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Next generation of semiconductor device will not only based on the charge transport

properties of the carrier, but also their spin degree of freedom. In order to understand

or predict how those devices work one need to understand the spin-dependent

electronic structures of both bulk and low-dimensional semiconductors. We have

theoretically studied the spin-dependent Landau levels for electrons or holes in

bulk GaAs system and AlInSb/InSb multiple quantum wells system. We use the

envelope function approximation for the electronic and magneto-optical properties

of AlInSb/InSb superlattices. Our model includes the conduction electrons, heavy

holes, light holes and the split-off holes for a total of 8 bands when spin is taken into

account. It is a generalization of the Pidgeon-Brown model to include the wave vector

dependence of the electronic states, as well as quantization of wave vector due to

multiple quantum well superlattice effects. In addition, we take strain effects into account

by assuming pseudomorphic growth conditions. For bulk GaAs system, we calculated

the spin-dependent absorption coefficients which can be directly compared with the

optically pumped NMR experiment. We show that the optically pumped NMR is a

complimentary tool to traditional magneto optical absorption measurement, in the sense

that optically pumped NMR is more sensitive to the light hole transitions which are very

hard to resolve in the traditional magneto absorption measurement. For the AlInSb/InSb

multiple quantum well system, we calculated both the magneto absorption spectra and
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the cyclotron resonance spectra. We compare both spectra to experimental results and

achieve a good agreement. This agreement assures us that our understanding of the

valence band structure of the narrow gap InSb materials are correct.
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CHAPTER 1
INTRODUCTION

Understanding the electronic, transport and optical properties of real materials

enable us to utilize the unique properties of each material to make devices applications.

Many of these properties are closely related to the electronic structures. Nowadays

certain experimental tools can be used to probe the electronic structures, for example,

the de Haas-van Alphen effect is a very useful tool to probe the Fermi surface for metals.

Another example is using the magneto-optical absorption to probe the Landau levels for

semiconductors, or using cyclotron resonance measurement to probe the effective mass

tensor. From all these available experimental tools we found that magnetic field is very

important in studying the electronic structures. Theoretically we also want to model the

electronic structures of materials in the magnetic field. Because the materials we are

interested in are direct-gap semiconductors, and we are only interested in a very small

range of the Brillouin zone around the zone center, the k · p method is most suitable

here for our purpose.

The fact that the solid can be categorized into metals, insulators and semiconductors

is based on its electronic structure. Metals do not have a band gap, insulators have a

large band gap and semiconductors usually have a band gap less than 4 electron volts.

Many types of electronic devices are designed based on the semiconductors materials

and it is fair to say semiconductor materials are the basis of the modern electronic

industry. At this time the most important and most famous semiconductor is silicon, not

only because of its properties but also because its manufacture is so mature that the

cost is low compared with other materials. However, III-V semiconductors also found

themselves important device applications. Wide bandgap semiconductors such as GaN

find their applications in light-emitting diodes (LEDs), lasers and detectors in the visible

and ultraviolet range. At the other end, narrow bandgap III-V semiconductors have some

unique properties that can be used in a number of electronic devices[1–3].

12



InSb is the III-V binary semiconductor with the smallest band gap[4], smallest

electron effective mass and largest g-factor. Table 1-1 shows the electron effective mass

m∗ and g-factor for three important III-V materials. It has potential applications such as a

optoelectronic device in the infrared range due to the narrow gap[5], and fast transistors

due to the small effective mass[6]. It also has potential applications in the area of spin

electronics, since its large g factor can be used to control its spin degree of freedom

through its orbital environment.

Table 1-1. Electron effective mass and g-factor of GaAs, InAs and InSb
Electron m∗ Electron g-factor

GaAs 0.067m0 -0.5
InAs 0.023m0 -15
InSb 0.014m0 -51

Theoretically it is hard to calculate the band structure of InSb compared with other

III-V semiconductors[7], because of the strong mixing between conduction bands and

valence bands that comes from the narrow band gap. Before we attack this complicated

problem, we begin with a simpler problem of calculating the electronic structures of bulk

GaAs in the magnetic field. The theoretical model is based on reference [8]. It is simpler

than the InSb problem because it is not a quantum confined system, and also there is

no need to consider strain effect. However we will still keep the eight band model to fully

account for the coupling between conduction bands and valence bands. This model can

be extended later to deal with the InSb quantum well system. Because of the very large

g factor InSb has, magneto-absorption can be used to determine the spin splittings in

the conduction band[9, 10]. In order to get a deeper understanding of the valence band

structure, especially the dependence of the valance bands on strain and confinement,

we performed theoretical studies of magneto-optical transitions across the bandgap in

strained InSb quantum wells with AlInSb barriers, and compared to experimental studies

by Santos group at the University of Oklahoma.
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CHAPTER 2
THEORY

2.1 k · p Method

The electron energy and wave function in a periodic potential is the starting point of

the theoretical model. This is given by the well-know Schrödinger equation for a Bloch

electron

Hψk (r ) = Eψk (r) (2–1)

where k is the wave vector and the Hamiltonian H is given by

H =
p2

2m0
+ V0(r ), (2–2)

here p is the momentum operator, m0 is the electron mass and V0(r ) is the periodic

potential. Right now the Hamiltonian is the simple form of a single Bloch electron, and

I will add more terms to this simple Hamiltonian as I go to more complicated situations

such as spin-orbit interaction, confinement potential and magnetic field etc.

Many different methods exist to solve equation (2–1) which can be found in

standard textbook such as [11]. I am interested in the magneto-optical properties of

the III-V semiconductors and for this kind of system, the properties are determined

by the lowest lying excited states near the band edge. The k · p method is the most

suitable method here to solving for electron energy and wave functions. This method

is a perturbative method, assuming the solution to equation (2–1) for a certain k = k0

value are already known and expand the solutions of other k in terms of the linear

combination of those k = k0 solutions. When choosing k0 = 0, i.e., the center of the

Brillouin zone, the solutions are of high symmetry and serve as a natural basis.

From Bloch theorem the wave function ψk (r ) in equation (2–1) can be chosen to

have the form

ψk (r ) = eik ·ruk (r ), (2–3)
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where uk (r ) has the same periodicity as the crystal lattice. Substitute equation (2–2)

and equation (2–3) into equation (2–1), we obtain an differential equation for uk (r ), the

periodic part of the wave function:

[
p2

2m0
+ V0(r ) +

~

m0
k · p

]
uk (r ) =

[
E(k ) − ~

2k2

2m0

]
uk (r ). (2–4)

The third term in the above equation is proportional to k · p, hence the name “k · p”

method.

To solve equation (2–4) for an arbitrary k , we assume that the solutions for a

particular point k0 are known, and denote them as {un′k0(r )}, where n′ labels the

different solutions for the same k 0 point.This set of solutions {un′k0(r )} provide a basis

for solutions for other k point. In practice, we choose k0 = 0, i.e., the center of the

Brillouin zone. Now uk (r ) in equation (2–4) can be expressed as a linear combination of

the basis functions {un′0(r )}:

uk (r ) =
∑

n′

cn′(k )un′0(r ). (2–5)

Here un′0(r ) satisfy the following two equations

[
p2

2m0
+ V0(r )

]
un′0(r ) = En′(0)un′0(r ) (2–6)

and ∫

unit cell
u∗

n0(r )un′0(r )d3r = δnn′. (2–7)

Substitute equation (2–5) into equation (2–4) and multiply from the left by u∗
n0(r ), and

then integrating over the unit cell, by using equation (2–6) and (2–7), we obtain

∑

n′

{[
En′(0) +

~
2k2

2m0

]
δnn′ +

~

m0
k · Pnn′

}
cn′(k ) = E(k )cn(k ), (2–8)

where

Pnn′ =
∫

unit cell
u∗

n0(r )pun′0(r )d3r . (2–9)
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Equation (2–8) can be diagonalized to obtain the energy and wave functions for arbitrary

k . So now we have a working routine to solve the electronic states near the band

edge. However equation (2–8) will not give us reasonable results since we have not

considered the spin-orbit interaction yet. This is the subject of the next section.

2.2 Spin-Orbit Interaction

As promised, the first correction to the Hamiltonian in equation (2–2) is a term

coming from the spin-orbit interaction:

HSO =
~

4m2
0c2

p · σ × (∇V0). (2–10)

where c is the speed of light and σ is the Pauli spin matrix that acting on the spinor

states. The origin of this term can be traced back to the non-relativistic approximation

to the Dirac equation which can be found on any standard quantum mechanic text book

such as [12]. The importance of this term is discussed by Elliott[13], Dresselhaus[14, 15]

and Parmenter[16]. When this term is included in the original Hamiltonian, we have the

Schrödinger equation:

[
p2

2m0
+ V0(r ) +

~

4m2
0c2

p · σ × (∇V0)
]

eik ·ruk (r ) = E(k )eik ·ruk (r ), (2–11)

here we already write the wave function in terms of the Bloch function, ψk (r) = eik ·ruk (r ).

Note that uk (r ) is a compact notation of the two-component column spinor function

uk (r ) =




u(1)
k (r )

u(2)
k (r )


 = u(1)

k (r)| ↑〉 + u(2)
k (r )| ↓〉. (2–12)

Now evaluating the Hamiltonian operator acting on the plane wave part eik ·r , we got a

equation for the two component spinor part of the wave function

[
p2

2m0
+ V0(r ) +

~
2k2

2m0
+

~

m0
k · π +

~

4m2
0c2

p · σ × (∇V0)
]

uk (r ) = E(k )uk (r ) (2–13)
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where

π = p +
~

4m0c2
σ ×∇V0, (2–14)

This is the equation we want to solve in the presence of spin-orbit interaction.

Like the case when there is no spin-orbit interaction, the general solutions for

equation (2–13) can still be expanded in terms of the zone center solutions. We can still

write them as

uk (r ) =
∑

n′

cn′(k )un′0(r ). (2–15)

Here un′0(r ) satisfy the following two equations

[
p2

2m0
+ V0(r )

]
un′0(r ) = En′(0)un′0(r ) (2–16)

and ∫

unit cell
u†

n0(r )un′0(r )d3r = δnn′. (2–17)

Substitute this expansion of uk (r ) into equation (2–13) and multiply from the left by

u†
n0(r ), and then integrate over a unit cell, by using equation (2–16) and (2–17), we got

the matrix eigenvalue equation for the expansion coefficient cn′(k )

∑

n′

{
En′(0)δnn′ +

~

m0
k · πnn′ + ∆nn′

}
cn′(k ) = E ′(k )cn(k ), (2–18)

where

E ′(k ) = E(k ) − ~
2k2

2m0
(2–19)

πnn′ =
∫

cell
u†

n0(r )πun′0(r )d3r (2–20)

∆nn′ =
~

4m2
0c2

∫

cell
u†

n0(r)[p · σ ×∇V0]un′0(r )d3r . (2–21)

Note that πnn′ has two contributions

πnn′ =
∫

cell
u†

n0(r )pun′0(r)d3r +
~

4m0c2

∫

cell
u†

n0(r )[σ ×∇V0]un′0(r )d3r (2–22)
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the second contribution is very small compared with the ∆nn′ term[7], thus can be

neglected. In this approximation the matrix element πnn′ is given by

πnn′ = pnn′ =
∫

cell
u†

n0(r )pun′0(r )d3r . (2–23)

Now we can calculating the electron energy and wave functions by solving the

eigenvalue problem given by equation (2–18), but note that the matrix arising from

equation (2–18) is infinite dimensional, making it in practical unsolvable. Even if we

know how to solve an infinite dimensional eigenvalue problem, we still need to know

the infinite number of the band edge eigenstates. This is also a daunting task. The

good news is that people are usually only interested in a few adjacent bands, either

neglecting remote bands completely like the 8-band Kane model[7], or treating them as

a perturbation[17, 18]. A systematic approach to reduce the dimensionality to do the

perturbation problem is the so called “Löwdin’s perturbation theory”, and I will introduce

this method in the next section.

2.3 Löwdin’s Perturbation Theory

The k · p Hamiltonian including the spin-orbit interaction gives us an eigenvalue

problem to solve. This eigenvalue problem, given by equation (2–18), involves

diagonalizing a infinite dimensional matrix, which make it impossible without further

simplifications. One of such simplifications was given by Löwdin[19]. The advantage of

Löwdin’s perturbation theory over traditional perturbation theories such as Rayleigh-Schrödinger

perturbations is that we don’t need to differentiate the non-degenerate and degenerate

cases, i.e., we can treat both cases together in a systematic way. This advantage

make it well suitable to problems such as the valence band spin structures of III-V

semiconductors. In this section I will not give a detailed derivation of the theory itself,

rather I would summarize the key results of the theory in a form that is readily applicable

to our current problems, the problem of solving the k · p eigenvalue and eigenfunctions.
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A through treatment of the Löwdin’s perturbation theory can be found in the original

paper of Löwdin[19], or the book by Roland Winkler[20].

The problem we want to solve is the time-independent Schrödinger equation

H|ψ〉 = E |ψ〉, (2–24)

where the Hamiltonian H can be divided into two parts: a major contribution H0, and a

small perturbation term H ′

H = H0 + H ′. (2–25)

Like other perturbation methods, we assume that we already know the set of solutions

{|ψn〉} to the H0 part of the problem

H0|ψn〉 = En|ψn〉. (2–26)

Our task is to find the solution |ψ〉 to equation (2–24) in the form of a linear combination

of the set of functions {|ψn〉}

|ψ〉 =
∑

n

cn|ψn〉. (2–27)

Löwdin assumed that the set of unperturbed eigenstates {|ψn〉} naturally falls into

two categories, which we call set A and set B. Each eigenstate of |ψn〉 belongs to one of

them. The energy of those states that in set A are different from those in set B. In other

words, we may or may not have degenerate states within set A or set B but we are sure

that a state from set A will be never degenerate with a state from set B. In doing the

linear combination to get the eigenstates of the total Hamiltonian, we are only interested

in those states coming from set A, treating contribution from set B as a perturbation.

Later on we will see that in our problem of solving the k · p Hamiltonian, we are only

interested in the lowest conduction bands and highest valence bands (these bands

form set A), treating the distant bands as a perturbation (the distant bands form set B).

This method will reduce the dimensionality of the problem from infinity to the number of

states in set A.

19



We use the following notations: m, m′ etc are quantum numbers labeling states

from set A, and l , l ′ etc are quantum numbers labeling states from set B. We want to find

an approximate solution to equation (2–24) that is valid up to the desired order of the

perturbating Hamiltonian H ′:

|ψ〉 =
∑

m∈A

cm|ψm〉, (2–28)

note that here |ψm〉 belongs to set A only. If the matrix elements coupling set A and set

B vanish, i.e., 〈ψm|H|ψl〉 = 0 for every m ∈ A and l ∈ B, we already have set A and set

B decoupled and our interested eigenstates are exactly in the form of equation (2–28). If

there are non-zero matrix elements 〈ψm|H|ψl〉, we want to find a unitary transformation

generated by the anti-Hermitian operator S

H̃ = e−SHeS, (2–29)

so that the transformed Hamiltonian does not have coupling between set A and set B

〈ψm|H̃|ψl〉 = 0. (2–30)

Since this is a perturbative theory, what we really mean is 〈ψm|H̃|ψl〉 vanishes up to the

desired order of H ′. The generator of the unitary transformation S can be expressed in

the asymptotic form

S = S(1) + S(2) + S(3) + ... (2–31)

where S(1) is the 1st-order infinitesimal, S(2) is the 2nd-order infinitesimal, and so on.

