the prediction for MLD is the same (negative) for both $\Delta \Omega = \pm 1$ and is different (positive) for $\Delta \Omega = 0$.

Table 18 shows that for transitions between ground and excited states whose g factors are similar the A_1(MCD), C_1(MLD), and A_2(MLD) terms will be small. This situation arises since each of these terms depends upon the quantity $(g_\parallel^A - g_\parallel^J)$. Conversely for a diamagnetic molecule $(g_\parallel^A=0)$ with the allowed transitions $^1\Sigma \rightarrow ^1\Sigma$ or $^1\Pi$ the A_1 term will be zero and positive, the C_1 term will be zero and zero, and the A_2 term will be zero and negative for $\Delta \Omega = 0$ and $+1$, respectively.

Previous reports on the absorption and MCD spectra of TaO isolated in Ar matrices demonstrate that transitions from the ground $^2\Delta_{3/2}$ state to $\Omega = 1/2, 3/2,$ and $5/2$ excited states obey the C_0 sign predictions presented in Table 17.
It would be of interest to determine whether the MLD G_0 predictions also hold.

The results presented here are expected to be useful for the assignment of excited and ground electronic states of matrix isolated diatomic as well as linear polyatomic homo and heteronuclear transition metal clusters. While good progress has been made via ESR studies79, on the ground states of these species, the electronic excited states of many remain unknown.
Table 17

Calculated \overline{C}_0/D_0 and \overline{G}_0/D_0 terms for randomly oriented paramagnetic linear molecules.

<table>
<thead>
<tr>
<th>$\Delta \Omega$</th>
<th>\overline{C}_0/D_0</th>
<th>\overline{G}_0/D_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>$+g \parallel^2/2$</td>
<td>$-(g \parallel^2)/40$</td>
</tr>
<tr>
<td>0(^a)</td>
<td>none</td>
<td>$+(g \parallel^2)/20$</td>
</tr>
<tr>
<td>+1</td>
<td>$-g \parallel^2/2$</td>
<td>$-(g \parallel^2)/40$</td>
</tr>
</tbody>
</table>

\(^a\) The $\Omega = 1/2 \rightarrow 1/2$ case is special; cf. text.
Table 18

Calculated \bar{A}_1/D_0, \bar{C}_1/D_0, and \bar{A}_2/D_0 terms for randomly oriented linear molecules

<table>
<thead>
<tr>
<th>$\Delta \Omega$</th>
<th>\bar{A}_1/D_0</th>
<th>\bar{C}_1/D_0</th>
<th>\bar{A}_2/D_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 a</td>
<td>$(g^A_{</td>
<td></td>
<td>} - g^J_{</td>
</tr>
<tr>
<td>0 b</td>
<td>none</td>
<td>$(g^A_{</td>
<td></td>
</tr>
<tr>
<td>+1 c</td>
<td>$-(g^A_{</td>
<td></td>
<td>} - g^J_{</td>
</tr>
</tbody>
</table>

a The $\Omega = 3/2 \rightarrow 1/2$ case is special; cf. text.
b The $\Omega = 1/2 \rightarrow 1/2$ case is special; cf. text.
c The $\Omega = 1/2 \rightarrow 3/2$ case is special; cf. text.
CHAPTER 6
G FACTOR SUM RULE

In the past, the identification of specific multiplet J values within an atomic Russell-Saunders term was often accomplished by measuring the Zeeman splitting of several optical bands involving the multiplet and comparing with the expected theoretical value found using the Lande g-factor formula. In the course of magnetic circular dichroism studies on matrix isolated atomic species we have found a g-factor sum rule which apparently has not been recognized previously.\(^{80}\) We present the rule here and provide examples, one from each of the three rows of transition metals, which confirm our finding. Finally, we use the rule to determine a g factor for a specific multiplet of V which is currently unknown experimentally.

In the presence of spin-orbit coupling, the orbital and spin angular momenta of an atom couple to generate an effective magnetic moment given by\(^{43}\)

$$\mu = -g_J(L,S)\mu_B J$$ \hspace{1cm} (132)

136
where \(\mu_B \) is the Bohr magneton, \(J \) is the total angular momentum and \(g_J(L,S) \) is the Lande g factor given by

\[
g_J(L,S) = g_1 + (g_s - g_1)[J(J+1) + S(S+1) - L(L+1)]/2J(J+1)
\]

(133)

The free spin g factor \(g_s \) is approximately 2.0023 and \(g_1 \approx 1 \). The average g value for all the \(J \) multiplets arising from a given Russell-Saunders term may be defined as

\[
\bar{g} = \frac{\sum_{J} g_J(L,S)}{N}
\]

