A course in . . .

MULTIVARIABLE CONTROL METHODS

PRADEEP B. DESHPANDE
University of Louisville
Louisville, KY 40292

During the last several years numerous promising approaches to the solution of multivariable control problems have become available. These control strategies are likely to play an important role in coming years as the processes become more complex and the demands for more efficient operation grow in the light of competitive pressures and environmental considerations. Taking these trends into consideration, we have developed a new graduate course in multivariable control methods. The multivariable control concepts were covered in an intensive four-day short course offered recently, and the responses of the industrial participants were very favorable. The concepts have also been taught in existing graduate courses. An overview of the proposed course is being given in this paper, accompanied by pertinent comments and literature references. It is hoped that it will serve as an impetus for instructors in the area of process control.

THE COURSE

There are four major topical areas of concentration. They are

- Interaction Analysis
- Multiloop Controller Design
- Decoupling
- Multivariable Control Strategies

Table 1 shows these areas further subdivided to provide greater detail. The contents can be comfortably covered in a standard one-semester graduate course. The prerequisites for the course should be a course in linear control theory and Laplace transforms, and a course in z-transforms and digital control concepts. More details about the topics are provided in the following paragraphs.

Interaction Analysis

Interaction analysis is the first phase of multivariable control systems design. The objective of interaction analysis can be twofold. The first objective is to select a suitable set of controlled and manipulated variables from competing sets. In a distillation control system, for example, there can be three (or more) possibilities: D, V; R, V; and R, B (first variable controls top composition, second controls bottoms composition). The second objective is to select controlled and manipulated variables within a given set; for example, should D be manipulated to control X_D and V to control X_R or should the reverse pairing be used? For small dimensional, say 2x2 systems, this step could perhaps be skipped if detailed dynamic information about the process is available. Then the available multivariable techniques could be tried through simulation, and a final pairing and control methodology could be selected based on the closed-loop simulation results. For large dimensional systems this is not feasible, and interaction analysis would have to be carried out.

Numerous techniques for carrying out interaction analysis are available. Some utilize steady-state gain
TABLE 1
Multivariable Control Methods Course Outline

1. Introduction to Multivariable Control
 • Incentive for Multivariable Control
 • Why Multivariable Systems are Difficult to Control
 • Industrial Examples

2. Interaction Analysis
 • Relative Gain Arrays
 • Singular Value Decomposition
 • Other Interaction Measures.

3. Multiloop Controller Design
 • Design of Multiloop PID-Type Controller
 • IMC Multiloop Controller

4. Decoupling (Explicit)
 • Decoupling in the Framework of RGA
 • Decoupling in the Framework of SVD

5. Multivariable Control Strategies
 a. Nyquist Arrays
 Direct Nyquist Arrays
 Inverse Nyquist Arrays
 b. Model Predictive Control
 Internal Model Control
 Dynamic Matrix Control
 Model Algorithmic Control
 Simplified Model Predictive Control
 c. Modern Control Theory
 Introduction to State-Space Models
 The Linear Quadratic Problem

The multivariable control concepts were covered in an intensive four-day short course . . . , and the responses of the industrial participants were very favorable. The concepts have also been taught in existing graduate courses.

Decoupling

If the extent of interaction is such that a multiloop controller structure is deemed to be inadequate, then there are two alternatives. The first is to carry out explicit decoupling in the framework of RGA or SVD, and the second is to use a full multivariable controller.

Explicit decoupling is covered here, and multivariable controller strategies are the topics that follow. In explicit decoupling in the framework of RGA, one designs decoupling elements such that one pseudo manipulated variable affects only one controlled variable. In the SVD decoupling approach, one carries out a singular value decomposition of the process gain matrix (or process transfer function matrix, depending on whether only steady-state decoupling is desired or dynamic decoupling is desired) and then multiplies the resulting expression by appropriate left and right singular vectors to give a decoupled system and a set of "structured" manipulated and controlled variables. These variables are connected via PID-type controllers to give decoupled responses. Two points are worth mentioning here. One is that modeling errors will degrade performance, and the second is that complete decoupling is not always the best approach if the goal is to achieve minimum ISE or minimum settling times. Better results can sometimes be achieved by allowing interactions in the closed-loop system.

Multivariable Control Techniques

In many instances a full multivariable controller may well be the preferred choice. This is especially true in those applications where constraints are present and perhaps in those which have an unequal number of inputs and outputs. (If a system is nonsquare, then singular value decomposition is an alternative to consider, although in this case external dead time compensation may have to be applied, making the approach somewhat cumbersome.) Additional benefits accruing from a multivariable controller include dead time compensation and decoupling.