After some algebra [20] we can show that the first 3 terms of this anti-Hermitian operator

S are given by

S(1)
ml = − H ′

ml

Em − El
(2–32a)

S(2)
ml =

1
Em − El

[
∑

m′

H ′
mm′H ′

m′ l

Em′ − El
−
∑

l ′

H ′
ml ′H

′
l ′l

Em − El ′

]
(2–32b)

S(3)
ml =

1
Em − El
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×
[
−
∑

m′m′′

H ′
mm′′H ′

m′′m′H ′
m′l

(Em′′ − El )(Em′ − El )
−
∑

l ′l ′′

H ′
ml ′H

′
l ′l ′′H

′
l ′′l

(Em − El ′′)(Em − El ′)

+
∑

l ′m′

H ′
mm′H ′

m′ l ′H
′
l ′l

(Em′ − El )(Em′ − El ′)
+
∑

l ′m′

H ′
mm′H ′

m′ l ′H
′
l ′l

(Em − El ′)(Em′ − El ′)

+
1
3

∑

l ′m′

H ′
ml ′H

′
l ′m′H ′

m′l

(Em′ − El ′)(Em′ − El )
+

1
3

∑

l ′m′

H ′
ml ′H

′
l ′m′H ′

m′ l

(Em − El ′)(Em′ − El ′)

+
2
3

∑

l ′m′

H ′
ml ′H

′
l ′m′H ′

m′ l

(Em − El ′)(Em′ − El )

]
, (2–32c)

where H ′
ml = 〈ψm|H ′|ψl〉. Note that for every j we have S(j)

lm = −S(j)
ml

∗
, and S(j)

mm′ = S(j)
ll ′ = 0 so

that we can actually obtain every elements of S from equation (2–32).

Finally substituting equation (2–32) into equation (2–29) we get the asymptotic form

of the transformed Hamiltonian

H̃ = H (0) + H (1) + H (2) + H (3) + ..., (2–33)

where

H (0)
mm′ =H0

mm′ (2–34a)

H (1)
mm′ =H ′

mm′ (2–34b)

H (2)
mm′ =

1
2

∑

l

H ′
mlH

′
lm′

[
1

Em − El
+

1
Em′ − El

]
(2–34c)

H (3)
mm′ = − 1

2

∑

lm′′

[
H ′

mlH
′
lm′′H ′

m′′m′

(Em′ − El )(Em′′ − El )
+

H ′
mm′′H ′

m′′ lH
′
lm′

(Em − El )(Em′′ − El )

]

+
1
2

∑

ll ′

H ′
mlH

′
ll ′H

′
l ′m′

[
1

(Em − El )(Em − El ′)
+

1
(Em′ − El )(Em′ − El ′)

]
. (2–34d)

Note that for every j we have H (j)
ml = H (j)

lm = 0, but H (j)
ll ′ need not be zero. Since we are only

interested in set A, we do not need the expression for H (j)
ll ′ . Now we have reduced our

original (m + l) dimensional eigenvalue problem (2–24) to an m dimensional one. The

first 4 terms of this m dimensional Hamiltonian is given by equation (2–34).
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Going back to our original k · p eigenvalue problem, if we are only interested in

lowest conduction bands and the highest valence bands, then these bands are what we

called set A and all other distant bands make up the set B. Depending on the number

of bands we are interested in (the number of bands in set A), we may have the 6-band

Luttinger model, 8-band Kane model, 14-band extended Kane model etc. The work in

this thesis is done using the 8-band Kane model. In the next chapter, we will use the

k · p method and the Löwdin’s perturbation theory together to study the band structure

of bulk III-V semiconductor materials in the absence of a external magnetic field. Only

after we understand this problem we are able to tackle more complicated problems

such as the Landau levels in a magnetic field, quantum confinement potential coming

from the semiconductor superlattices, and magneto-optical properties of semiconductor

materials, whether it is bulk or low-dimensional.
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CHAPTER 3
BAND STRUCTURE OF III-V SEMICONDUCTOR MATERIALS

3.1 Unperturbed Problem—Basis Functions

We have derived a working method to diagonalize the k · p Hamiltonian (2–18),

namely, the Lowdin’s perturbation theory. Like any other quantum mechanics perturbation

theory, the first step is to solve the unperturbed problem. Since we are mostly

concerned about a very small volume of k -space near the center of the Brillouin

zone, k is very small and in equation (2–18) we can treat the term linear in k as a

perturbation. We don’t need to treat the ~
2k2

2m0
term as a perturbation because this part of

the Hamiltonian is already diagonal. The unperturbed eigenvalue problem is

∑

n′

[En′(0)δnn′ + ∆nn′ ] cn′(k ) = E ′(k )cn(k ), (3–1)

where

E ′(k ) = E(k ) − ~
2k2

2m0
. (3–2)

Recall that cn′(k ) is the expansion coefficient of the general solution uk (r ):

uk (r ) =
∑

n′

cn′(k )un′0(r ), (3–3)

where un′0(r ) is the band edge basis function without spin-orbit interaction. Although

we do not know the function form of the band edge eigenstates, we know that they

transformed according to the irreducible representation of the point group of the

crystal. For III-V semiconductors such as GaAs and InSb, the point group is the

tetrahedral group (Td group). Following the notation of Koster [21, 22], the five

irreducible representations of Td are Γi for i = 1, 2, 3, 4, 5. The lowest conduction

band belongs to the Γ1 representation and its eigenstate transforms as the atomic

s-orbital (orbital angular momentum l = 0), thus we can label this conduction band edge

function as |S〉. Similarly, the highest valence band belongs to the Γ5 representation

and it has three degenerated eigenstates that transform as the atomic p-orbital (orbital

23



angular momentum l = 1), which can be labeled as |X〉, |Y 〉 and |Z 〉. Now we have four

band edge states near the fundamental gap: |S〉, |X〉, |Y 〉 and |Z 〉. Including spin degree

of freedom but not spin-orbit interaction, we have 8 band edge states:

|ν ′σ′〉 = {|S ↑〉, |X ↑〉, |Y ↑〉, |Z ↑〉, |S ↓〉, |X ↓〉, |Y ↓〉, |Z ↓〉} (3–4)

When spin-orbit interaction is considered as in equation (3–1), the band edge

eigenstates are classified according to the double group for the Td group. The

irreducible representation of the double group can be obtained from taking the

direct product of the corresponding single group representation with the irreducible

representation of the spinor which we call Γ6. Group theory tell us that

Γ1 ⊗ Γ6 = Γ6 (3–5a)

Γ5 ⊗ Γ6 = Γ7 + Γ8 (3–5b)

So the original conduction band of Γ1 representation becomes Γ6 and the valence band

of Γ5 representation becomes Γ7 and Γ8. This will split the 6-fold degenerate valence

band at k = 0 into two sets: the 4-fold degenerate Γ8 band and the 2-fold degenerate

Γ7 band. As expected the conduction band remains the same as if there is no spin-orbit

interaction because the conduction band is “s like” and the orbit angular momentum

l = 0.

Although the functions given in equation (3–4) can serve as a basis when spin-orbit

interaction is included, they are not the eigenstates for total angular momentum J = L+S,

and the matrix ∆νσ,ν′σ′ in equation (3–1) is not diagonal. It is better to choose a new set

of basis functions that can diagonalize the spin-orbit interaction Hamiltonian. Such a

set of basis functions can be obtained by doing the problem of the addition of angular

momenta. The four eigenstates of the orbit angular momentum |l , ml〉 can be defined as
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(similar to the spherical harmonics)

|0, 0〉 = |iS〉 (3–6a)

|1, 1〉 = −|X + iY 〉/
√

2 (3–6b)

|1, 0〉 = |Z 〉 (3–6c)

|1,−1〉 = |X − iY 〉/
√

2, (3–6d)

and the two spin eigenstates |s, ms〉 can be written as

∣∣∣∣
1
2

, +
1
2

〉
= | ↑〉 (3–7a)

∣∣∣∣
1
2

,−1
2

〉
= | ↓〉. (3–7b)

For the l = 0 conduction bands, the total angular momentum j = 0 + 1/2, and for the l = 1

valence bands, the total angular momentum j = 1 ± 1/2. Using the standard technique

of addition of angular momentum we can obtain the basis functions |j , mj〉 from equation

(3–6) and (3–7),

∣∣∣∣
1
2

, +
1
2

〉

c

= |iS ↑〉 (3–8a)
∣∣∣∣
1
2

,−1
2

〉

c

= |iS ↓〉 (3–8b)
∣∣∣∣
3
2

, +
3
2

〉

v

= − 1√
2
|(X + iY ) ↑〉 (3–8c)

∣∣∣∣
3
2

, +
1
2

〉

v

= − 1√
6
|(X + iY ) ↓ −2Z ↑〉 (3–8d)

∣∣∣∣
3
2

,−1
2

〉

v

=
1√
6
|(X − iY ) ↑ +2Z ↓〉 (3–8e)

∣∣∣∣
3
2

,−3
2

〉

v

=
1√
2
|(X − iY ) ↓〉 (3–8f)

∣∣∣∣
1
2

, +
1
2

〉

v

= − 1√
3
|(X + iY ) ↓ +Z ↑〉 (3–8g)

∣∣∣∣
1
2

,−1
2

〉

v

= − 1√
3
|(X − iY ) ↑ −Z ↓〉. (3–8h)
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The phase convention in equation (3–8) is chosen to be agree with the Clebsch-Gordan

coefficients. We have a slightly different phase convention and re-order these 8 states to

form a basis which we use in our calculations. Our basis functions from now on read as

the following:

|1〉 = |CB ↑〉 =

∣∣∣∣
1
2

, +
1
2

〉

c

= |S ↑〉 (3–9a)

|2〉 = |HH ↑〉 =

∣∣∣∣
3
2

, +
3
2

〉

v

=
1√
2
|(X + iY ) ↑〉 (3–9b)

|3〉 = |LH ↓〉 =

∣∣∣∣
3
2

,−1
2

〉

v

=
1√
6
|(X − iY ) ↑ +2Z ↓〉 (3–9c)

|4〉 = |SO ↓〉 =

∣∣∣∣
1
2

,−1
2

〉

v

=
i√
3
| − (X − iY ) ↑ +Z ↓〉 (3–9d)

|5〉 = |CB ↓〉 =

∣∣∣∣
1
2

,−1
2

〉

c

= |S ↓〉 (3–9e)

|6〉 = |HH ↓〉 =

∣∣∣∣
3
2

,−3
2

〉

v

=
i√
2
|(X − iY ) ↓〉 (3–9f)

|7〉 = |LH ↑〉 =

∣∣∣∣
3
2

, +
1
2

〉

v

=
i√
6
|(X + iY ) ↓ −2Z ↑〉 (3–9g)

|8〉 = |SO ↑〉 =

∣∣∣∣
1
2

, +
1
2

〉

v

=
1√
3
|(X + iY ) ↓ +Z ↑〉. (3–9h)

We can directly verify that, using the basis functions in (3–9), the unperturbed

Hamiltonian is diagonalized and its matrix form in equation (3–1) is

H (0) =




A 0

0 A


 (3–10)

where

A =




Es 0 0 0

0 Ep + ∆/3 0 0

0 0 Ep + ∆/3 0

0 0 0 Ep − 2∆/3.




(3–11)
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Here Es and Ep are the band edge energy without spin-orbit interaction

Es = 〈S|
[

p2

2m0
+ V0(r )

]
|S〉 (3–12a)

Ep = 〈Z |
[

p2

2m0
+ V0(r )

]
|Z 〉, (3–12b)

and the spin-orbit split-off energy ∆ is defined as

∆ =
3i~

4m2
0c2

〈
X

∣∣∣∣
∂V0

∂x
py − ∂V0

∂y
px

∣∣∣∣Y
〉

. (3–13)

Choosing the energy reference point of V0, we can let Ep = −∆/3 and define Eg = Es, so

that the 4 × 4 matrix A in equation (3–10) can be written as

A =




Eg 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −∆




. (3–14)

We have already solved the eigenvalue problem for the unperturbed Hamiltonian,

the eigenstates of which are given by equation (3–9). The first 4 states are degenerate

with the last 4 states, respectively, and the energy for them are: Eg (for conduction

band), 0 (for heavy and light hole bands) and −∆ (for spin-orbit band). This concludes

our first step in Löwdin perturbations. In the following sections we will go to the next step

in Löwdin perturbations.

3.2 k · p Perturbation Without Coupling to Distant Bands

In the previous section we diagonalized the zeroth order Hamiltonian and obtained

the band edge energy and basis states in the presence of spin-orbit interaction but

without the k · p coupling between different bands. In the next level of Löwdin

perturbation theory the perturbating Hamiltonian is given by equation (2–34b). In

the context of our eigenvalue problem given by equation (2–18), the perturbating

Hamiltonian is just the term ~

m0
k · πnn′ or ~

m0
k · pnn′ . Note that at this level of perturbation,
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the k · p term only couples those states coming from “set A”, i.e., n and n′ are chosen

from the eight basis states in equation (3–9). Coupling to distant bands will be treated in

the higher order perturbation.

Group theory shows that the only non-zero momentum matrix elements within our

basis states in (3–4) are of the form 〈S|pz |Z 〉, and all the other ones such as 〈S|px |Y 〉

and 〈X |pz |Z 〉 vanish. We only have three non-zero momentum matrix elements and they

are all equal, so we can define the Kane’s parameter V as

V = −i
~

m0
〈S|px |X〉 = −i

~

m0
〈S|py |Y 〉 = −i

~

m0
〈S|pz |Z 〉. (3–15)

It is also convenient to define the “plus” and “minus” wave vector

k± = kx ± iky . (3–16)

Now our first order perturbation Hamiltonian in the matrix form is

H (1) =




0 i√
2
Vk+

i√
6
Vk−

1√
3
Vk− 0 0

√
2
3Vkz

i√
3
Vkz

− i√
2
Vk− 0 0 0 0 0 0 0

− i√
6
Vk+ 0 0 0 −i

√
2
3Vkz 0 0 0

1√
3
Vk+ 0 0 0 − 1√

3
Vkz 0 0 0

0 0 i
√

2
3Vkz − 1√

3
Vkz 0 − 1√

2
Vk− − 1√

6
Vk+

i√
3
Vk+

0 0 0 0 − 1√
2
Vk+ 0 0 0

√
2
3Vkz 0 0 0 − 1√

6
Vk− 0 0 0

− i√
3
Vkz 0 0 0 − i√

3
Vk− 0 0 0




.

(3–17)

28



We can add H (0) and H (1) together to obtain our Hamiltonian H: H = H (0) + H (1). The

explicit form of the matrix H is given by

H =




Eg
i√
2
Vk+

i√
6
Vk−

1√
3
Vk− 0 0

√
2
3Vkz

i√
3
Vkz

− i√
2
Vk− 0 0 0 0 0 0 0

− i√
6
Vk+ 0 0 0 −i

√
2
3Vkz 0 0 0

1√
3
Vk+ 0 0 −∆ − 1√

3
Vkz 0 0 0

0 0 i
√

2
3Vkz − 1√

3
Vkz Eg − 1√

2
Vk− − 1√

6
Vk+

i√
3
Vk+

0 0 0 0 − 1√
2
Vk+ 0 0 0

√
2
3Vkz 0 0 0 − 1√

6
Vk− 0 0 0

− i√
3
Vkz 0 0 0 − i√

3
Vk− 0 0 −∆




.

(3–18)

For any wave vector k that is in the first Brillouin (but not need to be small), we can

diagonalize the matrix H in equation (3–18) to obtain the electron energy and their

wave function in terms of the linear combination of the eight basis states. Numerically

diagonalizing a 8 × 8 matrix can be done very easily but it is hard to do it analytically.