(134)

where \(N \) is the number of terms in the summation, and is equal to the smaller of \(2L + 1 \) and \(2S + 1 \). Substituting (133) into (134) yields

\[
\bar{g} = \frac{(g_s + g_1)}{2} + (g_s - g_1)[(S(S+1) - L(L+1))/2N] \sum_{J} 1/J(J+1)
\]

(135)

Evaluation of the summation leads to
\[\sum_{J} 1/(J(J+1)) = \pm \sqrt{N/[L(L+1) - S(S+1)]} \]

(136)

where the positive sign holds for \(L > S \) and the negative sign for \(S > L \). Thus, we find the following interesting result for the average \(g \):

\[
\bar{g} = \begin{cases}
g_1 & \text{for } L > S \\
g_2 & \text{for } S > L
\end{cases}
\]

(137)

Hence the average \(g \) value reduces to the pure spin or orbital value depending upon the relative magnitudes of \(L \) and \(S \). Note, for the case of \(L = S \), \(g_J(L,L) = 3/2 \) except for \(g_0(L,L) \) which is indeterminant.

In Table 19 are given experimental and theoretical \(g \) values \((g_S = 2, g_1 = 1)\), determined from (147) and (150) respectively, for a number of excited terms of \(V, Mo, \) and \(Re \). The root mean square (RMS) deviations are 0.05, 0.08, and 0.20, respectively. As expected, the RMS deviations increase as one proceeds from the first to the third row transition elements, reflecting the increasing inter-term SO coupling, i.e. departure from Russell-Saunders coupling.
<table>
<thead>
<tr>
<th>Term</th>
<th>g_{exp}</th>
<th>g_{theor}</th>
<th>Term</th>
<th>g_{exp}</th>
<th>g_{theor}</th>
<th>Term</th>
<th>g_{exp}</th>
<th>g_{theor}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^4\text{F}$</td>
<td>0.97</td>
<td>1</td>
<td>$a^7\text{S}$</td>
<td>1.99</td>
<td>2</td>
<td>$a^4\text{P}$</td>
<td>1.71</td>
<td>2</td>
</tr>
<tr>
<td>$a^6\text{D}$</td>
<td>1.95</td>
<td>2</td>
<td>$a^7\text{S}$</td>
<td>1.98</td>
<td>2</td>
<td>$a^6\text{D}$</td>
<td>1.73</td>
<td>2</td>
</tr>
<tr>
<td>$a^4\text{D}$</td>
<td>0.98</td>
<td>1</td>
<td>$a^5\text{G}$</td>
<td>1.00</td>
<td>1</td>
<td>$a^4\text{G}$</td>
<td>1.18</td>
<td>1</td>
</tr>
<tr>
<td>$a^4\text{P}$</td>
<td>1.95</td>
<td>2</td>
<td>$a^5\text{P}$</td>
<td>1.95</td>
<td>2</td>
<td>$a^4\text{D}$</td>
<td>1.26</td>
<td>1</td>
</tr>
<tr>
<td>$a^2\text{G}$</td>
<td>1.00</td>
<td>1</td>
<td>$a^3\text{D}$</td>
<td>1.22</td>
<td>1</td>
<td>$z^8\text{P}$</td>
<td>1.99</td>
<td>2</td>
</tr>
<tr>
<td>$a^2\text{P}$</td>
<td>0.92</td>
<td>1</td>
<td>$a^3\text{G}$</td>
<td>1.01</td>
<td>1</td>
<td>$a^2\text{F}$</td>
<td>1.10</td>
<td>1</td>
</tr>
<tr>
<td>$a^2\text{D}$</td>
<td>1.07</td>
<td>1</td>
<td>$a^3\text{F}$</td>
<td>0.954</td>
<td>1</td>
<td>$a^2\text{G}$</td>
<td>1.11</td>
<td>1</td>
</tr>
<tr>
<td>$a^4\text{H}$</td>
<td>0.97</td>
<td>1</td>
<td>$a^3\text{H}$</td>
<td>1.08</td>
<td>1</td>
<td>$a^2\text{D}$</td>
<td>0.98</td>
<td>1</td>
</tr>
<tr>
<td>$b^4\text{P}$</td>
<td>1.94</td>
<td>2</td>
<td>$a^3\text{I}$</td>
<td>0.99</td>
<td>1</td>
<td>$a^2\text{I}$</td>
<td>1.05</td>
<td>1</td>
</tr>
<tr>
<td>$a^2\text{H}$</td>
<td>0.98</td>
<td>1</td>
<td>$z^7\text{P}$</td>
<td>1.98</td>
<td>2</td>
<td>$z^6\text{P}$</td>
<td>1.97</td>
<td>2</td>
</tr>
<tr>
<td>$b^4\text{F}$</td>
<td>0.99</td>
<td>1</td>
<td>$b^3\text{D}$</td>
<td>1.18</td>
<td>1</td>
<td>$z^4\text{P}$</td>
<td>1.83</td>
<td>2</td>
</tr>
<tr>
<td>$z^6\text{G}$</td>
<td>0.96</td>
<td>1</td>
<td>$b^3\text{F}$</td>
<td>1.02</td>
<td>1</td>
<td>$z^6\text{G}$</td>
<td>1.13</td>
<td>1</td>
</tr>
<tr>
<td>$a^4\text{G}$</td>
<td>0.99</td>
<td>1</td>
<td>$b^3\text{G}$</td>
<td>1.07</td>
<td>1</td>
<td>$x^6\text{P}$</td>
<td>1.56</td>
<td>2</td>
</tr>
<tr>
<td>$z^6\text{D}$</td>
<td>1.93</td>
<td>2</td>
<td>$z^5\text{P}$</td>
<td>2.00</td>
<td>2</td>
<td>$z^4\text{D}$</td>
<td>1.25</td>
<td>1</td>
</tr>
</tbody>
</table>
The rule may be used to determine the g factor for a particular multiplet within a term whose other multiplet g values are known experimentally. For example, for the V u \(^4\)D state, g factors are known for the \(J=7/2, 5/2, \) and \(3/2\) multiplets but not the \(J=1/2\). The g factor for the u \(^4\)D\(1/2\) multiplet calculated from the g value equation is \(0.23 \pm 0.09\) while the value calculated from the Lande formula is zero. The error quoted here is determined by a propagation of errors approach on Eq.134. Namely \(\Delta g_j(L,S) = N^{-1/2} \Delta g\), where \(\Delta g\) is the rms deviation quoted above. This difference, which is outside the expected error limits, signifies a departure from the Russell-Saunders limit for this term.