There are several multivariable control techniques available. Three are included in Table 1. The first is

FALL 1988

189
based on Nyquist arrays. Direct and inverse Nyquist arrays are frequency domain techniques that require interactive computing with graphics for optimum benefits. Nyquist arrays can also be used for interaction analysis. Furthermore, they can be used to design precursors and postcompensators such that interaction is greatly reduced. These compensators permit the designer to control an n x n interacting system by n SISO PID-type controllers.

The second of the three topics is on model predictive control methods. In model predictive control, a mathematical model of the process is used for identification. The discussion begins with internal model control design based on factorization of the transfer function matrix into two parts, one involving the nonminimum phase elements and the other containing the remaining terms. The latter, when inverted, leads to the IMC controller. A diagonal filter network insures robustness in the presence of modeling errors. In the next phase, the predictive formulation of IMC is discussed. The objective in this instance is to calculate a set of future control actions based on the actual and model outputs such that a suitable performance index is minimized. Only the first control action is applied and the computations are repeated at the next sampling instant. Since the optimization procedure yields future control actions, one can anticipate when constraint violations are likely to occur and therefore what actions to take to keep this from happening. The predictive formulations lead to dynamic matrix control and model algorithmic control. In the final phase, a technique known as simplified model predictive control is discussed. SMPC is a relatively simple multivariable control technique that utilizes an impulse response type model of the process for implementation. It insures some decoupling. SMPC is suitable for low dimensioned processes.

The final topic in multivariable control is on modern control theory. Here, the student is first introduced to the notion of state space models. Then the optimal control problem is formulated, and the methods of solving it are described. The solution of the optimal control problem gives a matrix of control actions which, when applied, leads to process responses that satisfy a quadratic performance index. Recent research indicates that the linear quadratic problem can be formulated in the context of IMC.

At this time research is in progress at various locations which is aimed at designing controllers in the presence of uncertainties. The concept of structured singular values has been employed for this purpose. These concepts have not been incorporated into the current version of the course.

IN CONCLUSION

A course on multivariable control methods has been described. Instructional tools, including a text and computer-aided instruction software (CAI), are available for effective teaching of this course. The material is suitable for full-time graduate students and for control engineers from industry. It is believed that this course will be a good addition to the control specialty, not only in the chemical engineering discipline, but also in other engineering disciplines such as electrical engineering.

BIBLIOGRAPHY

190

CHEMICAL ENGINEERING EDUCATION
However, Denn’s text is superior to all others which I have considered in the treatment of the physical principles of fluid flow. It is much easier to compensate for the omission of material, which can be extracted from handbooks, than for a presentation which shares the students’ bias for either formula or calculus. I am especially appreciative of the organization of the text. Topics appear in an order which reflects the evolution of understanding of fluid flow, and for that reason, I believe, the order which is most easily understood by the student.

The text opens with observation and experimentation on flow primitives; the cylindrical filled conduit and the submerged sphere. This can provide a framework for an appreciation of the analysis of simple systems by the identification of key physical dependencies and the analysis of complex systems by construction from primitives. Also, this introduction establishes the proper relationship between observation and analysis and may help to correct the mistaken perception that discovery is deductive. The prediction of the pressure drop in a straight pipe leads, through Reynolds, to the friction factor correlation and the viscous force on a falling sphere leads, through Stokes, to the drag coefficient correlation. The similarity of these two important results is striking and properly emphasized. Key discoveries are followed by extension to more complex systems and the presentation acknowledges this process by presenting reasonable, yet simple arguments, which lead to correlations for non-cylindrical conduits, partially filled conduits, rough pipes, non-spherical submerged objects and packed beds. These progressions allow me to highlight central themes; the importance of symmetry and frame invariance, the emergence of design correlations from the identification of the significant physics and the replacement of complex systems by simpler systems through judicious approximation. All of this is accomplished without ever taking a derivative.

While the first section of the text is the greatest strength, the following section must be supplemented as an introduction to the application of the conservation of energy to the analysis of macroscopic flows. The derivation of the mechanical energy balance equation is easily understood and very thorough in the statement of assumptions by which the conservation equation is simplified to a “formula.” The conservation of linear momentum is combined with the energy conservation equation to analyze a sequence of increasing complexity; expansion, elbow, contraction, free jet and manifold. A logical parallel of the first section Continued on page 195.