However if the wave vector k is restricted near the band edge, i.e., k is small compared

with the size of the Brillouin zone, then we can diagonalize H in equation (3–18) using

the two-step procedure: [7] first consider the special case when k is in the ẑ direction,

k = kẑ and diagonalize H in this special case; then using the appropriate unitary

transformation to rotate the basis function to handle the general case when k is in a

general direction.
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In the special case when k = kẑ, we have k± = 0 and kz is replaced by the

magnitude k , the Hamiltonian H becomes

H =




Eg 0 0 0 0 0
√

2
3Vk i√

3
Vk

0 0 0 0 0 0 0 0

0 0 0 0 −i
√

2
3Vk 0 0 0

0 0 0 −∆ − 1√
3
Vk 0 0 0

0 0 i
√

2
3Vk − 1√

3
Vk Eg 0 0 0

0 0 0 0 0 0 0 0
√

2
3Vk 0 0 0 0 0 0 0

− i√
3
Vk 0 0 0 0 0 0 −∆




. (3–19)

We can immediately see that the heavy hole states |HH ↑〉 and |HH ↓〉 decouple from

the rest of the states. So we have the doubly degenerate energy E ′ = 0. The rest of the

states also decouple into two different blocks which we will call the “upper” block and the

“lower” block. The upper block corresponding to states |CB ↑〉, |LH ↑〉 and |SO ↑〉 is



Eg

√
2
3Vk i√

3
Vk

√
2
3Vk 0 0

− i√
3
Vk 0 −∆




, (3–20)

and the lower block corresponding the states |CB ↓〉, |LH ↓〉 and |SO ↓〉 is



Eg i
√

2
3Vk − 1√

3
Vk

−i
√

2
3Vk 0 0

− 1√
3
Vk 0 −∆




. (3–21)

We have simplify the original 8 × 8 dimensional problem into two 3 × 3 ones and two

1-dimensional ones. Although the upper and lower block matrix are different, they lead

to the same secular equation

E ′(E ′ − Eg)(E ′ + ∆) − V 2k2

(
E ′ +

2
3
∆

)
= 0. (3–22)
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This is a cubic equation which we can solve by using the standard cubic formula, but it is

too tedious. Since we know that k is small, the three solutions to equation (3–22) will be

close to E ′ = Eg, E ′ = 0 and E ′ = −∆. Assume one of the three roots is E ′ = Eg + ε, we

can replace in equation (3–22) (E ′ − Eg) with ε and every other E ′ with Eg. This will give

us

ε =
V 2k2(Eg + 2∆/3)

Eg(Eg + ∆)
, (3–23)

so the first root is

E ′ = Eg +
V 2k2(Eg + 2∆/3)

Eg(Eg + ∆)
. (3–24)

Similar tricks give us the other two roots for E ′

E ′ = −2V 2k2

3Eg
, (3–25)

E ′ = −∆− V 2k2

3(Eg + ∆)
. (3–26)

Because the actual energy E(k ) is given by E(k ) = E ′(k ) + ~
2k2/2m0, we can

summarize our results at this point that we have four different energy bands, each is

two-fold degenerate, and they are given by (in the order of conduction band, heavy hole

band, light hole band and spin-orbit split-off band)

Ecb(k ) = Eg +
~

2k2

2m0
+

V 2k2(Eg + 2∆/3)
Eg(Eg + ∆)

(3–27a)

Ehh(k ) =
~

2k2

2m0
(3–27b)

Elh(k ) =
~

2k2

2m0
− 2V 2k2

3Eg
(3–27c)

Eso(k ) = −∆ +
~

2k2

2m0
− V 2k2

3(Eg + ∆)
. (3–27d)

If the wave vector k is in a general direction specified by two polar angles θ and φ,

k = k sin θ cosφx̂ + k sin θ sinφŷ + k cos θẑ, (3–28)
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we can rotate to a new basis so that in the new basis the wave vector is in the ẑ ′

direction, k = kẑ ′. The band edge functions are also rotated to the new primed states



X ′

Y ′

Z ′




=




cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0

sin θ cosφ sin θ sinφ cos θ







X

Y

Z




(3–29a)



↑′

↓′


 =




e−iφ/2 cos θ/2 eiφ/2 sin θ/2

−e−iφ/2 sin θ/2 eiφ/2 cos θ/2






↑

↓


 . (3–29b)

Next we define the 8 primed angular momentum basis states similar to those in equation

(3–9), for example ∣∣∣∣
3
2

, +
3
2

〉′

v

=
1√
2
|(X ′ + iY ′) ↑′〉. (3–30)

We can directly calculate the matrix element of H (0) and H (1) with respect to the primed

basis, after a very tedious algebra we will see that both H (0) and H (1) still take the same

form as in equations (3–10) and (3–17). The reason for this can be understand from

two point of view: mathematically, the transformation matrix connecting the old and new

basis is unitary, physically, both the spin-orbit interaction and the k · p coupling term

are isotropic [23]. Since H (0) and H (1) stay the same in the new primed basis, the energy

dispersion relation in equation (3–27) still holds for the general k direction.

Equation (3–27) give us four isotropic, parabolic bands near the Brillouin zone

center, each of which is doubly degenerate. We can define a scalar effective mass for

each band. Note that in the current model the heavy hole dispersion is still the same

as a free electron, which is certainly wrong. This is because we have not include the

coupling between our 8 basis states from set A and remote bands in set B. Once

coupling with remote bands is considered, we will get a better approximation for the

effective mass, and we will also find that the bands are anisotropic [24].
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3.3 Coupling to Distant Bands

In order to get the more accurate band dispersion relation near the zone center,

and to account for the anisotropic properties of the bands, we need to consider the

coupling effects generated by the ~

m0
k · p term between our 8 basis states in the

set A and the remote bands from set B. Thus we need to go to the next order in the

Löwdin’s perturbation procedure. The next order correction to the Hamiltonian is given

by equation (2–34c), which I will rewrite it here:

H (2)
mm′ =

1
2

∑

l

H ′
mlH

′
lm′

[
1

Em − El
+

1
Em′ − El

]
. (3–31)

The perturbating Hamiltonian is still H ′ = ~

m0
k · p. Note that H (2)

mm′ depends on the energy

Em and Em′ , which are the eigen energies of the band edge basis states in set A. This

energy dependence will make the number of independent parameters due to coupling

to the distant bands much large than if their is no energy dependence. To simplify our

problem, we make the approximation that all the energies Em and Em′ in equation (3–31)

can be replaced by an average energy Ē , since El are the energy of the distant band so

that the energy difference between Em and Em′ is small compared with the difference

between Em (or Em′) and El . Now our perturbation is

H (2)
mm′ =

∑

l

H ′
mlH

′
lm′

Ē − El
. (3–32)

Group theory can help us to reduce the number of the independent parameters

arise from the coupling due to the perturbation H (2)
mm′ . It turns out that, with our choice of

the basis states in equation (3–9), we need four additional coupling parameters,

A0 =
~

2

2m0
+

~
2

m2
0

∑

α

px
Xαpx

αX

Ē − Eα

(3–33a)

B0 =
~

2

2m0
+

~
2

m2
0

∑

α

py
Xαpy

αX

Ē − Eα

(3–33b)

C0 =
~

2

m2
0

∑

α

px
Xαpy

αY + py
Xαpx

αY

Ē − Eα

(3–33c)

33



F0 =
1

m0

∑

α

px
Sαpx

αS

Ē − Eα

. (3–33d)

Parameters A0 ,B0 and C0 describe the coupling between the valence band components

|X〉, |Y 〉, and |Z 〉, with the remote bands labeled by α. They are similar to the parameters

A ,B and C defined by Luttinger and Kohn in their original paper [17]. The only

difference is that our parameters do not have the contribution that comes from the

coupling between the lowest conduction band with the highest valence bands, because

our model is 8-dimensional which already include this contribution. We have to define

one more parameter F0 because we need to consider the coupling between lowest

conduction band with remote bands. Next we define the renormalized Luttinger

parameter

~
2

2m0
γ1 = −1

3
(A0 + 2B0) (3–34a)

~
2

2m0
γ2 = −1

6
(A0 − B0) (3–34b)

~
2

2m0
γ3 = −1

6
C0 (3–34c)

γ4 = 1 + 2F0. (3–34d)

Our renormalized Luttinger parameters are related to the original Luttinger parameters

γL
1 , γL

2 and γL
3 through the following equations

γ1 = γL
1 − Ep/3Eg (3–35a)

γ2 = γL
2 − Ep/6Eg (3–35b)

γ3 = γL
3 − Ep/6Eg , (3–35c)

where

EP =
2m0V 2

~2
(3–36)

is a measure of the coupling strength between conduction and valence bands.
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Now we can calculate the matrix element of the second order perturbating

Hamiltonian H (2)
mm′ ,

H (2)
mm′ +

~
2k2

2m0
δmm′ =




A 0 0 0 0 0 0 0

0 −P − Q −M i
√

2M 0 0 −L − i√
2
L

0 −M∗ −P + Q i
√

2Q 0 L 0 i
√

3
2L∗

0 −i
√

2M∗ −i
√

2Q −P 0 − i√
2
L i

√
3
2L∗ 0

0 0 0 0 A 0 0 0

0 0 L∗ i√
2
L∗ 0 −P − Q −M∗ i

√
2M∗

0 −L∗ 0 −i
√

3
2L 0 −M −P + Q i

√
2Q

0 i√
2
L∗ −i

√
3
2L 0 0 −i

√
2M −i

√
2Q −P




,

(3–37)

where

A = γ4
~

2k2

2m0
(3–38a)

P = γ1
~

2k2

2m0
(3–38b)

Q = γ2
~

2

2m0
(k2

x + k2
y − 2k2

z ) (3–38c)

L = −i
√

3γ3
~

2

m0
k−kz (3–38d)

M =
√

3
~

2

2m0
[γ2(k2

x − k2
y ) − 2iγ3kxky ]. (3–38e)

35



By adding H (0), H (1), H (2) and the diagonal term ~2k2

2m0
together we can get the total

Hamiltonian H

H =




Eg + A i√
2
Vk+

i√
6
Vk−

1√
3
Vk− 0 0

√
2
3Vkz

i√
3
Vkz

− i√
2
Vk− −P − Q −M i

√
2M 0 0 −L − i√

2
L

− i√
6
Vk+ −M∗ −P + Q i

√
2Q −i

√
2
3Vkz L 0 i

√
3
2L∗

1√
3
Vk+ −i

√
2M∗ −i

√
2Q −P −∆ − 1√

3
Vkz − i√

2
L i

√
3
2L∗ 0

0 0 i
√

2
3Vkz − 1√

3
Vkz Eg + A − 1√

2
Vk− − 1√

6
Vk+

i√
3
Vk+

0 0 L∗ i√
2
L∗ − 1√

2
Vk+ −P − Q −M∗ i

√
2M∗

√
2
3Vkz −L∗ 0 −i

√
3
2L − 1√

6
Vk− −M −P + Q i

√
2Q

− i√
3
Vkz

i√
2
L∗ −i

√
3
2L 0 − i√

3
Vk− −i

√
2M −i

√
2Q −P −∆




.

(3–39)

Here I want to emphasize that this Hamiltonian in equation (3–39) have already taken

into account the crystal periodic potential, the spin-orbit interactions, the k · p coupling

effects with the remote bands, and finally the diagonal term ~2k2

2m0
. So we can get the

energy of the electron by diagonalizing this H. This is a much complicated Hamiltonian

than the one in equation (3–18) and it is impossible to solve analytically without further

simplifications. It is possible to solve this eigenvalue problems analytically for some

special cases for example if kz vanishes. In this case the Hamiltonian in equation (3–39)

has a block diagonal form, decoupling into two 4 × 4 problems. However we will not go

further in this direction since we can solve the full 8 × 8 problems numerically anyway.

The real problem we are interested in is when there is an external magnetic field, what is

the band structure look like.
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CHAPTER 4
LANDAU LEVELS OF GALLIUM ARSENIDE

4.1 The Envelope Function Approximation

When there is an external magnetic field applied to the bulk III-V semiconductor

sample such as GaAs, the Schrödinger equation does not take the form of equation

(2–11) any more. Instead we need to go back to the Dirac equation for the electron

in the periodic potential in the presence of the external field. The non-relativistic

approximation of the Dirac equation for the large component spinor wave function

becomes

[
(−i~∇ + e

c A)2

2m0
+ V0(r ) +

~

4m2
0c2

(−i~∇ +
e
c

A) · σ × (∇V0) + µBσ · B
]
Ψ(r) = EΨ(r ) (4–1)

where A is the vector potential and µB is the Bohr magneton µB = e~/2m0c. We have

already assumed the scalar potential is zero since we are only interested in the case of

a static magnetic field. The magnetic field is given by B = ∇× A(r ).

We know that wave function for the Bloch electron can be expressed as a plain

wave times a function with the same periodicity as the crystal lattice. Similarly, the

solution to equation (4–1) can be written as

Ψ(r ) =
∑

n′

ψn′(r )un′0(r ), (4–2)

where the un′0(r ) are still the band edge spinor functions including both the set A and set

B. The spinor functions in set A are still given by equation (3–9). The functions ψn′(r ) are

called envelope functions. Substitute equation (4–2) into equation (4–1), multiply from

the left by u†
n0(r ), and then integrate over a unit cell, we obtain

∑

n′

{[
En′(0) +

(−i~∇ + eA/c)2

2m0

]
δnn′ +

1
m0

(−i~∇ + eA/c) · πnn′

+ ∆nn′ + µB〈n|σ · B|n′〉
}
ψn′(r) = Eψn(r ), (4–3)
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which is a system of coupled differential equations. We can still using the Löwdin’s

perturbation method to reduce the infinite numbers of equations to a tractable set, for

example by using the basis given by equation (3–9) we can obtain a 8 dimensional

eigenvalue problem. The Hamiltonian in equation (4–3) is called EFA (Envelope

Function Approximation) Hamiltonian. The eigenvector of the EFA Hamiltonian is

the set of envelope functions. The electronic wave function is obtained by using equation

(4–2) once we know those envelope functions.

4.2 Explicit Form of the EFA Hamiltonian

We have already derived the explicit form of the Hamiltonian when there is no

magnetic field. In the presence of an external magnetic field, we want to derive a

similar matrix from which we can obtain the eigenenergy and the envelope functions.

Comparing equation (2–18) and (4–3) we can see that the magnetic field effect is built

into the set of coupled differential equations through replacing the wave vector ~k with

the operator −i~∇ + eA/c, and adding the µBσ · B term explicitly. This similarity can

help us to derive the EFA matrix in a similar way to the case when there is no magnetic

field. Instead of deriving the EFA matrix from equation (4–3) directly from the beginning,

we can use the matrix form in equation (3–39) as a starting point. Replacing the wave

vector ~k in equation (3–39) with the operator −i~∇ + eA/c, and adding the matrix

element µB〈n|σ · B|n′〉, we arrive at the matrix form of the EFA Hamiltonian. However

there is a subtle point that we must pay special attention to during this process. In what

follows I will explain this subtle point in a little bit detail.

In the absence of the magnetic field, the different component of the wave vector

commute with each other ([kx , ky ] = 0 etc.). When there is a magnetic field around, the

different components of the mechanic momentum ~k (= −i~∇ + eA/c) vector do not

commute. We can directly calculate the commutator using the definition of the mechanic

momentum operator to get

[ki , kj ] =
e

i~c
εijkBk , (4–4)

38



or in terms of the vector product

k × k =
e

i~c
B. (4–5)

In our original derivation of the matrix H (2)
mm′ in equation (3–37), we will typically

encounter the term that containing the product of the two components of the wave

vector

H (2)
mm′ =

∑

l

H ′
mlH

′
lm′

Ē − El

=
~

2

m2
0

∑

αβ

∑

l

kαkβ

pα
mlp

β
lm′

Ē − El

=
∑

αβ

Dαβ
mm′kαkβ.

(4–6)

where the definition of Dαβ
mm′ is given by

Dαβ
mm′ =

~
2

m2
0

∑

l

pα
mlp

β
lm′

Ē − El
(4–7)

If the two components of the wave vector commute, we can construct the coefficients to

be symmetric about interchanging the α and β indices,

H (2)
mm′ =

∑

αβ

D(S)αβ
mm′kαkβ (4–8a)

D(S)αβ
mm′ =

1
2

Dαβ
mm′ +

1
2

Dβα
mm′ . (4–8b)

In the presence of a magnetic field, the two components of the k operator do not

commute, kαkβ 6= kβkα, and we can write kαkβ as

kαkβ =
1
2
{kα, kβ} +

1
2

[kα, kβ] (4–9)

where the commutator is [kα, kβ] = kαkβ − kβkα and the anticommutator is {kα, kβ} =

kαkβ + kβkα. Now the matrix elements H (2)
mm′ can be written as

H (2)
mm′ =

1
2

∑

αβ

Dαβ
mm′{kα, kβ} +

1
2

∑

αβ

Dαβ
mm′ [kα, kβ]. (4–10)
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Again we can define the symmetric and antisymmetric part of the Dαβ
mm′ coefficients to be

D(S)αβ
mm′ =

1
2

Dαβ
mm′ +

1
2

Dβα
mm′ (4–11a)

D(A)αβ
mm′ =

1
2

Dαβ
mm′ −

1
2

Dβα
mm′ , (4–11b)

and write H (2)
mm′ as

H (2)
mm′ =

1
2

∑

αβ

D(S)αβ
mm′{kα, kβ} +

1
2

∑

αβ

D(A)αβ
mm′ [kα, kβ]. (4–12)

We can see that the matrix elements H (2)
mm′ has two part of contributions: a symmetric

part given by the first term in equation (4–12) and an antisymmetric part given by

the second term in equation (4–12). The symmetric term require us to define four

independent coupling parameters A0, B0, C0, and F0 as we did in equation (3–33).