The question arises as to which of these g factors is the more reliable. If we rewrite (134) explicitly for the experimental Lande factors, \(g_j(L,S)\), we obtain

\[
\bar{g}_{\text{exp}} = \frac{1}{N} \sum_{J} g_j(L,S) = \bar{g} \pm a
\]

(138)

where the 'a' corrects for the departure from the exact theoretical g. If we now partition \(g_j(L,S)\) into a Lande \(g_j(L,S)\) and a correction \(\delta g_j\) (which includes the departure from a RS coupling and/or experimental error) we obtain
\[g_J(L,S) = g_J(L,S) + \delta g_J \]

(139)

Hence it follows that the difference between the exact \(g \) factor and that predicted by (133) is given by

\[-\sum' \delta g_J \pm Na \]

(140)

The prime indicates a sum over the \(N-1 \) terms for which \(g_J(L,S) \) and hence \(\delta g_J \) are experimentally known. The difference between the exact \(g \) and that calculated from (138) (with \(a=0 \), i.e. the sum rule) is \(\pm Na \). Since the 'Na' term as well as the sum in (140) may be positive or negative, there is no way of knowing which difference is smaller. Hence it is not possible to determine a priori whether the \(g \) factor computed from the sum rule is more reliable than that obtained from the Lande equation. Nevertheless, when used in conjunction with the Lande equation, the sum rule may find its greatest usefulness in signalling the admixture via spin-orbit coupling of other states into the multiplets of the term under study.

We can extend the above treatment to take into account nuclear hyperfine coupling. In this case, the electronic angular momentum, \(J \), is coupled to the nuclear angular momentum, \(I \), to yield the total angular momentum, \(F \) where \(F = |J-I|, |J-I|+1, \ldots, J+I \). Using a simple vector
coupling model, we obtain the following expression for g_F

$$g_F = g_J[F(F+1) + J(J+1) - I(I+1)]/[2F(F+1)]$$

- $(g_I m/M)[F(F+1) + I(I+1) - J(J+1)]/[2F(F+1)]$

(141)

Here, g_I is the nuclear g factor (≈ 1) and m (M) is the electron (nuclear) mass. Obviously, the second term is virtually insignificant. Summing over all F for a given J and I, and dividing by the number of F values, N', we find

$$\bar{g}_F = \sum_F g_F/N' = \begin{cases}
 g_J & J > I \\
 (m/M)g_I & I > J
\end{cases}$$

(142)

Hence the average g value, g_F, reduces to the pure electronic and nuclear values depending upon the relative magnitudes of J and I. It is interesting to note that for the case $I > J$, $g_F \approx 0$ since the nuclear mass, M, is so much greater than the electron rest mass, m. Unfortunately, sufficient experimental data to verify the above sum rule does not appear to be available.
The use of isotopically labelled molecules in vibrational spectroscopy is a well established method of unravelling complicated spectra. Specifically, in the study of matrix isolated clusters, knowledge of the number of possible isotopomers is key to identifying the cluster size as well as geometry. We derive here a simple formula for the number of isotopomers of any linear single element cluster containing two possible isotopes (ex. ^{12}C and ^{13}C). Following this, a general formula applicable to any cluster symmetry is presented.