We will see later that the antisymmetric term require us to define one more coupling

parameter.

If we simply replace the ~k vector with the operator −i~∇ + eA/c in the matrix

given in equation (3–37), and interpret any product of the wave vector kαkβ as the

symmetrized product 1
2{kα, kβ}, we will obtain the symmetric part H (S) of the H (2) matrix.

This H (S) matrix, together with the H (0), H (1) and the diagonal term ~2k2

2m0
δmm′ give us the

so called Landau Hamiltonian HL. The second term in equation (4–12) will give us the

antisymmetric part H (A) of the H (2) matrix, which did not show up when there was no

magnetic field applied. This H (A) matrix, together with the µBσ · B term will give us the

so-called Zeeman Hamiltonian HZ . So we have

H (2)
mm′ = H (S)

mm′ + H (A)
mm′ (4–13a)

Hmm′ = H (0)
mm′ + H (1)

mm′ +
~

2k2

2m0
δmm′ + H (S)

mm′

︸ ︷︷ ︸
HL

+ H (A)
mm′ + µB〈m|σ · B|m′〉︸ ︷︷ ︸

HZ

. (4–13b)

We will discuss the Landau and Zeeman Hamiltonian one by one.
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4.2.1 Landau Hamiltonian

The Landau part of the Hamiltonian is given by four terms:

HL = H (0) + H (1) + H (S) +
~

2k2

2m0
I8×8. (4–14)

We can obtain the Landau Hamiltonian HL from equation (3–39), by replacing the k

wave vector with the operator

k̂ =
1
~

(−i~∇ + eA/c), (4–15)

and treating the wave vector product kαkβ as the symmetrized product 1
2{kα, kβ}. Note

that in the original matrix in equation (3–39), the H (0) and H (1) do not contain a term like

kαkβ, and the diagonal term is already symmetrized in the form of kαkα, so we only need

to be careful about the H (2) contribution.

Now we can rewrite the matrix in equation (3–39), using the operators k̂x , k̂y and k̂z

instead of the wave vector components kx , ky and kz , to obtain the Landau part of the

Hamiltonian. The explicit form of Landau Hamiltonian matrix is thus

HL =




Eg + A i√
2
Vk̂+

i√
6
Vk̂−

1√
3
Vk̂− 0 0

√
2
3Vk̂z

i√
3
Vk̂z

− i√
2
Vk̂− −P − Q −M i

√
2M 0 0 −L − i√

2
L

− i√
6
Vk̂+ −M† −P + Q i

√
2Q −i

√
2
3Vk̂z L 0 i

√
3
2L†

1√
3
Vk̂+ −i

√
2M† −i

√
2Q −P −∆ − 1√

3
Vk̂z − i√

2
L i

√
3
2L† 0

0 0 i
√

2
3Vk̂z − 1√

3
Vk̂z Eg + A − 1√

2
Vk̂− − 1√

6
Vk̂+

i√
3
Vk̂+

0 0 L† i√
2
L† − 1√

2
Vk̂+ −P − Q −M† i

√
2M†

√
2
3Vk̂z −L† 0 −i

√
3
2L − 1√

6
Vk̂− −M −P + Q i

√
2Q

− i√
3
Vk̂z

i√
2
L† −i

√
3
2L 0 − i√

3
Vk̂− −i

√
2M −i

√
2Q −P −∆




.

(4–16)

where the operators A, P, Q, L and M are given by

A = γ4
~

2k̂2

2m0
(4–17a)
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P = γ1
~

2k̂2

2m0
(4–17b)

Q = γ2
~

2

2m0
(k̂2

x + k̂2
y − 2k̂2

z ) (4–17c)

L = −i
√

3γ3
~

2

2m0
(k̂−k̂z + k̂z k̂−) (4–17d)

M =
√

3
~

2

2m0
[γ2(k̂2

x − k̂2
y ) − iγ3(k̂x k̂y + k̂y k̂x )]. (4–17e)

4.2.2 Zeeman Hamiltonian

To be specific we will assume the magnetic field is in the ẑ direction from now on,

and we choose the Landau gauge

A = −Byx̂ (4–18)

so that the magnetic field is given by

B = ∇× A = Bẑ. (4–19)

The three operators k̂x , k̂y and k̂z are given by

k̂x = −i∇x −
y
λ2

(4–20a)

k̂y = −i∇y (4–20b)

k̂z = −i∇z (4–20c)

where λ is the magnetic length defined by

λ2 =
~c
eB

. (4–21)

The non-zero commutator between different components of the k operator is of the

form

[k̂x , k̂y ] =
eB
i~c

=
1

iλ2
, (4–22)

and both k̂x and k̂y operators still commute with k̂z .

42



Next we want to derive the explict form of the Zeeman Hamiltonian. The Zeeman

Hamiltonian has two contributions:

HZ
mm′ = H (A)

mm′ + µB〈m|σ · B|m′〉, (4–23)

we begin with the first one:

The definition of the antisymmetric Hamiltonian is given by the second term of

equation (4–12),

H (A)
mm′ =

1
2

∑

αβ

D(A)αβ
mm′ [k̂α, k̂β]. (4–24)

When the magnetic field is in the ẑ direction, the only non-zero commutator is [k̂x , k̂y ] =

−[k̂y , k̂x ], and both k̂x and k̂y still commute with k̂z , so we have two terms survive from

the summation:

H (A)
mm′ =

1
2

D(A)xy
mm′ [k̂x , k̂y ] +

1
2

D(A)yx
mm′ [k̂y , k̂x ]

= D(A)xy
mm′ [k̂x , k̂y ]

=
1
2

(Dxy
mm′ − Dyx

mm′)[k̂x , k̂y ].

(4–25)

Using the definition of the Dαβ
mm′ coefficients in equation (4–7) and the commutation

relation given in equation (4–22), we can write H (A)
mm′ as

H (A)
mm′ =

1
2

eB
i~c

~
2

m2
0

∑

α

px
mαpy

αm′ − py
mαpx

αm′

Ē − Eα

. (4–26)

We can immediately see that we need another coupling constant K0 besides the

already defined constants A0, B0, C0 and F0 in equation (3–33). The coupling constant

K0 is defined as

K0 =
~

2

m2
0

∑

α

px
Xαpy

αY − py
Xαpx

αY

Ē − Eα

. (4–27)

We also define the renormalized Luttinger parameter κ through the relation

~
2

m0
(3κ + 1) = −K0 (4–28)
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where κ is related to the original Luttinger parameter κL through κ = κL − Ep/6Eg . For

the Luttinger parameter κL, we use the approximation[14, 15, 25]

κL = γL
3 +

2
3
γL

2 − 1
3
γL

1 − 2
3

. (4–29)

With these definitions we can calculate the explict form of the H (A) matrix from equation

(4–26), the result is

H (A) = µBB




0 0 0 0 0 0 0 0

0 −3κ− 1 0 0 0 0 0 0

0 0 κ + 1
3 −i

√
2(κ + 1

3 ) 0 0 0 0

0 0 i
√

2(κ + 1
3 ) 2κ + 2

3 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 3κ + 1 0 0

0 0 0 0 0 0 −κ− 1
3 i

√
2(κ + 1

3 )

0 0 0 0 0 0 −i
√

2(κ + 1
3 ) −2κ− 2

3




.

(4–30)

Next we calculate the matrix element of µB〈m|σ · B|m′〉. Noting that the magnetic

field is in the ẑ direction we have σ · B = σzB. The result of the µB〈m|σ · B|m′〉 matrix

takes the form

µB〈m|σ · B|m′〉 = µBB




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1
3 −2

√
2

3 i 0 0 0 0

0 0 2
√

2
3 i 1

3 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1
3

2
√

2
3 i

0 0 0 0 0 0 −2
√

2
3 i −1

3




. (4–31)
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Now we can add equation (4–30) and (4–31) together to get the explict form of the

Zeeman Hamiltonian

HZ = 2µBB




1
2 0 0 0 0 0 0 0

0 −3
2κ 0 0 0 0 0 0

0 0 1
2κ −i

√
1
2 (κ + 1) 0 0 0 0

0 0 i
√

1
2 (κ + 1) κ + 1

2 0 0 0 0

0 0 0 0 −1
2 0 0 0

0 0 0 0 0 3
2κ 0 0

0 0 0 0 0 0 −1
2κ i

√
1
2 (κ + 1)

0 0 0 0 0 0 −i
√

1
2 (κ + 1) −κ− 1

2




.

(4–32)

Now we have the explicit matrix for both the Landau and Zeeman part of the

Hamiltonian, we can add them together to get the total EFA Hamiltonian for semiconductors

in an external magnetic field.

4.3 Energy and Envelope Functions

According to the envelope function approximation, our eigenvalue problem for the

Bloch electron in an external magnetic field can be phrased as

8∑

m′=1

HEFA
mm′ψm′(r ) = Eψm(r ), (4–33)

where m and m′ are integers from 1 to 8, and the EFA Hamiltonian is the sum of the

Landau Hamiltonian and the Zeeman Hamiltonian:

HEFA = HL + HZ . (4–34)

The electron wave function

Ψ(r ) =
8∑

m=1

ψm(r )um0(r ), (4–35)

where ψm(r ) is the envelope function and um0(r ) is the basis function given by equation

(3–9). Note that equation (4–33) is a system of coupled differential equations since
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the elements of the EFA Hamiltonian contains the differential operators k̂x , k̂y and k̂z .

Therefore the Hamiltonian HEFA is not readily to be diagonalized. What we want is an

algebraic matrix eigenvalue problem, the matrix elements of which are just numbers

instead of operators. To achieve this purpose we can proceed as follows:

First we separate variables in our envelope functions ψm(r )

ψm(r ) = ei(kx x+kz z)fm(y ). (4–36)

This separation of variable is possible because of our particular choice of the vector

potential in equation (4–18): since the vector potential is only depend on y but not x and

z, the kx and kz are good quantum numbers. We then substitute equation (4–36) into

equation (4–33) to get

8∑

m′=1

HEFA
mm′ei(kx x+kz z)fm′(y ) = Eei(kx x+kz z)fm(y ). (4–37)

Note that the EFA Hamiltonian is the sum of Landau Hamiltonian and Zeeman

Hamiltonian, so the left hand side of equation (4–37) can be written as

8∑

m′=1

HEFA
mm′ei(kx x+kz z)fm′(y ) =

8∑

m′=1

HL
mm′ei(kx x+kz z)fm′(y ) +

8∑

m′=1

HZ
mm′ei(kx x+kz z)fm′(y ) (4–38)

The next step is to evaluate the effect of Landau Hamiltonian acting on the envelope

functions. Since we know every elements, HL
mm′ , of Landau Hamiltonian HEFA

mm′ , we can

evaluate the operator acting on the plane wave part of the envelope functions one by

one for every m and m′, the result is

HL
mm′ei(kx x+kz z)fm′(y ) = ei(kx x+kz z)GL

mm′ fm′(y ), (4–39)
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where the GL
mm′ matrix is given by

GL =




Eg + A i√
2
Vk̂+

i√
6
Vk̂−

1√
3
Vk̂− 0 0

√
2
3Vkz

i√
3
Vkz

− i√
2
Vk̂− −P − Q −M i

√
2M 0 0 −L − i√

2
L

− i√
6
Vk̂+ −M† −P + Q i

√
2Q −i

√
2
3Vkz L 0 i

√
3
2L†

1√
3
Vk̂+ −i

√
2M† −i

√
2Q −P −∆ − 1√

3
Vkz − i√

2
L i

√
3
2L† 0

0 0 i
√

2
3Vkz − 1√

3
Vkz Eg + A − 1√

2
Vk̂− − 1√

6
Vk̂+

i√
3
Vk̂+

0 0 L† i√
2
L† − 1√

2
Vk̂+ −P − Q −M† i

√
2M†

√
2
3Vkz −L† 0 −i

√
3
2L − 1√

6
Vk̂− −M −P + Q i

√
2Q

− i√
3
Vkz

i√
2
L† −i

√
3
2L 0 − i√

3
Vk̂− −i

√
2M −i

√
2Q −P −∆




.

(4–40)

where the redefined operators k̂± = kx − y
λ2 ± i k̂y and the operators A, P, Q, L and M are

given by

A = γ4
~

2

2m0
[(kx −

y
λ2

)2 + k̂2
y + k2

z ] (4–41a)

P = γ1
~

2

2m0
[(kx −

y
λ2

)2 + k̂2
y + k2

z ] (4–41b)

Q = γ2
~

2

2m0
[(kx −

y
λ2

)2 + k̂2
y − 2k2

z ] (4–41c)

L = −i
√

3γ3
~

2

m0
kz(kx −

y
λ2

− i k̂y) (4–41d)

M =
√

3
~

2

2m0

{
γ2
[
(kx −

y
λ2

)2 − k̂2
y

]
− iγ3

[
(kx −

y
λ2

)k̂y + k̂y (kx −
y
λ2

)
]}

. (4–41e)

This new matrix GL only contains operator k̂y and the wave vector quantum number

kx and kz but not operator k̂x and k̂z, since we have already evaluated the effects of

operators k̂x and k̂z acting on the plane wave part of the envelope functions.

To further simply the expression of the GL matrix, it is convenient to define the

operator

a =
1√
2λ

(λ2kx − y ) − i
λ√
2

k̂y (4–42)
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and its Hermitian conjugate

a† =
1√
2λ

(λ2kx − y ) + i
λ√
2

k̂y . (4–43)

It can be directly verified that the commutation relation

[a, a†] = 1, (4–44)

so that we can think of operators a and a† as annihilation and creation operators and

define the number operator

N = a†a. (4–45)

Using the annihilation and creation operators a and a†, the matrix GL can be written as

GL =




Eg + A i V
λ

a† i
√

1
3

V
λ

a
√

2
3

V
λ

a 0 0
√

2
3Vkz i

√
1
3Vkz

−i V
λ

a −P − Q −M i
√

2M 0 0 −L −i
√

1
2L

−i
√

1
3

V
λ

a† −M† −P + Q i
√

2Q −i
√

2
3Vkz L 0 i

√
3
2L†

√
2
3

V
λ

a† −i
√

2M† −i
√

2Q −P −∆ −
√

1
3Vkz −i

√
1
2L i

√
3
2L† 0

0 0 i
√

2
3Vkz −

√
1
3Vkz Eg + A −V

λ
a −

√
1
3

V
λ

a† i
√

2
3

V
λ

a†

0 0 L† i
√

1
2L† −V

λ
a† −P − Q −M† i

√
2M†

√
2
3Vkz −L† 0 −i

√
3
2L −

√
1
3

V
λ

a −M −P + Q i
√

2Q

−i
√

1
3Vkz i

√
1
2L† −i

√
3
2L 0 −i

√
2
3

V
λ

a −i
√

2M −i
√

2Q −P −∆




,

(4–46)

and the operators A, P, Q, L and M are given by

A =
~

2

m0

γ4

2

(
2N + 1
λ2

+ k2
z

)
(4–47a)

P =
~

2

m0

γ1

2

(
2N + 1
λ2

+ k2
z

)
(4–47b)

Q =
~

2

m0

γ2

2

(
2N + 1
λ2

− 2k2
z

)
(4–47c)

L = − ~
2

m0
γ3

(
i
√

6kza
λ

)
(4–47d)
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M =

√
3~2

2m0λ2

[
(γ2 + γ3)a2 + (γ2 − γ3)a†2]

. (4–47e)

Now that we know the elements of the GL matrix we can go back to equation (4–37)

to obtain

8∑

m′=1

ei(kx x+kz z)GL
mm′ fm′(y ) +

8∑

m′=1

HZ
mm′ei(kx x+kz z)fm′(y ) = Eei(kx x+kz z)fm(y ). (4–48)

Using the fact that the Zeeman matrix elements HZ
mm′ are just numbers we can cancel

out the common exponential factor to get

8∑

m′=1

(GL
mm′ + HZ

mm′)fm′(y ) = Efm(y ), (4–49)

or more compactly
8∑

m′=1

Gmm′ fm′(y ) = Efm(y ), (4–50)

where

G = GL + HZ . (4–51)

Equation (4–50) is a much bigger progress over the original EFA eigenvalue

problem in equation (4–33), since we have already separated variables and we only

need to focus on the undetermined function fm(y ). The matrix G contains only the y and

k̂y operators, or as we already simplified, the a and a† operators. However this is still not

the final form we want because it is still not an algebraic matrix eigenvalue equations

due to the existence of the a and a† operators. The last step we take to simplify the

problem is using the properties of the harmonic oscillator eigenfunctions to convert

equation (4–50) into an algebraic matrix eigenvalue equation. From our definition of

the annihilation and creation operators in equation (4–42) and (4–43), we can write the

eigenfunctions of the number operator as φn(y − λ2kx), with eigenvalue n:

Nφn(y − λ2kx) = nφn(y − λ2kx), (4–52)
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where n is nonnegative integers. We don’t need the explict form of this harmonic

oscillator eigenfunctions in term of the Hermite polynomials, instead, we will use the

following properties of φn:

aφn =
√

nφn−1 (4–53a)

a†φn =
√

n + 1φn+1. (4–53b)

Next we expand the fm(y ) functions in terms of these harmonic oscillator eigenfunctions

f1(y ) =
∞∑

n=1

f n
1 φn−1 f2(y ) =

∞∑

n=2

f n
2 φn−2 (4–54a)

f3(y ) =
∞∑

n=0

f n
3 φn f4(y ) =

∞∑

n=0

f n
4 φn (4–54b)

f5(y ) =
∞∑

n=0

f n
5 φn f6(y ) =

∞∑

n=−1

f n
6 φn+1 (4–54c)

f7(y ) =
∞∑

n=1

f n
7 φn−1 f8(y ) =

∞∑

n=1

f n
8 φn−1 (4–54d)

where f n
1 , f n

2 etc. are expansion coefficients independent of y . Note that here we expand

the eight components of the envelope function in a slightly different way. This turns to be

a better choice than if we expand all eight components in the same form as
∑∞

n=0 f n
mφn.