For linear clusters, the total number of isotopomers, N_T, can be partitioned into symmetric and asymmetric structures.

$$N_T = N_S + N_A$$ \hspace{1cm} (143)

In addition, the total can be represented as

$$N_T = 2^n - N_A$$ \hspace{1cm} (144)
where the 2^n represents the 2 isotopic possibilities for each of n atoms and the N_A term corrects for the fact that the asymmetric structures are counted twice (for example $^{13}_C^{12}_C^{12}_C^{12}_C$ and $^{12}_C^{12}_C^{12}_C^{13}_C$). Solving we obtain

$$N_T = 2^{n-1} + N_S/2 \quad (145)$$

Now it remains to determine N_S as a function of n. For n even, we find

$$N_S = \sum_k \binom{n/2}{k} = 2^{n/2} \quad (146)$$

where the binomial coefficient represents the number of symmetric structures with k isotopic substitutions on each half ($n/2$ atoms) of the molecule. Similarly for n odd we obtain

$$N_S = 2\sum_k \binom{(n-1)/2}{k} = 2^{(n + 1)/2} \quad (147)$$

where the 2 represents the fact that the atom on the plane of symmetry may be of either isotope regardless of the distribution on isotopes in the rest of the cluster.
Combining Eqs. (145)-(147), we obtain the final results

\[N_T(n \text{ even}) = 2^{n-1} + 2^{n/2} - 1 \] \hspace{1cm} (148)

\[N_T(n \text{ odd}) = 2^{n-1} + 2(n - 1)/2 \] \hspace{1cm} (149)

Hence for carbon clusters containing ^{12}C and ^{13}C we find the results given in Table 20. As can be seen the possible number of isotopomers increases rapidly with increasing \(n \). As a matter of fact, the number of isotopomers for \(n \) odd is simply twice the number of isotopomers for the next smaller (even) cluster, i.e.

\[N_T(n_{\text{even}} + 1) = 2N_T(n_{\text{even}}) \] \hspace{1cm} (150)

Hence the density of vibrational bands in the IR or Raman provides important information regarding the size of a matrix isolated cluster.

General Symmetry Case

Next we attempt to generalize the preceding results to the general symmetry case. Our starting point is the Polya enumeration method. The cycle index \(Z(H) \) is defined as

\[Z(H) = (1/h) \sum \limits_{i} h_{i}(f_{1}^{l_{1}}f_{2}^{l_{2}}...f_{p}^{l_{p}})_{i} \] \hspace{1cm} (151)
<table>
<thead>
<tr>
<th>n</th>
<th>N_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>72</td>
</tr>
<tr>
<td>8</td>
<td>136</td>
</tr>
<tr>
<td>9</td>
<td>272</td>
</tr>
<tr>
<td>10</td>
<td>528</td>
</tr>
</tbody>
</table>
where H is the molecular symmetry group (or rotational subgroup) of order h, h_i is the number of symmetry elements in class i ($\Sigma h_i = h$), and $f_k^{1_{\text{or}}}$ are variables with 1_k equal to the number of cycles of order k associated with the symmetry elements of the group. For example, if we consider the C_5 cluster of $D_{5\text{h}}$ symmetry, the results in Table 21 are obtained. Therefore the cycle index is given by

$$Z(D_5) = (1/10)[f_1^5 + 4f_5^1 + 5f_1^1f_2^2] \quad (152)$$

If we now replace $f_k^{1_{\text{or}}}$ by $(1 + x^k)^{1_k}$ we obtain the polynomial

$$Z(D_5) = 1 + x + 2x^2 + 2x^3 + x^4 + x^5 \quad (153)$$

such that the coefficient of x^n is the number of isotopomers in which n ^{12}C (for example) have been replaced by n ^{13}C. As a result, there is 1 isotopomer containing zero ^{13}C, 1 isotopomer containing one ^{13}C, etc. for a total of 8.

We can simplify the computation of the total number of isotopomers by summing the coefficients in the cycle index polynomial. Each term of Eq. (151) contains products of the form $f_1^{1_{\text{or}}}...f_p^{1_{\text{or}}}$ where the number of terms in the product string is equal to the number of different cycle lengths.
<table>
<thead>
<tr>
<th>Classes</th>
<th>Representative Permutation</th>
<th>$h_1 f_1^{1} \ldots f_p^{1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>$(1)(2)(3)(4)(5)$</td>
<td>$1f_1^5$</td>
</tr>
<tr>
<td>$2C_5$</td>
<td>(12345)</td>
<td>$2f_5^1$</td>
</tr>
<tr>
<td>$2C_5^2$</td>
<td>(13524)</td>
<td>$2f_5^1$</td>
</tr>
<tr>
<td>$5C_2$</td>
<td>$(1)(25)(34)$</td>
<td>$5f_1^1 f_2^2$</td>
</tr>
</tbody>
</table>

Table 21

Construction of Cycle Index for C_5 (D_{5h}) Using the Rotational Subgroup, D_5
Applying the binomial theorem

\[f_k^l = (1 + x^k)^l = \sum_{a} \binom{l}{a} x^{ka} \tag{154} \]

and hence the number of terms in the final polynomial arising from \(f_k^l \) is therefore

\[\sum_{a} \binom{l}{a} = 2^l \tag{155} \]

For products such as \(f_k^l f_k'^{l'} \) we obtain

\[\sum_{a} \binom{l}{a} \sum_{a'} \binom{l'}{a'} = 2^l + 2^{l'} \tag{156} \]

and in general we obtain \(2^{\sum l_k} \) where the summation is over all cycles for a particular class. (Note, all symmetry elements within a given class have the same cycle structure.) As a result, the total number of isotopomers, \(N_T \), is given by

\[N_T = (1/h) \sum_{l} 2^{(E_1 k)_i} \tag{157} \]

This can be simplified further by noting that \((E_1 k)_i \) is simply equal to the number of cycles in class \(i \), \(L_i \).

Hence
To apply Eq. (158), it is useful to recognize that L_i is the number of sets of nuclei rendered symmetry equivalent by the symmetry operations in class i. For example, for the C_4 cluster of C_{3v} symmetry (C_3 rotational subgroup) we obtain trivially $L_E = 4$ for the identity ($L_E = n$ in general) and $L_{C_3} = 2$ for the C_3 class. Hence the number of isotopomeric C_4 clusters is given by $(1/3) \times [(1)2^4 + (2)2^2] = 8$.

In fact, since we may always work in the rotational subgroup, each class, i, is associated with a symmetry element C_i corresponding to a rotation by $360/i$ degrees. If there are m_i atoms (out of a total of n) on the C_i axis, then the remaining $n - m_i$ atoms are partitioned into $(n - m_i)/i$ different sets (cycles) of symmetry equivalent nuclei. Therefore we find

$$L_i = m_i + (n - m_i)/i$$ \hspace{1cm} (159)
We can gain further insight into this equation by noting that 2^L_i is the number of isotopomers with the symmetry associated with class i. For the C_4 cluster discussed above, there are $2^2 = 4$ isotopomers with a C_3 axis. In other words, the C_3 operation partitions the atoms into 2 sets ($L_{C_3} = 2$): an apex atom and a basal set of 3 atoms. Each of these 2 sets can be all ^{12}C or ^{13}C and hence there are 4 isotopomers with a C_3 axis. The identity on the other hand partitions the atoms into 4 sets (each containing 1 atom); i.e. it does not render any of the atoms equivalent. Hence each atom can be ^{12}C or ^{13}C and we have $2^4 = 16$ structures, many of which are redundant. Therefore the correct number of isotopomers is just an average of 2^L_i where the average is taken over all of the classes in the appropriate symmetry group or rotational subgroup. In compact notation,

$$N_T = \langle 2^L_i \rangle$$

(160)

Finally, we demonstrate that Eq. (158) (or (160)) reduces to Eqs. (148) and (149) for the case of a linear molecule. To avoid the problem of working with the infinite order $D_{\infty h}$ group, we distort the molecule by a small amount as follows. For the case of n even, the molecular chain is bent in a zigzag fashion such that one end is up and the other down, i.e. C_{2h} symmetry. For the case of n odd, we again bend the chain of atoms such that both ends are pointing in the same direction,
ie C$_{2v}$ symmetry. This does not change the number of isotopomers, and allows us to work in the C$_2$ rotational subgroup. For the case of n even, $L_E = n$ and $L_{C_2} = n/2$ while for n odd $L_E = n$ and $L_{C_2} = (n + 1)/2$. Hence using Eq. (158) with $h = 2$ and $h_i = 1$ we obtain Eqs. (148) and (149).