The reason for this will be clear shortly.

When we use the already derived operator matrix G acting on the fm(y ) given by

equation (4–54), for each line of the operation, we will get an equation of the form

∑

n

(
Gm1f n

1 φn−1 + Gm2f n
2 φn−2 + Gm3f n

3 φn + Gm4f n
4 φn + Gm5f n

5 φn + Gm6f n
6 φn+1

+ Gm7f n
7 φn−1 + Gm8f n

8 φn−1

)
= E

∑

n

f n
mφn0(n,m) (4–55)
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where n0 is a function of the number n and m:

n0(n, m) =






n − 1, if m = 1, 7, 8

n − 2, if m = 2

n, if m = 3, 4, 5

n + 1, if m = 6

(4–56)

The equation (4–55) can also be written more compactly as

∑

n

∑

m′

Gmm′ f n
m′φn0(n,m′) = E

∑

n

f n
mφn0(n,m). (4–57)

If we neglect the term proportional to a†2 in the definition of the M operator in equation

(4–47), we can directly verity that the matrix element GL
mm′ and HZ

mm′ acting on the

φn0(n,m′) can be converted into

GL
mm′φn0(n,m′) = Jn

mm′φn0(n,m) (4–58a)

HZ
mm′φn0(n,m′) = HZ

mm′φn0(n,m) (4–58b)

where Jn
mm′ are just numbers without any operators and the quantum number n0 are all

the same for different m′. The explicit form of the Jn matrix is

Jn =




Jn
a Jn

c

Jn
c
† Jn

b


 , (4–59)
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where the submatrices are given by

Jn
a =




Eg + γ4
~

2k2
z

2m0

+ ~
2γ4

m0λ2 (n − 1
2 )

i V
λ

√
n − 1 i V

λ

√
n
3

V
λ

√
2
3n

−i V
λ

√
n − 1

~2k2
z

m0
(γ2 − γ1

2 )

− ~
2

m0

γ1+γ2
2λ2 (2n − 3)

− ~2

m0

(γ2+γ3)
2λ2

√
3n(n − 1) i ~2

m0

(γ2+γ3)
2λ2

√
6n(n − 1)

−i V
λ

√
n
3 − ~

2

m0

(γ2+γ3)
2λ2

√
3n(n − 1)

−~
2k2

z
m0

(γ1
2 + γ2)

− ~2

m0

γ1−γ2
2λ2 (2n + 1)

i
√

2 ~
2

m0
[−γ2k2

z

+ γ2
λ2 (n + 1

2 )]

V
λ

√
2
3n −i ~2

m0

(γ2+γ3)
2λ2

√
6n(n − 1)

−i
√

2 ~2

m0
[−γ2k2

z

+ γ2
λ2 (n + 1

2 )]

−∆− γ1
~2k2

z
2m0

− ~
2

m0

γ1
λ2 (n + 1

2 )




,

(4–60a)

Jn
b =




Eg + γ4
~2k2

z
2m0

+ ~2γ4
m0λ2 (n + 1

2 )
−V

λ

√
n + 1 −V

λ

√
n
3 i V

λ

√
2
3n

−V
λ

√
n + 1

~
2k2

z
m0

(γ2 − γ1
2 )

− ~2

m0

γ1+γ2
2λ2 (2n + 3)

− ~
2

m0

(γ2+γ3)
2λ2

√
3n(n + 1) i ~

2

m0

(γ2+γ3)
2λ2

√
6n(n + 1)

−V
λ

√
n
3 − ~2

m0

(γ2+γ3)
2λ2

√
3n(n + 1)

−~2k2
z

m0
(γ1

2 + γ2)

− ~
2

m0

γ1−γ2
2λ2 (2n − 1)

i
√

2 ~2

m0
[−γ2k2

z

+ γ2
λ2 (n − 1

2 )]

−i V
λ

√
2
3n −i ~

2

m0

(γ2+γ3)
2λ2

√
6n(n + 1)

−i
√

2 ~2

m0
[−γ2k2

z

+ γ2
λ2 (n − 1

2 )]

−∆− γ1
~

2k2
z

2m0

− ~2

m0

γ1
λ2 (n − 1

2 )




,

(4–60b)

Jn
c = kz




0 0 V
√

3
2 iV

√
1
3

0 0 i ~
2

m0

γ3
λ

√
6(n − 1) − ~

2

m0

γ3
λ

√
3(n − 1)

−iV
√

2
3 −i ~

2

m0

γ3
λ

√
6(n + 1) 0 −3 ~

2

m0

γ3
λ

√
n

−V
√

1
3 − ~2

m0

γ3
λ

√
3(n + 1) −3 ~2

m0

γ3
λ

√
n 0




.

(4–60c)
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This allow us to rewrite equation (4–55) as

∑

n

[
∑

m′

(Jn
mm′ + HZ

mm′)f n
m′

]
φn0(n,m) = E

∑

n

f n
mφn0(n,m), (4–61)

At this point it is clear that why we choose the particular expansion form for fm(y ) given

in equation (4–54), since this form will give us a quantum number n0 independent of m′

so that we can factor φn0(n,m) out of the summation over m′ in the left side of the above

equation. Define matrix Rn as

Rn = Jn + HZ (4–62)

and by using the orthogonality of the harmonic oscillator eigenstates for different

quantum number, we arrived
∑

m′

Rn
mm′ f n

m′ = Ef n
m. (4–63)

Diagonalizing the above algebraic matrix eigenvalue equation will give us the eigenenergy

which depend on the quantum number n and we call this quantum number manifold

quantum number. The solutions for different manifold quantum number do not mixed

with each other, so that our initially expansion of the fm(y ) in terms of the summation

over different manifold quantum number n breaks apart for manifolds. This means that

our fm(y ) functions finally take the following form:

f1(y ) = f n
1 φn−1 f2(y ) = f n

2 φn−2 (4–64a)

f3(y ) = f n
3 φn f4(y ) = f n

4 φn (4–64b)

f5(y ) = f n
5 φn f6(y ) = f n

6 φn+1 (4–64c)

f7(y ) = f n
7 φn−1 f8(y ) = f n

8 φn−1, (4–64d)

or more compactly

fm(y ) = f n
mφn0(n,m). (4–65)

Now we can summarize the technique we use to calculate the electronic structures

when there is an external magnetic field applied to the III-V semiconductors. When the
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magnetic field is in the ẑ direction, the electron wave function is given by

Ψ(r ) =
8∑

m=1

ψm(r )um0(r ), (4–66)

where um0(r ) is the basis function given in equation (3–9), and ψm(r ) is the envelope

function given by

ψm(r ) = ei(kx x+kz z)f n
mφn0(n,m)(y − λ2kx ). (4–67)

In equation (4–67), kx and kz are wave vector quantum numbers, n is manifold quantum

number, and n0 = n0(n, m) is Landau quantum number. The coefficients f n
m and the

electron energy can be obtained from the matrix eigenvalue equation

∑

m′

Rn
mm′ f n

m′ = Ef n
m. (4–68)

The matrix Rn is the sum of the Jn matrix and the HZ matrix, and the explicit form of the

matrix Jn and HZ are given by equation (4–60) and (4–32), respectively. The energy E

will depend on n on kz but not kx .

4.4 Numerical Calculations of the GaAs Landau Levels

We perform calculations of Landau levels for bulk GaAs at two different magnetic

field strength, 4.7T and 7.0T, at a temperature of 6K. Fig. 4-1 and Fig. 4-2 show

conduction and valence band diagrams for the two field strength, just to give us an over

all idea of what the energy bands look like. We can see here that as the magnetic field

increases, the energy spacing between different levels also increases, as expected. The

conduction bands have a simple structure but the valence bands are a lot complicated

and hard to see clearly in Fig. 4-1 and Fig. 4-2. Fig. 4-3 and Fig. 4-4 give us a closer

look at the valence bands near the zone center, at the field strength of 4.7T and 7.0T,

respectively.

Besides the energy levels shown here, we also need to investigate the eigenstates

of the wave functions, i.e., the break down of the eigenstate in terms of the linear

combination of the eight basis states given in equation (3–9), in order to really
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understand the band structures of GaAs in the magnetic field. By using the theoretical

model developed in the previous section and numerically solving the eigenvalue problem

given by equation (4–68), we can obtain each eigenstates manifold by manifold. We

list our results for eigenstates in Table 4-1 and Table 4-2 for the cases of B = 4.7T and

B = 7.0T, respectively. The interpretation of Table 4-1 and Table 4-2 is the following.

Each line (except the first) of the table describes a particular eigenstate while the first

line gives the title of each column. The first column assigns each eigenstate a unique ID

number which can be used to refer to different eigenstates. The second column is the

Pidgeon-Brown manifold number n [25]. The third column labels different eigenstates

within each manifold, in the order of increasing energies. The rest eight columns give us

the percentage probability of the eigenstate. For example the sixth state in Table 4-1 is

the lowest energy state in the n = 1 manifold, and this state is mixed with 0.2% |CB0 ↑〉

and 99.8% |SO1 ↓〉. The small number on the shoulder is the Landau quantum number

n0. Note that the Landau quantum number n0 is different from the Pidgeon-Brown

manifold number as we can see from equation (4–56). Table 4-1 and Table 4-2 can be

used to explain the features found in the magneto-optical absorption spectra later in this

dissertation.

Simple observation of Table 4-1 and Table 4-2 can tell us a lot information. At this

point I want to point out several facts. The first fact is that, although our general theory

developed in previous sections make us expect the eigenstates is made up with linear

combination of the eight components, the zone center, i.e., k = 0 states are made up

with linear combination of either the first four, or the second four components. The first

four components never mix with the second four components at k = 0. One can also

see this fact directly from the matrix form of Jn and HZ , as both Jn and HZ have a block

diagonal form when kz = 0. We will refer the first four components the upper set and the

second four components the lower set from now on.
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The second fact worth noting is that for both field strengths under investigation,

the conduction band components are almost 100% pure states by themselves. See, for

example, the conduction band spin-up states |CB ↑〉 with ID= 11, 19, 27, 35, one can

tell these states have a large (> 96%) percentage of |CB ↑〉, although this percentage

decrease with increasing Landau levels. This can be easily seen from Fig. 4-5 (a) and

Fig. 4-6 (a), where the four blue data points are all quite close to 100% and slowly

decreasing over Landau level quantume numbers. Similar statements can be made

for the conduction band spin-down states |CB ↓〉 with ID= 5, 12, 20, 28, 36, as shown

in Fig. 4-5 (b) and Fig. 4-6 (b). One can also tell from Table 4-1 and Table 4-2 that the

spin-orbit split-off bands |SO ↑〉 with ID= 7, 14, 22, 30, and |SO ↓〉 with ID= 2, 6, 13, 21, 29

are also almost 100% pure states (> 99%), even purer that the conduction band states.

These are illustrated in Fig. 4-5 (c,d) and Fig. 4-6 (c,d). These spin-orbit split-off bands

are low lying states whose energies are below the interested range.

Given the fact that the conduction bands and spin-orbit split-off bands are nearly

pure states, and the upper set states never mix with the lower set states, the only

mixing states that we left are heavy-hole spin-up states |HH ↑〉 mixed with light-hole

spin-down states |LH ↓〉 (those with ID= 4, 9, 16, 18, 24, 26, 32, 34), and heavy-hole

spin-down states |HH ↓〉 mixed with light-hole spin-up states |LH ↑〉 (those with

ID= 1, 3, 8, 10, 15, 17, 23, 25, 31, 33). Fig. 4-5 (e,h) and Fig. 4-6 (e,h) illustrate the mixing

between |HH ↑〉 components and |LH ↓〉 components. We can see that in one set of

states the |HH ↑〉 components get smaller while the |LH ↓〉 components get bigger; in

another set of states the |LH ↓〉 components get smaller while the |HH ↑〉 states get

bigger. Similar observations can be made for mixing between the |HH ↓〉 components

and the |LH ↑〉 components, which can be seen in Fig. 4-5 (f,g) and Fig. 4-6 (f,g).

4.5 Magneto-Optical Absorption

Once we have known the electronic structure we can compute the transition

probabilities under the perturbation of the radiation field using Fermi’s golden rule, and
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then compute the optical absorption spectra of the GaAs under the external magnetic

field. In this section we discuss how we calculate the spin-dependent magneto-optical

properties and compare with the magneto-absorption experiments.

We calculate the magneto-optical absorption coefficient at the photon energy ~ω

from [26]

α(~ω) =
~ω

~cnr
ε2(~ω), (4–69)

where ε2(~ω) is the imaginary part of the dielectric function and nr is the index of

refraction. The imaginary part of the dielectric function is found using Fermi’s golden

rule. The result is

ε2(~ω) =
e2

λ2(~ω)2

∑

n,ν;n′,ν′

∫ ∞

−∞
dkz |ê · Pn′,ν′

n,ν (kz)|2

×[fn,ν(kz) − fn′,ν′(kz)]δ(∆En,ν
n′,ν′(kz) − ~ω),

(4–70)

where ∆En,ν
n′,ν′(kz) = En′,ν′(kz) − En,ν(kz) is the transition energy. The function fn,ν(kz) in

Eq. (4–70) is the probability that the state (n, ν, kz), with energy En,ν(kz), is occupied. It is

given by the Fermi distribution

fn,ν =
1

1 + exp[(En,ν(kz) − Ef )/kT ]
. (4–71)

The Fermi energy Ef in Eq. (4–71) depends on temperature and doping. If ND

is the donor concentration and NA the acceptor concentration, then the net donor

concentration NC = ND − NA can be either positive or negative depending on whether

the sample is n or p type. For a fixed temperature and Fermi level, the net donor

concentration is

NC =
1

(2π)2λ2

∑

n,ν

∫ ∞

−∞
dkz [fn,ν(kz) − δv

n,ν ], (4–72)

where δv
n,ν = 1 if the subband (n, ν) is a valence band and vanishes if (n, ν) is a

conduction band. Given the net donor concentration and the temperature, the Fermi

energy can be found from Eq. (4–72) using a root finding routine.
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When doing the summation in Eq. (4–70), we separate the contributions into two

cases according to the final states of the optical transitions

ε2(~ω) = ε2↑(~ω) + ε2↓(~ω) (4–73)

where both ε2↑(~ω) and ε2↓(~ω) are given by the same right hand side of Eq. (4–70) with

the exception that ε2↑(~ω) includes those terms if the final state (n′, ν ′, kz) is spin-up and

ε2↓(~ω) includes those terms if the final state (n′, ν ′, kz) is spin-down. We can do this

separation because we know that, within each manifold, the energy eigenvalues can be

put in order so that the highest energy eigenvalue always corresponds to the spin-down

conduction electron |CB ↓〉 and the next highest energy eigenvalue corresponds to the

spin-up conduction electron |CB ↑〉, noting that the effective g factor is negative. The

only exceptions to this rule are n = −1 and n = 0 manifolds. For n = −1 manifold, there is

no conduction band states at all, the only eigenstate in this manifold being a heavy hole

state, and for n = 0 manifold, this is no conduction band spin-up state.