We can extend the above treatment to include the case of more than two possible isotopes. In fact for a single element cluster where N isotopes are considered Eq.(158) becomes

$$N_T = (1/h)\sum_{i=1}^{L_i} N_i$$

(161)

For example, if we look at a 3 atom cluster of C$_{2v}$ symmetry (C_2 rotational subgroup) where 3 isotopes are considered there are $(1/2)[3^3 + 3^2] = 18$ possible isotopomers.

It is also a simple matter to treat the case of a molecule or cluster containing more than one element. Since each of the elemental subsets are independent of each other we have

$$N_T = \pi[(1/h)\sum_{i}^{L_i} N_i]$$

(162)

$$= \pi <N_j>$$
where the product is taken over each element, j, of which N_j isotopes are treated. For example, for the icosahedral cluster (Buckeyball84) $C_{60}La$ (I rotational subgroup symmetry, 2 isotopes per atom,), the number of isotopomeric subunits for C, and La are

$$C \quad (1/60)[2^{60} + (12)2^{12} + (12)2^{12} + (20)2^{20} + (15)2^{30}] = 19,215,358,678,900,736$$

$$La \quad (1/60)[2^1 + (12)2^1 + (12)2^1 + (20)2^1 +(15)2^1] = 2$$

Hence we have 38,430,717,357,801,472 possible isotopomers of $C_{60}La$.
CHAPTER 8
CONCLUDING REMARKS

MCD and MLD have been shown to be very useful techniques for studying matrix isolated atoms and molecules. It has been shown that the SO constant of the lowest 2P excited state of the noble and alkali metal atoms decreases in the order Ar > Kr > Xe, and that a supermolecule model nicely accounts for this trend. While attention has focused on the excited state, it would be interesting to analyse the matrix shift of the (average) $^2S \rightarrow ^2P$ transition energies for various rare gas hosts. This shift is the result of a differential matrix effect on the ground and excited electronic states. For the cases where experimental data exists (Cu29,30, Ag85 and Au86), it appears that the matrix shift is greatest in Ar and progressively decreases for the heavier noble gases. See Table 23. Possibly semiempirical calculations (EHT, CNDO, INDO, etc.), higher level ab initio computations, or even a phenomenological (Lennard-Jones, for example) approach applied to the MX$_{12}$ entity would help to shed light on the mechanism of this matrix perturbation.

In addition, the moment analysis procedure which is so useful in studying atomic S \rightarrow P transitions could probably be extended to encompass all transitions $^{2S+1}L \rightarrow ^{2S+1}L'$.

154
Table 22
Matrix Induced $^2S \rightarrow ^2P$ Transition Energy Shifts

<table>
<thead>
<tr>
<th>System</th>
<th>Energy (cm$^{-1}$)</th>
<th>Shift (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(gas)</td>
<td>30701</td>
<td>-</td>
</tr>
<tr>
<td>Cu/Ar</td>
<td>32763</td>
<td>2062</td>
</tr>
<tr>
<td>Cu/Kr</td>
<td>31911</td>
<td>1210</td>
</tr>
<tr>
<td>Cu/Xe</td>
<td>31712</td>
<td>1011</td>
</tr>
<tr>
<td>Ag(gas)</td>
<td>30166</td>
<td>-</td>
</tr>
<tr>
<td>Ag/Ar</td>
<td>32694</td>
<td>2528</td>
</tr>
<tr>
<td>Ag/Kr</td>
<td>31788</td>
<td>1622</td>
</tr>
<tr>
<td>Ag/Xe</td>
<td>30509</td>
<td>343</td>
</tr>
<tr>
<td>Au(gas)</td>
<td>39902</td>
<td>-</td>
</tr>
<tr>
<td>Au/Ar</td>
<td>42390</td>
<td>2488</td>
</tr>
<tr>
<td>Au/Kr</td>
<td>41231</td>
<td>1329</td>
</tr>
<tr>
<td>Au/Xe</td>
<td>39445</td>
<td>-457</td>
</tr>
</tbody>
</table>
This would enable one to extract ground and excited state information (SO constants, g factors, and Jahn-Teller couplings) from observed MCD and absorption spectra. Ideally, such a generalized equation should reduce to the simpler form upon allowing the replacements $L \rightarrow 0$ and $L' \rightarrow 1$ (i.e. $S \rightarrow P$). Such a set of equations would undoubtedly be of great use in analyzing the bulk of atomic spectroscopic transitions.