Accordingly, we can get the spin-resolved absorption coefficients α↑(~ω) and α↓(~ω)

from Eq. (4–69) and the total absorption coefficient is just the sum of the spin-up and

spin-down part of the absorption

α(~ω) = α↑(~ω) + α↓(~ω). (4–74)

In the following we show our calculated spin-resolved absorption spectra at the

magnetic field of 4.7T and 7.0T for both σ+ and σ− polarizations. In Fig. 4-7 through

Fig. 4-10 we separate the spin-up absorption α↑ (red) from the spin-down absorption

α↓ (blue), and each transition is labeled with an arrow and two numbers. These are

the same numbers used in Table 4-1 and Table 4-2 to label the energy eigenstate. For

example in Fig. 4-7 the first major peak results from a transition from the ID= 1 state to

the ID= 5 state in Table 4-1.
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When we labeling these transitions with a pair of state ID numbers, note that each

state is not a pure state but a mixture with components coming from the eight basis

states given by Eq. (3–9). Each component does not contribute equally to the transition.

To get a better understanding of the origin of the transition, i.e., to know whether the

initial state of a particular transition is a heavy-hole state or light-hole state and the spin

orientation of the final conduction electron, we need to identify the active components

that contribute to each transition. This task is simplified according to the selection rule

summarized in Table 4-3. From these selection rules one can immediately tell that, for

σ+ polarization, the spin-up elections solely come from the light-hole component of the

initial state and the spin-down elections solely come from the heavy-hole component.

Things are exactly opposite for the σ− polarization. Now we can label those transitions

with the exact active components of the wave function instead of the numerical ID

number, as shown in Fig. 4-11 through Fig. 4-14. Note that for every transition, the

Landau level quantum number is conserved: ∆N = 0, however, the Pidgeon-Brown

manifold number n is not conserved. For σ+ polarization ∆n = +1 and for σ− polarization

∆n = −1.

Our calculations are compared with experimental absorption spectra for a magnetic

field of B = 7.5T for both σ+ and σ− polarization as shown in Fig. 4-15, where the

experimental data are taken from [27]. We can see from this comparison that our

theoretical model are well and sufficient to explain the major and minor features

observed in the experiments. Note that the calculated curves are shifted as a whole

to the left by 0.0025 eV to match the observed spectra.

4.6 Spin-Polarized Absorption and Optically Pumped NMR

In this section we compare our calculated spin-dependent absorption with the

optically pumped NMR (OPNMR) experiments. OPNMR measurements involve two

components: first optically pump the semiconductor system with circularly polarized

photons then use the NMR detection of the nuclear spin. During the optically pumping,
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the angular momentum of the photon can be transfered to the conduction band

electrons and the resulting conduction band electrons will be spin polarized with a

majority spin and a minority spin. These spin polarized electrons can interact with the

nuclear spin so that the OPNMR spectra is very sensitive to the spin polarization of

the conduction band electrons[28–32]. Note that the magneto-absorption experiment,

which is a tradition tool to probe the electronic structures of a semiconductor system,

measures the total excited electrons (the sum of the spin-up and spin-down electron

populations) coming from valence bands to conduction bands, whereas the OPNMR

measurement is only sensitive to the spin polarization (the difference between spin-up

and spin-down electron populations) of the excited electrons. In this dissertation

the oscillatory features in the OPNMR signal of GaAs are attributed to the Landau

level transitions. We will show that the OPNMR signals are dominated by the weaker

light-hole transitions whereas the magneto-absorptions are dominated by the stronger

heavy-hole transitions. These properties of the OPNMR measurement make it a very

useful tool to probe the spin-dependent electronic structures of a semiconductor system.

The experiment was performed by our collaborators, Dr. Sophia Hayes’s group in

St. Louis. The OPNMR spectra of 69Ga spins in bulk semi-insulating GaAs polarized

by a narrow-band laser were measured in two different external fields of 4.7T and 7.0T.

We find that the OPNMR signal intensity oscillate as a function of the above-gap photon

energy, as shown in Fig. 4-16 and Fig. 4-17. These oscillatory features of the OPNMR

signal can be well explained using our electronic structure calculation[33]. Results of

our calculated energy levels are shown in Fig. 4-18. In Fig. 4-19 we plot the theoretical

calculations of the total magneto-absorption of σ− light (upper black line), spin-up

absorption α↑ (blue dashed line), and spin-down absorption α↓ (red dotted-dashed line)

in a magnetic field of 4.7T. The theoretical calculations for all curves were shifted in

energy by 6meV to account for the shift due to Coulomb interactions (i.e., the exciton

binding energy) which we were not included in our calculations.
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For σ− excitation in Fig. 4-19, the total absorption (upper black line) is dominated

by optical transitions from the heavy-hole spin-up Landau levels (solid black lines,

Fig. 4-18) to conduction-band spin-up Landau levels. However there are also optical

transitions from the light-hole spin-up Landau levels (solid red lines, Fig. 4-18) to the

conduction-band spin-down Landau levels for σ− excitation. These light-hole transitions

are difficult to see in absorption spectra since the light-hole transitions are weaker (by

a factor of 3) than the heavy-hole transitions and are separated by only a few meV from

the dominant heavy-hole transitions.

In Fig. 4-20 we plot a combination of 69Ga OPNMR experimental data (black

symbols) for σ− excitation. Superimposed onto the experimental OPNMR data are

the calculated electron spin polarizations (red solid lines). A plot of the electron spin

polarization shows whether peaks in the absorption came from transitions from heavy-

or light-hole Landau levels. When we look at the conduction-band spin polarization

for σ− excitation, we see that the features which arise in the electron spin polarization

are dominated by the transitions from the light-hole Landau levels. These light-hole

spin-up to conduction-band spin-down transitions are very weak and barely visible in

the plot of the total magneto-absorption for σ− excitation; however these transitions

are well resolved in the OPNMR data as a function of photon energy. We find that

the conduction-band spin polarization is particularly sensitive to regions of photon

energy where the total spin-polarized magneto-absorption (α↑ + α↓) and the differential

magneto-absorption (α↑ − α↓) are different from one another, which occurs principally at

the peaks of the light-hole transitions.

61



Table 4-1. Percentage probability of the zone center wave functions at 4.7T
ID n ν |CB ↑〉 |HH ↑〉 |LH ↓〉 |SO ↓〉 |CB ↓〉 |HH ↓〉 |LH ↑〉 |SO ↑〉
1 -1 1 0 0 0 0 0 100HH0 ↓ 0 0
2 0 1 0 0 0 100SO0 ↓ 0 0 0 0
3 0 2 0 0 0 0 0.3CB0 ↓ 99.7HH1 ↓ 0 0
4 0 3 0 0 100LH0 ↓ 0 0 0 0 0
5 0 4 0 0 0 0 99.7CB0 ↓ 0.3HH1 ↓ 0 0
6 1 1 0.2CB0 ↑ 0 0 99.8SO1 ↓ 0 0 0 0
7 1 2 0 0 0 0 0.2CB1 ↓ 0 0 99.8SO0 ↑
8 1 3 0 0 0 0 0.8CB1 ↓ 90.3HH2 ↓ 8.9LH0 ↑ 0
9 1 4 0.1CB0 ↑ 0 99.9LH1 ↓ 0 0 0 0 0

10 1 5 0 0 0 0 0 9HH2 ↓ 91LH0 ↑ 0
11 1 6 99.7CB0 ↑ 0 0.1LH1 ↓ 0.1SO1 ↓ 0 0 0 0
12 1 7 0 0 0 0 99.1CB1 ↓ 0.7HH2 ↓ 0.1LH0 ↑ 0.1SO0 ↑
13 2 1 0.3CB1 ↑ 0 0 99.7SO2 ↓ 0 0 0 0
14 2 2 0 0 0 0 0.3CB2 ↓ 0 0 99.6SO1 ↑
15 2 3 0 0 0 0 1.2CB2 ↓ 84.7HH3 ↓ 14.1LH1 ↑ 0
16 2 4 0.5CB1 ↑ 29.8HH0 ↑ 69.6LH2 ↓ 0 0 0 0 0
17 2 5 0 0 0 0 0 14.3HH3 ↓ 85.7LH1 ↑ 0
18 2 6 0 69.8HH0 ↑ 30.1LH2 ↓ 0 0 0 0 0
19 2 7 99.1CB1 ↑ 0.3HH0 ↑ 0.2LH2 ↓ 0.3SO2 ↓ 0 0 0 0
20 2 8 0 0 0 0 98.5CB2 ↓ 1.0HH3 ↓ 0.2LH1 ↑ 0.3SO1 ↑
21 3 1 0.5CB2 ↑ 0 0 99.5SO3 ↓ 0 0 0 0
22 3 2 0 0 0 0 0.5CB3 ↓ 0.1HH4 ↓ 0 99.4SO2 ↑
23 3 3 0 0 0 0 1.6CB3 ↓ 81.2HH4 ↓ 17.1LH2 ↑ 0.1SO2 ↑
24 3 4 0.9CB2 ↑ 46.3HH1 ↑ 52.7LH3 ↓ 0.1SO3 ↓ 0 0 0 0
25 3 5 0 0 0 0 0 17.4HH4 ↓ 82.6LH2 ↑ 0
26 3 6 0 53.0HH1 ↑ 46.9LH3 ↓ 0 0 0 0 0
27 3 7 98.6CB2 ↑ 0.7HH1 ↑ 0.3LH3 ↓ 0.4SO3 ↓ 0 0 0 0
28 3 8 0 0 0 0 98CB3 ↓ 1.3HH4 ↓ 0.3LH2 ↑ 0.4SO2 ↑
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Table 4-1. Continued
ID n ν |CB ↑〉 |HH ↑〉 |LH ↓〉 |SO ↓〉 |CB ↓〉 |HH ↓〉 |LH ↑〉 |SO ↑〉
29 4 1 0.6CB3 ↑ 0.1HH2 ↑ 0 99.3SO4 ↓ 0 0 0 0
30 4 2 0 0 0 0 0.7CB4 ↓ 0.1HH5 ↓ 0 99.2SO3 ↑
31 4 3 0 0 0 0 1.9CB4 ↓ 78.8HH5 ↓ 19.1LH3 ↑ 0.2SO3 ↑
32 4 4 1.3CB3 ↑ 53.4HH2 ↑ 45.1LH4 ↓ 0.1SO4 ↓ 0 0 0 0
33 4 5 0 0 0 0 0 19.5HH5 ↓ 80.5LH3 ↑ 0
34 4 6 0 45.5HH2 ↑ 54.4LH4 ↓ 0 0 0 0 0
35 4 7 98CB3 ↑ 1.0HH2 ↑ 0.4LH4 ↓ 0.6SO4 ↓ 0 0 0 0
36 4 8 0 0 0 0 97.4CB4 ↓ 1.6HH5 ↓ 0.4LH3 ↑ 0.6SO3 ↑
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Table 4-2. Percentage probability of the zone center wave functions at 7.0T
ID n ν |CB ↑〉 |HH ↑〉 |LH ↓〉 |SO ↓〉 |CB ↓〉 |HH ↓〉 |LH ↑〉 |SO ↑〉
1 -1 1 0 0 0 0 0 100HH0 ↓ 0 0
2 0 1 0 0 0 100SO0 ↓ 0 0 0 0
3 0 2 0 0 0 0 0.5CB0 ↓ 99.5HH1 ↓ 0 0
4 0 3 0 0 100LH0 ↓ 0 0 0 0 0
5 0 4 0 0 0 0 99.5CB0 ↓ 0.5HH1 ↓ 0 0
6 1 1 0.2CB0 ↑ 0 0 99.8SO1 ↓ 0 0 0 0
7 1 2 0 0 0 0 0.2CB1 ↓ 0 0 99.7SO0 ↑
8 1 3 0 0 0 0 1.1CB1 ↓ 90.0HH2 ↓ 8.8LH0 ↑ 0
9 1 4 0.2CB0 ↑ 0 99.8LH1 ↓ 0 0 0 0 0

10 1 5 0 0 0 0 0 9HH2 ↓ 91LH0 ↑ 0
11 1 6 99.6CB0 ↑ 0 0.2LH1 ↓ 0.2SO1 ↓ 0 0 0 0
12 1 7 0 0 0 0 98.6CB1 ↓ 1.0HH2 ↓ 0.2LH0 ↑ 0.2SO0 ↑
13 2 1 0.5CB1 ↑ 0 0 99.5SO2 ↓ 0 0 0 0
14 2 2 0 0 0 0 0.5CB2 ↓ 0.1HH3 ↓ 0 99.4SO1 ↑
15 2 3 0 0 0 0 1.7CB2 ↓ 84.2HH3 ↓ 13.9LH1 ↑ 0.2SO1 ↑
16 2 4 0.7CB1 ↑ 29.5HH0 ↑ 69.7LH2 ↓ 0 0 0 0 0
17 2 5 0 0 0 0 0 14.3HH3 ↓ 85.7LH1 ↑ 0
18 2 6 0.1CB1 ↑ 70.0HH0 ↑ 29.9LH2 ↓ 0 0 0 0 0
19 2 7 98.7CB1 ↑ 0.5HH0 ↑ 0.3LH2 ↓ 0.4SO2 ↓ 0 0 0 0
20 2 8 0 0 0 0 97.8CB2 ↓ 1.4HH3 ↓ 0.3LH1 ↑ 0.4SO1 ↑
21 3 1 0.7CB2 ↑ 0.1HH1 ↑ 0 99.2SO3 ↓ 0 0 0 0
22 3 2 0 0 0 0 0.8CB3 ↓ 0.2HH4 ↓ 0 99.1SO2 ↑
23 3 3 0 0 0 0 2.2CB3 ↓ 80.5HH4 ↓ 17.0LH2 ↑ 0.3SO2 ↑
24 3 4 1.3CB2 ↑ 45.7HH1 ↑ 52.9LH3 ↓ 0.1SO3 ↓ 0 0 0 0
25 3 5 0 0 0 0 0 17.5HH4 ↓ 82.5LH2 ↑ 0

e 26 3 6 0.1CB2 ↑ 53.3HH1 ↑ 46.6LH3 ↓ 0 0 0 0 0
27 3 7 97.9CB2 ↑ 1.0HH1 ↑ 0.5LH3 ↓ 0.6SO3 ↓ 0 0 0 0
28 3 8 0 0 0 0 97.0CB3 ↓ 1.9HH4 ↓ 0.5LH2 ↑ 0.6SO2 ↑

64



Table 4-2. Continued
ID n ν |CB ↑〉 |HH ↑〉 |LH ↓〉 |SO ↓〉 |CB ↓〉 |HH ↓〉 |LH ↑〉 |SO ↑〉
29 4 1 1.0CB3 ↑ 0.1HH2 ↑ 0 98.8SO4 ↓ 0 0 0 0
30 4 2 0 0 0 0 1.0CB4 ↓ 0.3HH5 ↓ 0 98.6SO3 ↑
31 4 3 0 0 0 0 2.7CB4 ↓ 77.9HH5 ↓ 18.9LH3 ↑ 0.5SO3 ↑
32 4 4 1.9CB3 ↑ 52.6HH2 ↑ 45.3LH4 ↓ 0.3SO4 ↓ 0 0 0 0
33 4 5 0 0 0 0 0 19.6HH5 ↓ 80.4LH3 ↑ 0
34 4 6 0 45.9HH2 ↑ 54.1LH4 ↓ 0 0 0 0 0
35 4 7 97.1CB3 ↑ 1.4HH2 ↑ 0.6LH4 ↓ 0.8SO4 ↓ 0 0 0 0
36 4 8 0 0 0 0 96.3CB4 ↓ 2.3HH5 ↓ 0.6LH3 ↑ 0.8SO3 ↑

65



Table 4-3. Selection rules
σ+ polarization |HH ↓〉 ⇒ |S ↓〉

Left circular polarization |LH ↓〉 ⇒ |S ↑〉
σ− polarization |HH ↑〉 ⇒ |S ↑〉

Right circular polarization |LH ↑〉 ⇒ |S ↓〉
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Figure 4-5. Wave function components vs Landau level quantum number at B = 4.7T.
The subfigures (a) through (h) correspond the eight components in the order
of |CB ↑〉, |CB ↓〉, |SO ↑〉, |SO ↓〉, |HH ↑〉, |HH ↓〉, |LH ↑〉, |LH ↓〉. The
horizontal axis labels Landau level quantum number and the vertical axis
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Figure 4-6. Wave function components vs Landau level quantum number at B = 7.0T.
The subfigures (a) through (h) correspond the eight components in the order
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Figure 4-7. Spin dependent absorption for B=4.7T (σ+ polarization)
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Figure 4-8. Spin dependent absorption for B=4.7T (σ− polarization)
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Figure 4-9. Spin dependent absorption for B=7.0T (σ+ polarization)
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Figure 4-10. Spin dependent absorption for B=7.0T (σ− polarization)

75



 0

 2000

 4000

 6000

 8000

 10000

 12000

 1.51  1.52  1.53  1.54  1.55  1.56  1.57  1.58

A
bs

or
pt

io
n 

(a
.u

.)