Application of the MCD saturation technique to Re atoms matrix isolated in Kr has revealed a large ground state SO mediated crystal field splitting which precludes the observation of any low temperature ESR. Sufficient thermal energy of the order 20cm^{-1} (30 K) is predicted to populate the $|U'\mu\rangle$ state resulting in the observable spin transition $|U'\mu\rangle \rightarrow |U'\lambda\rangle$. It would also be interesting to study via MCD the cases of Re matrix isolated in Ar and Xe to assess their ground state matrix splitting.

Faraday parameter expressions were derived that predict the MCD and MLD signs expected for the various electric dipole allowed transitions for randomly oriented linear molecules. While the MCD predictions are born out in the case of matrix isolated TaO87 ($2\Delta_{3/2}$ ground state), further experimental work needs to be done on other suitable linear molecules such as IO ($2\pi_{3/2}$ ground state), CoO ($4\Delta_{7/2}$ ground state), and IrC ($2\Delta_{5/2}$ ground state) to test the theory. Also, it seems that one should be able to extend this treatment to the general molecular symmetry case and construct a table for each point
group that contains the expected low temperature MCD and MLD signs of all electric dipole allowed transitions. Maybe a simple prescription analogous to the atomic ΔJ selection rule exists that might enable one to say, for example, that all $T \rightarrow A$ molecular transitions are expected to be positive (regardless of any $1, 2, g, \text{ or } u$ subscripts), etc.
APPENDIX A
SIX COORDINATE SPIN-ORBIT REDUCTION FACTOR

In this section the expression for the SO reduction factor is derived for the case of a metal octahedrally surrounded by six rare gas atoms. The \(t_{1u} \) group orbitals composed of the rare gas \((n + 1)p\) atomic orbitals overlap with the metal \(p_x, p_y, \) and \(p_z \) orbitals.\(^{44}\) The relevant molecular orbitals are

\[
\phi_{t_{1u}}(z) = c_1 p_z^M - c_2(z_1 + z_6) + c_3(z_2 + z_3 + z_4 + z_5)
\]

\[
\phi_{t_{1u}}(y) = c_1 p_y^M - c_2(y_3 + y_5) + c_3(y_1 + y_2 + y_4 + y_6)
\]

\[
\phi_{t_{1u}}(x) = c_1 p_x^M - c_2(x_2 + x_4) + c_3(x_1 + x_3 + x_5 + x_6)
\]

When the SO Hamiltonian given in (6) is used to form the SO matrix, the result is similar to (7) except that the constant is different. Here it is called B and is given by

\[
B = h^2(c_1^2 \zeta_M - 2S_{\sigma \zeta} c_1 c_3 + 2S_{\pi \zeta} c_1 c_3
\]

\[
- 2S_{\pi \zeta} c_1 c_2 + 2c_1 c_2 S_{\sigma M} + 4c_1 c_3 S_{\pi M})/8\pi^2
\]

158
The roots of the SO matrix are B (4 fold degenerate) and $-2B$ (2 fold degenerate). The splitting (3B) is related to the effective SO coupling constant as done previously.

$$\Delta E = 3B \equiv 3\zeta_{\text{eff}}h^2/8n^2$$ (165)

The spin-orbit reduction factor is therefore

$$k = \frac{\zeta_{\text{eff}}}{\zeta_{M}} = c_1^2 - 2S_\sigma c_1 c_3 Q + 2S_\pi c_1 c_3 Q$$

$$- 2S_\pi c_1 c_2 Q + 2c_1 c_2 S_\sigma + 4c_1 c_3 S_\pi$$ (166)

where $Q = \zeta_X/\zeta_M$. If the approximation is again made that the mixing coefficients are proportional to the appropriate overlaps (i.e., $c_2 \propto S_\sigma$ and $c_3 \propto S_\pi$), the coefficients can be expressed in terms of only one coefficient. Thus if c_3 is set equal to c, then c_2 becomes Rc where $R \equiv S_\sigma/S_\pi$. Again c_1 is taken $= 1$. Finally the reduction factor is

$$k = 1 + 2cS_\pi(2R - 1)[(R^2 + 2)/(2R - 1) - Q]$$ (167)

which is identical to the expression for the octahedral MX_{12} site model except that the numerical coefficient at the beginning of the second term is 2 instead of 4.
In cases where the ground state multiplet originates from a Russell-Saunder's state of zero orbital angular momentum, there can be no crystal field splitting to first order. This arises from the fact that the crystalline electric field is spin independent and hence cannot split a state possessing only spin angular momentum. If the spherically symmetric S state can mix with a low lying P state via the spin-orbit Hamiltonian (selection rules: $\Delta J = 0, \Delta L = \Delta S = 0, \pm 1$), then one may observe a matrix splitting. In effect the mixing results in a distortion from spherical symmetry which renders the state susceptible to site symmetry perturbations. In such a situation, Eq.(45) is replaced by

$$ |A\alpha\rangle = \sum_{M} \sum_{k} C_{J,M}^{J',M}[\Sigma d_{k} |J'M,k\rangle] $$

(168)

where the sum over k represents the mixture of excited states into the spherically symmetric (to first order) ground state.