Photon Energy (eV)

4.7T Left

h0

c0

h1

c1

h2

c2

h3

c3

h4

c4

l0

c0

l1

c1 h2

c2

l2

c2

l2

c2

h3

c3

l3

c3

h4

c4

l3

c3

up
down

Figure 4-11. Active components for absorption at B=4.7T (σ+ polarization)
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Figure 4-12. Active components for absorption at B=4.7T (σ− polarization)
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Figure 4-13. Active components for absorption at B=7.0T (σ+ polarization)
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Figure 4-14. Active components for absorption at B=7.0T (σ− polarization)
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Figure 4-16. OPNMR signal intensity as a function of photon energy for σ− excitation
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Figure 4-17. OPNMR signal intensity as a function of photon energy for σ+ excitation

82



-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
-0.015

-0.010

-0.005

1.52

1.53

1.54

1.55

 

 

En
er

gy
 (e

V)

Figure 4-18. Calculated spin-split valence-band and conduction-band Landau levels in
GaAs at 4.7T. Black (thick) lines correspond to heavy holes, red (thin) lines
to light holes, and blue lines to conduction band levels. Solid lines are for
spin-up and dashed lines are for spin-down states. These assignments are
only approximate due to band mixing. Only the lowest few Landau levels of
each type are shown. Spin-up and spin-down states for the conduction
band are nearly degenerate and are not resolved in this figure.
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Figure 4-19. Theoretical calculations of absorption of σ− light by bulk GaAs at 4.7T. Blue
dashed line shows the absorption that produces spin-up electrons (α↑,
primarily from heavy-hole transitions). Red dotted-dash line shows the
absorption that produces spin-down electrons (α↓, primarily from light-hole
transitions). Black solid lines shows total absorption, α↑ + α↓.

84



-0.5

0.0

0.5

 

1

2

3

4

 

1.51 1.52 1.53 1.54 1.55 1.56

-0.5

0.0

0.5

 
Photon Energy (eV)

-6

-5

-4

-3

 

Figure 4-20. Depiction of the 69Ga OPNMR signal intensity as a function of photon
energy for σ− and σ+ polarized light at 4.7T. The experimental data (black
symbols) are compared with the calculated electron polarization (solid red
line), (α↑ − α↓)/(α↑ + α↓).
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CHAPTER 5
MAGNETO-PROPERTIES OF INDIUM ANTIMONIDE QUANTUME WELLS

5.1 Experimental Details

Experiment was carried out by Santos and co-workers at the University of

Oklahoma. The InSb/AlInSb heterostructure as shown in Fig. 5-1 was grown by

molecular beam epitaxy on an [001] GaAs substrates. The structure contains 40

InSb wells that are 15nm thick and separated by In0.9Al0.1Sb barrier layers that are 50nm

thick. A 0.5µm-thick InAlSb buffer layer with a graded Al composition was deposited

between the multiple-quantum-well (MQW) layers and the substrate in order to reduce

the density of dislocations that result from the ∼ 14% lattice mismatch between the

substrate and the MQW layers. A 3µm In0.9Al0.1Sb layer, which is almost completely

relaxed, was grown just prior to the MQW layers. The InSb wells are compressively

strained to the lattice constant of the 3µm In0.9Al0.1Sb layer. A Fourier Transform Infrared

spectrometer was used to nomitor the transmission through the MQW structure as a

function of photon frequency, which is also shown in Fig. 5-1. The structure was wedged

at 4◦ to reduce unwanted Fabry-Perot interference. In their previous exciton studies

without a magnetic field, they deduced the band offsets for InSb/AlInSb[34] and the

strain parameters for InSb[35]. In the current study, a perpendicular magnetic field of

0 ≤ B ≤ 7.5T was applied in far infrared transmission measurements at a temperature

of 4.2K. We observed rich spectra of transitions between Landau levels of hole and

electron subbands.

5.2 Extension of the Theoretical Model

We want to look at the magneto-optical properties of InSb quantum wells. The InSb

quantum wells system have three major differences form the bulk GaAs system which

we already studied in detail in the previous chapter. These three differences between

the two physical system make it much more complicated to deal with the InSb quantum

well than bulk GaAs. In this section I will outline these three differences and extend
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our current theoretical model to a form that can be used to calculate the electronic and

optical properties of the InSB quantum wells.

5.2.1 Narrow Energy Gap

The first thing we want to notice is that, unlike GaAs, the InSb is a narrow-gap

material. Simple Kane model tells us that narrow band gap will lead to strong coupling

between the conduction bands and the valence bands so that the electronic wave

function will have components mixed from the conduction band and valence bands. In

our previous treatment of GaAs system, the conduction band wave functions are nearly

100%, for example, see Table 4-1 and Table 4-2, and we can take the approximation that

the valence bands are only mixed with the six-dimensional subspace. However this will

not be true for InSb since it has strong coupling between the conduction bands and the

valence bands. The good news for us is that even we can take the approximation to treat

conduction bands and valence bands seperatelly for GaAs, we did not do that and we

still keep all eight bands in our theoretical model introduced in previous chapters. In this

concern we were treating GaAs as a narrow gap material just like InSb, so when we do

need to treat InSb we do not need to modify our previous theorectical model.

5.2.2 Strain Effect

In our MQW structure, the InSb layers are compressively strained to the lattice

constant of the 3µm In0.9Al0.1Sb layer. This will give us one more term in our EFA

Hamiltonian, so that instead of using equation (4–34), we have now

HEFA = HL + HZ + HS. (5–1)

The strain contribution to the envelope function approximation is

HS =




Sa Sc

S†
c Sb


 (5–2)
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where the submatrices Sa, Sb and Sc are given by

Sa =




Aε 0 0 0

0 −Pε − Qε −Mε i
√

2Mε

0 −M∗
ε −Pε + Qε i

√
2Qε

0 −i
√

2M∗
ε −i

√
2Qε −Pε




, (5–3a)

Sb =




Aε 0 0 0

0 −Pε − Qε −M∗
ε i

√
2M∗

ε

0 −Mε −Pε + Qε i
√

2Qε

0 −i
√

2Mε −i
√

2Qε −Pε




, (5–3b)

Sc =




0 0 0 0

0 0 −Lε −i
√

1
2Lε

0 Lε 0 i
√

3
2L∗

ε

0 −i
√

1
2Lε i

√
3
2L∗

ε 0




. (5–3c)

In terms of the strain tensor components εij , the quantities Aε, Pε, Qε, Lε and Mε in

equation (5–3) are given by

Aε = ac(εxx + εyy + εzz), (5–4a)

Pε = −av (εxx + εyy + εzz), (5–4b)

Qε = −b
2

(εxx + εyy − 2εzz), (5–4c)

Lε = id(εxz − iεyz), (5–4d)

Mε = −
√

3
2

b(εxx − εyy ) + i
2
√

3
3

dεxy . (5–4e)

In equation (5–4), ac, av , b and d are deformation potentials. Values of the deformation

potentials for a wide range of III-V semiconductor alloys are tabulated in Ref. [4].

We assume that strain in the AlInSb/InSb MQW is pseudomorphic which means

that the lattice constant in the InSb and AlInSb layers are equal to the lattice constant in
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the In0.9Al0.1Sb substrate. In our pseudomorphic strain approximation, the non-vanishing

strain tensor components in the InSb layer are given by

εxx = εyy =
a0(AlInSb) − a0(InSb)

a0(InSb)
(5–5a)

εzz = −2
c12

c11
εxx , (5–5b)

where a0(InSb) is the unstrained lattice constant in bulk InSb, a0(AlInSb) is the lattice

constant of the AlInSb substrate, and c11 and c12 are elastic stiffness constants

tabulated in Ref. [4]. Similar expressions hold for the AlInSb layers. From equation (5–5)

we see that Lε and Mε in equation (5–4) vanish in the pseudomorphic strain approximation.

This implies Sc = 0 and Sa = Sb in the strain Hamiltonian, HS. Thus HS is block diagonal.

5.2.3 Quantum Confinement Effect

We consider an InSb/InAlSb multiple quantum well (MQW) grown on a thick

(strain-relaxed) In0.9Al0.1Sb buffer layer on a GaAs (001) substrate. The band diagram

for the MQW is shown schematically in Fig. 5-2. Note the band gap of InSb lies within

the band gap of AlInSb. The band gap mismatch between InSb and AlInSb is ∆Eg =

Eg(AlInSb) − Eg(InSb) = 0.446eV − 0.240eV = 0.206eV, using the band gap values

for InSb and AlInSb from experimental data from Dr. Santos group at the University of

Oklahoma. The conduction band offset, Qc, which is defined as the ratio of the depth

of the conduction-band square well to the band gap difference of the well(InSb) and the

barrier(AlInSb), is assumed to be 0.62 [34] and the valence band offset Qv is assumed

to be 0.38. Thus the conduction band barrier height is ∆Ec = Qc∆Eg = 0.128eV and the

valence band barrier height is ∆Ev = Qv∆Eg = 0.078eV. With these band offsets both

the electrons and the holes are confined in the InSb layers.

To take into account the quantum confined structures we treat the MQW sample as

infinite superlattices with wide barrier regions. Stay in the same Landau gauge given by
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equation (4–18), the envelope function of the EFA Hamiltonian can be written as

Fn,ν =
ei(kx x+kz z)

√
A




Un,1,kz ,ν(z)φn−1

Un,2,kz ,ν(z)φn−2

Un,3,kz ,ν(z)φn

Un,4,kz ,ν(z)φn

Un,5,kz ,ν(z)φn

Un,6,kz ,ν(z)φn+1

Un,7,kz ,ν(z)φn−1

Un,8,kz ,ν(z)φn−1




. (5–6)

In equation (5–6), n is the manifold quantum number associated with the Hamiltonian

matrix, ν labels the eigenvectors, A = LxLy is the cross sectional area of the sample in

the xy plane, φn(ξ) are harmonic oscillator eigenfunctions evaluated at ξ = y − λ2kx ,

and Un,m,kz ,ν(z) are eight complex envelope functions (m = 1 ... 8) for the ν-th eigenstate.

From Bloch’s theorem, the envelope functions, Un,m,kz ,ν(z) have the periodicity of the

superlattice and the wave vector kz , is defined within the minizone, −π/L ≤ kz ≤ π/L,

where L is the superlattice period. The envelope functions are normalized over the

superlattice unit cell, i.e.

∑

m

∫ L/2

−L/2

dz
L

U∗
n,m,kz ,ν(z)Un,m,kz ,ν(z) = 1. (5–7)

Note that the wave functions themselves will be given by the envelope functions in

equation (5–6) with each component multiplied by the corresponding kz = 0 Bloch basis

states given in equation (3–9).

We use a finite difference scheme to obtain the energies and wave functions in the

superlattice. We divide the superlattice unit cell into an evenly spaced grid of points,

zi , where i = 1 ... N. Substituting Fn,ν from equation (5–6) into the EFA equation with
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Hamiltonian given by equation (5–1), we obtain a matrix eigenvalue equation

HnFn,ν = En,ν(kz)Fn,µ, (5–8)

that can be solved for each allowed value of the manifold quantum number n and wave

vector kz to obtain eigenvalues and eigenvectors. Since the harmonic oscillator functions

φn′(ξ), are only defined for n′ ≥ 0, it is necessary to delete rows and columns of Hn for

which n′ < 0. It follows from equation (5–6) that Fn,ν is defined for n ≥ −1. The resulting

eigenvalues are the Landau levels, denoted En,ν (kz), where n labels the manifold

quantum number and ν labels the eigenenergies belonging to the same manifold in

ascending order. The corresponding eigenvectors, Fn,ν , are the cell periodic functions,

Un,m,kz ,ν(zi ), evaluated at the grid points, zi . In finite differencing the EFA Schrödinger

equation, we allow all the material parameters to vary with position. To ensure that Hn is

Hermitian, we make the operator replacements

B(z)
∂2

∂z2
→ ∂

∂z
B(z)

∂

∂z
(5–9a)

B(z)
∂

∂z
→ 1

2

[
B(z)

∂

∂z
+
∂

∂z
B(z)

]
(5–9b)

when differencing derivatives with respect to z. The cell periodic boundary conditions on

Un,m,kz ,ν(zi ) are satisfied by letting Un,m,kz ,ν(zN+i) = Un,m,kz ,ν(zi) in the difference formulas

for the derivatives.

5.3 Magneto-Optical Absorption

We can still use equation (4–70) to calculate the optical properties for our

InSb/AlInSb MQW structure. Since the envelope functions and vector potentials are

slowly varying over a unit cell, the dominant contributions to the optical matrix elements

are given by

Pn′,ν′
n,ν (kz) =

∑

m,m′

∫
dz
L

U∗
n,m,kz ,ν(z)Un′,m′ ,kz ,ν′(z)〈φN(n,m)|φN(n′,m′)〉〈m|P|m′〉 (5–10)
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where φN(n,m) are orthonormalized harmonic oscillator wave functions. Their quantum

numbers N(n, m) depend explicitly on n and m as defined in equation (5–6). In

equation (5–10) we have neglected a term that depends on the momentum matrix

element, 〈φN(n,m)|P|φN(n′,m′)〉 between the oscillator states. Owing to strong band mixing

in the narrow gap materials, this term is much smaller than the momentum matrix

elements between the Bloch basis functions, even for intraband optical absorption such

as for cyclotron resonance, hence we neglect it.

The momentum matrix elements 〈m|Px |m′〉, 〈m|Py |m′〉 and 〈m|Pz |m′〉 are

the momentum matrix elements between the Bloch basis functions |m〉 defined in

equation (3–9). For Px we have the explicit representation

Px =




Pa
x 0

0 Pb
x


 (5–11a)

Pa
x =

m0

~




0 iV
√

1
2 iV

√
1
6 V

√
1
3

−iV
√

1
2 0 0 0

−iV
√

1
6 0 0 0

V
√

1
3 0 0 0




(5–11b)

Pb
x =

m0

~




0 −V
√

1
2 −V

√
1
6 iV

√
1
3

−V
√

1
2 0 0 0

−V
√

1
6 0 0 0

−iV
√

1
3 0 0 0




. (5–11c)

Likewise, for Py we have

Py =




Pa
y 0

0 Pb
y


 (5–12a)
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Pa
y =

m0

~




0 −V
√

1
2 V

√
1
6 −iV

√
1
3

−V
√

1
2 0 0 0

V
√

1
6 0 0 0

iV
√

1
3 0 0 0




(5–12b)

Pb
y =

m0

~




0 iV
√

1
2 −iV

√
1
6 −V

√
1
3

−iV
√

1
2 0 0 0

iV
√

1
6 0 0 0

−V
√

1
3 0 0 0




. (5–12c)

and for Pz we have

Pz =




0 Pc
z

iPc
z 0


 (5–13a)

Pc
z =

m0

~




0 0 V
√

2
3 iV

√
1
3

0 0 0 0

−iV
√

2
3 0 0 0

−V
√

1
3 0 0 0




. (5–13b)

In performing the integral in equation (4–70) the Dirac delta function δ(x) in Fermi’s

golden rule is replaced by the Lorentzian line shape function ∆γ(x) with full width at half

maximum (FWHM) of γ.