Proceeding as before, we find that Eqs.(63)-(65) and (78) hold with the following replacements.
\[E_{CF_i} \rightarrow \sum_{M,M'} \sum_{J} C_{J,M}^{M'} \langle M,M' | \langle J' | M' | k | H_{CF} | J' | M, k \rangle \]

(169)

\[
\langle M | (i,j) \rangle^2 \rightarrow \langle M | (i,j) \rangle^2 (\mu_B B/kT) \sum_k d_k g_k
\]

\[= \langle M | (i,j) \rangle g \mu_B B/kT = \langle M | (i,j) \rangle \]

(170)

\[= E_Z(i,j) \]

\[|<J'|m|J_f>|^2 \rightarrow \sum_k d_k |<J'|k|m|J_f>|^2 \]

(171)

where \(J_f = J' + 1, J', \) or \(J' - 1. \)
APPENDIX C

ZERO FIELD SPLITTING OF AN ORBITALLY NONDEGENERATE MOLECULAR STATE

The MCD/MLD saturation formalism developed above for crystal field split ground atomic multiplets can be used with very little modification to treat the zero field splitting (crystal field and/or spin-spin and/or spin-orbit) of a molecular state $^{2S+1}\Gamma$ where Γ represents the totally symmetric representation of the appropriate molecular point group. In such a case (zero orbital angular momentum), one can use to lowest order an $|S M_S\rangle$ basis set to represent the ground molecular eigenstates. The crystal field Hamiltonian, H_{CF}, is replaced by the zero field Hamiltonian 48 H_D

$$H_D = \sum_{m} \sum_{n} B_n^m O_n^m$$ \hspace{1cm} (172)

where O_n^m are spin tensors of rank n ($n = 2, 4, 6, \ldots$; $m < n$) and B_n^m are the expansion coefficients. In general, the spin tensors are zero for $n > 2S$, and the expansion coefficients decrease rapidly with increasing n.

162
If only the lowest order term is retained, we find for linear molecules \((m = 0)\)

\[
H_D = D[S_z - S(S + 1)/3]
\]

(173)

In addition, the Zeeman energies are now given by \(E_z = g\mu_B M_s\). Therefore we find

\[
\Delta A_{\text{MCD}} \propto \pm (1/Z) \sum \frac{\exp(-D[M_s - S(S + 1)/3]/kT)M_s \sinh(M_s \alpha)}{M_s > 0}
\]

(174)

\[
\Delta A_{\text{MLD}} \propto \pm (1/Z) \sum \frac{\exp(-D[M_s - S(S + 1)/3]/kT)\alpha}{M_s > 0}
\]

\[
\{\cosh(M_s \alpha)[3M_s - J'(J' + 1)]\}
\]

\[-\exp(DS(S + 1)/3kT)J'(J' + 1)/2\}

(175)

Note that the last term in the MLD expression applies only to the case of integral spin as it arises from the \(M_s = 0\) spin component.
REFERENCES

78. R. Pellow and M. Vala, Molecular Physics 68, 893 (1989).

BIOGRAPHICAL SKETCH

Robert C. Pellow was born on October 29, 1958, in Philadelphia, Penna. He attended Collingswood High School in Collingswood, N.J., and graduated in 1976. Afterwards he attended Rutgers University (Camden campus) pursuing a major in chemistry. After receiving a B.A. in 1980, he attended Princeton University where he obtained an M.A. in 1982. Following this, he moved to Pompano Beach where he taught general and organic chemistry for 3 years at Broward Community College. It was during this time that he met his wife Donna. Since the fall of 1986, he has pursued a Ph.D. at the University of Florida; since you are reading this, I guess he made it. He has one son, Alex, who is almost 2 years old.
I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Martin T. Vala
Martin T. Vala, Chairman
Professor of Chemistry

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

William Weltner, Jr.
Professor of Chemistry

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Willis B. Person
Professor of Chemistry
I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

James D. Winefordner
Graduate Research Professor
of Chemistry

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Gary G. Ihas
Professor of Physics

This dissertation was submitted to the Graduate Faculty of the Department of Chemistry in the College of Liberal Arts and Sciences and to the Graduate School and was accepted as partial fulfillment of the requirements for the degree of Doctor of Philosophy.

May, 1990

Dean, Graduate School