5.4 Results and Discussion

In this section we discuss our results for our calculation of the electronic structure

and magneto optical properties of InSb/AlInSb MQW, and compare with experimental

studies.

In Fig. 5-3, we show the full evolution of the absorption spectra up to 8T in a

waterfall display. Fig. 5-3(a) shows the experimental data. The spectra are dominated

by the absorption peaks that, with increasing field, evolve from the zero-field H1-C1

transition (at 0.295 eV) and to a lesser degree by those from the H2-C2 transition (at
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0.385 eV). Although the L1-C1 transition is clearly seen at zero field at 0.350 eV, no

clearly associated evolving magnetic-level structure is obvious in the figure. Because

the conduction-band mass is much less than the heavy-hole mass, the change of the

transition energies with B is dominated by the Landau-level structure of the conduction

band where the Landau level spacing is much larger than the spacing in the valence

band. Thus to extract the details of the hole band-structure will require a detailed

comparison to theory.

Fig. 5-3(b) shows the theoretical calculation of the absorption spectrum of

the InSb/AlInSb MQW structure. The figure includes the effects of strain at the

pseudomorphic interface. In Fig. 5-3(c), we plot the theoretical calculation of the

absorption spectrum without including the effects of strain. As can be seen by

comparing Fig. 5-3(b) and Fig. 5-3(c) to Fig. 5-3(a), the inclusion of strain has a dramatic

effect on the magneto-absorption spectra. We see that strain is essential to calculate the

correct spectrum. This can be seen again in Fig. 5-4, where we plot the experimental

spectrum (a) at 6 T and compare it to the theoretical calculation with strain (b) and

without strain (c). Clearly the calculations with strain more accurately reproduce the

experimental data.

From Fig. 5-3 it is clear that the main absorption features due to the H1-C1 and

H2-C2 transitions are dominant in both theory and experiment. In addition, one can

see that the 1st and 2nd H1-C1 Landau level transitions have been spin-split but the

0th Landau level transition does not show spin-splitting. Another clear difference is

the anti-crossing-like structure at 0.35 eV near 6T in the experimental plot that is not

reproduced in the theory plot.

Next we want to examine our results in details in terms of the relation between

electronic structure and the magneto spectra. Fig. 5-5, shows the magnetic field

dependence of some of the conduction and valence bands for the square well.

Fig. 5-5(a) shows the lowest Landau levels for the first and second conduction subbands

94



and Fig. 5-5(b) shows the lowest Landau levels for the first three heavy hole subbands

and the first light hole subband. The bands in Fig. 5-5 are color coded to indicate the

Pidgeon-Brown manifold index (N = −1, 0, 1, ...) with N = −1 black; N = 0 red; N = 1

green; N = 2 blue; N = 3 magenta; and N = 4 yellow. The numbers labeling the bands

in Fig. 5-5 are the band numbers given in Fig. 5-6 and allow the components of the

Landau levels and dominant contributions to the wave functions at 6 T to be determined.

The bands are labeled in Fig. 5-6 according to the dominant wave function component,

i.e. band number 10 is 85.3% heavy hole up and labeled (1st heavy hole subband, 0th

Landau level, spin up ( mj = +3/2)). Solid lines in Fig. 5-5 indicate (primarily) spin-up

bands while dotted lines indicate (primarily) spin-down bands.

The band diagram in Fig. 5-5 aids us in identifying the major optical transitions.

We calculate the absorption spectra for both σ+ and σ− circularly polarized light as well

as for linearly polarized light. The optical dipole selection rules are as follows. In the

axial approximation the Pidgeon-Brown Manifold index changes by +1 for transitions

involving σ+ polarized light and -1 for transitions with σ− polarized light. Note that the

Pidgeon-Brown Manifold index takes on values −1, 0, 1, 2, ... and is not the same as the

Landau Level index (which takes on the value 0, 1, 2, ...). Each Pidgeon Brown manifold

has up to eight Bloch states and the Landau Level index depends on the Bloch state. i.e.

for the N = −1 Pidgeon-Brown manifold, only the Heavy Hole spin down Bloch state is

in that manifold and the Landau level index n is related to the Pidgeon Brown Manifold

number by n = N + 1. Within a given Pidgeon Brown manifold, mj (for the Bloch state)

plus n (the Landau level) is a constant.

The band diagram in Fig. 5-5 together with Fig. 5-6 and the selection rules aid us

in identifying transition peaks in the magneto-absorption spectra. Some of the dominant

transition peaks are shown in Fig. 5-7. For σ+ polarization, (Fig. 5-7(b)) the dominant

transitions are between the first heavy hole down and first conduction band down

subbands. We see transitions from the 0th, 1st, 2nd and 3rd Landau levels. We also see
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weaker transitions between the first light hole down and first conduction band spin up

subbands (0th, 1st and 2nd Landau levels). These transitions are much weaker since

their oscillator strength is down by a factor of 3 compared to the heavy hole transitions

and they are in close proximity to the heavy hole transitions.

For σ− polarization (Fig. 5-7(c)) , we also see the dominant transitions between the

first heavy hole up to the first conduction band up subbands (for the 0th, 1st , 2nd and

3rd Landau levels) together with the dominant transitions between the second heavy

hole up subband (0th Landau level) to the second conduction band up subband.

In addition, we also see weaker transitions from the first light hole up to the first

conduction band down subbands (0th, 1st and 2nd Landau levels), but now they are

further separated from the heavy hole transitions.

The σ+ and σ− polarization spectra in Fig. 5-7(b) and (c) can be added up to give

the linearly polarized spectrum in Fig. 5-7(a) which can be compared to experiment.

Looking at the spectrum (and also Fig. 5-3 and Fig. 5-4), we see that the 1st and

2nd Landau levels are spin split, but the 0th Landau level is not. This is somewhat

surprising since if we look at the splitting of the Landau levels in the conduction bands

in Fig. 5-5(a), we see that the 0th Landau level in the first subband has the largest

splitting. The reason for this can be seen by examining the valence band Landau levels

in Fig. 5-5(b). The 0th heavy hole Landau levels for the 1st hole subband (bands 9,

10) spin-split in exactly the same manner and direction as the 0th Landau levels for

the conduction band. While the 1st (bands 11, 12) and 2nd (bands 13, 14) heavy hole

Landau levels initially split in the same direction as the conduction bands, they cross at

fields of about 4.5 T for the 1st level and about 3 T for the 2nd level. This is precisely

where we see the 1st and 2nd Landau level spin-split in both the experimental and

theoretical data (see Fig. 5-3(a) and Fig. 5-3(b)). While the 0th heavy hole Landau levels

do not cross, their splitting is smaller than the conduction band 0th Landau level splitting.
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Our calculations predict that the splitting of the 0th Landau level should be observable

for magnetic fields greater than 10 T.

If we carefully examine the splitting of the 1st Landau level in the experimental

spectrum (Fig. 5-3(a)), it appears that three levels anticross near the point where the

splitting occurs (5 T and 0.34 eV). This is not reproduced in the theoretical calculations

(Fig. 5-3(b)). If we look at the calculated valence band levels in Fig. 5-5(b). The splitting

occurs when the two spin-split heavy hole subbands (band 11, 12) of the 1st Landau

level cross. When they cross, they also cross with the 0th Landau levels of the second

subband (bands 17, 18). In the theoretical calculations, we make the axial approximation

and assume that the valence bands are cylindrically symmetric about the direction of the

magnetic field (or more technically that the Luttinger parameters γ2, γ3 are equal) and as

a result, these levels do not mix. In the axial approximation, only levels which belong to

the same Pidgeon-Brown manifold can mix, but if we go beyond the axial approximation,

then levels in different Pidgeon-Brown manifolds can mix (and the calculations become

much more difficult). This shows that the experimental measurements are sensitive

enough to show deviations from the axial approximation.

In the calculated spectra shown in Fig. 5-7 (and also in the experimental spectrum)

we can also see minor transitions. Some of these are labeled in Fig. 5-7(b,c) and the

assignment of some of these minor transitions might seem strange. For instance, there

is a transition labeled H1
2 ↓→ C0

1 ↑ in Fig. 5-7(b) just to the right edge of the dominant

H0
1 ↓→ C0

1 ↓ transition that is also seen in the experimental data in Fig. 5-3(a). From

Fig. 5-6, we see that although band number 19 is 85.4% heavy hole down (and hence

labeled H1
2 ↓ ), it is the mixing in of the light hole down state that is responsible for the

observed minor transition.
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Figure 5-1. Sample structure and experimental setup

Figure 5-2. Band diagram for an InSb/AlInSb multiple quantum well
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Figure 5-3. Absorption spectra waterfall plot for (a) experiment and (b) theory for a
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N = 2 blue; N = 3 magenta; and N = 4 yellow. The numbers refer to the band
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Figure 5-6. Eigenfunctions of the lowest lying bands for the MQW for B=6T. The
numbers give the fraction of a given component in that band. (The spin-split
hole contributions were negligible.) Bands are color coded according to the
Pidgeon-Brown manifold index (N = −1, 0, 1, ...) with N = −1 black; N = 0
red; N = 1 green; N = 2 blue; N = 3 magenta; and N = 4 yellow. The band
number corresponds to the number shown in Fig. 5-5. The bands are
labeled according to the dominant component, i.e., band number 10 is
85.3% heavy hole up and labeled H0

1 ↑ (1st heavy hole subband, 0th Landau
level, spin up mj = +3/2).
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labeled by the dominant transitions. For σ+ light, within the axial
approximation, transitions occur only between states whose Pidgeon-Brown
manifold index change by +1. For σ− light, the Pidgeon-Brown manifold
index changes by -1 for a transition.
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CHAPTER 6
CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

In this section we summarize the whole dissertation and emphasize the key

steps in our development of the theoretical model, and the important results from our

calculations. We want to study the InSb material because it has the narrowest gap

of the III-V compound semiconductors. This leads to a very small conduction band

effective mass and a large effective g-factor which can lead to important applications in

digital nano-electronics and spintronics as well as possible uses in infra-red detectors.

The conduction bands of InSb are relatively simple to understand but the details of the

valence band structures are needed in order to make use of this material, for example,

in the application of p-channel field effect transistors (FET).

We have measured the experimental magneto-absorption in a InSb/InAlSb multiple

quantum well structures and compared them to detailed calculations. Our theoretical

model starts from the 8-band k · p method with spin-orbit interaction considered

explicitly. We use the quasi-degenerate perturbation theory (Löwdin’s partitioning) to

treat the effects of coupling with remote bands. The external magnetic field is built into

our model on the basis of Pidgeon-Brown model, and generalized to include the wave

vector dependence.

Because this is an 8-band model (not Luttinger’s 6-band model), which treat

the coupling of conduction bands and valence bands explicitly, it is suited for both

wide-gap and narrow-gap semiconductors. Before applying this model in the narrow-gap

InSb/AlInSb multiple quantum well structures, we use this model to calculate the

spin-dependent electronic structures of bulk GaAs system in the external magnetic

field. The optical properties then can be obtained from the electronic structures by

using Fermi’s Golden rule. We found that for bulk GaAs system, the conduction bands

are almost degenerate at the field of 7T, but the valence bands are spin-splitting. Our
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calculated optical absorptions predict the dominant transitions (coming from the heavy

hole), secondary transitions (coming from the light hole) and also very weak transitions

which are due to band mixing. We propose two experimental tools to probe the details

of the valence band structures: i) magneto-optical absorption, which is sensitive to

heavy-hole transitions; ii)optically pumped NMR (OPNMR) measurement, which is

sensitive to the light-hole transitions. By using magneto-absorption and OPNMR

together we can probe the valence band splitting easily.

Next we extend our theoretical model so that it can be applied to the InSb/AlInSb

multiple quantum well system. We treat the quantum confinement effects via a finite

difference method. Because the lattice constant of InSb is bigger that that of AlInSb,

there will be a compressive strain in the InSb layers. We incorporate the pseudomorphic

strain in our model and it turns our the this strain effect will deeply affect the electronic

structures. We found that within the axial approximation the infinite dimensional

eigenvalue problems decouples into different Pidgeon-Brown manifolds. The optical

properties can be still calculated by using Fermi’s golden rule.

Just like the case of bulk GaAs, our detailed calculation help us to identify the

dominant (bright) transitions, secondary transitions, and very weak (dark) transitions

due to band mixing, in the magneto-absorption spectrum. Because of InSb’s large

g-factor, spin splitting of the Landau levels can be seen in the spectrum at a relatively

low magnetic field. However, the 0th Landau level splitting is not seen for fields up to 8

T since 0th heavy hole Landau levels split in same direction as conduction band. We

predict that spin-splitting of the 0th level in the square well can be seen for fields above

10 T. We have also identified several minor (dark) transitions. These transitions occur

because of band-mixing which mixes in small components of the 8-Bloch functions

into levels dominated by a Bloch function which would not normally lead to an optical

transition. Furthermore, we have seen that the experimental data is detailed enough
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that it leads to mixing of states between Pidgeon-Brown manifolds which arises from

non-axial symmetric terms in the potential.

In summarize, we have very accurately model the spin-dependent electronic

structures of both bulk and quantum confined semiconductor systems. Our model

can be applied not only to wide-band material but also narrow-gap material which

has strong coupling between conduction bands and valence bands. We expect that

detailed understanding of the InSb valence band structures can help us to make device

applications such as optical detectors and CMOS, as well as application in spintronics.

6.2 Future Directions

Although our current theoretical model can be successfully applied to predict

semiconductor electronic structures, it can still be improved from several aspects. In this

section I propose some improvements on the model we can possibly make beyond its

current form.

6.2.1 Exciton Absorption

In our previous calculation of optical properties we have completely neglect the

Coulomb interaction between the excited electron in the conduction band and the hole

left behind at the valence band. This approximation may be good enough for those

transition with photon energy much bigger than the fundamental band gap, because in

this case the electron and the hole have sufficient kinetic energy. However when the

excitation energy is close to the band gap, we need to consider the attractions between

the electron and hole pair. This attraction can lead to a set of discrete hydrogen-like

levels which can be observed experimentally. For InSb, due to the small effective

mass, the exciton binding energy is 0.6 meV. For GaAs the exciton binding energy

is 4 meV. We expect that the exciton absorption effect is more important for GaAs

system, especially near the band gap. In fact we saw the discrepancy between the

calculated absorption and the observed absorption near the band gap. We expect that

by considering exciton effect in the future work this discrepancy can be removed.
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6.2.2 Beyond the Axial Approximation

In order to convert the infinite dimensional eigenvalue problem into a tractable form,

we take the Luttinger parameters γ2 = γ3 and neglect the term proportional to a†2 in the

definition of the M operator in equation (4–47), and this is called the axial approximation.

Different Pidgeon-Brown manifolds can only be separated (block-diagonalized) within

this approximation. Decoupled manifolds means that only states within the same

manifolds can mix with each other, i.e. the interaction between states in the same

manifold will make them anti-cross each other when the energy levels meet at a certain

magnetic field.

We successfully observed levels anti-crossings in both the magneto-optical

absorption measurement and cyclotron resonance measurements. Part of these

anti-crossings can be understand within current model, in terms of the mixing states

belonging to the same manifold, however we also found anti-crossings that cannot be

explained within current model, since those mixing states belong to different manifolds.

In order to have interactions between different manifolds we have to abandon the axial

approximation and deal with the much more complicated problem. One possible way

of doing it is still starting with the axial approximation and only afterward we treat the

coupling between manifolds as a perturbation. One can hope that numerical results

can be obtained in this way. Another possibility is starting from the general principles

of group theory[20, 36, 37] and separate the Hamiltonian into terms according to the

symmetry hierarchy, i.e., the full Hamiltonian can be separated into axial term, cubic

term and tetrahedral term. This way can help us physically understand when two levels

cross each other and when they anti-cross, but it is difficult to get any numerical results.

6.2.3 Carrier Dynamics

We have successfully calculated the electronic structures in the magnetic field

and the next step we can go is to model the carrier dynamics [38–40]. The generation

and relaxation of carriers, and the time dependent carrier distribution function can
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be modeled and compared with experiments so that information about scattering

mechanisms and coupling constants can be obtained.
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