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The dynamic pattern of viral load in a patient’s body critically depends on the host’s

genes. For this reason, the identification of those genes responsible for virus dynamics,

although difficult, is of fundamental importance to design an optimal drug therapy

based on patients’ genetic makeup. Here, we present a differential equation (DE)

model for characterizing specific genes or quantitative trait loci (QTLs) that affect viral

load trajectories within the framework of a dynamic system. The model is formulated

with the principle of functional mapping, originally derived to map dynamic QTLs,

and implemented with a Markov chain process. The DE-integrated model enhances

the mathematical robustness of functional mapping, its quantitative prediction about

the temporal pattern of genetic expression, and therefore its practical utilization and

effectiveness for gene discovery in clinical settings. The model was used to analyze

simulated data for viral dynamics, aimed to investigate its statistical properties and

validate its usefulness. With an increasing availability of genetic polymorphic data, the

model will have great implications for probing the molecular genetic mechanism of virus

dynamics and disease progression. This thesis consists of five chapters. In Chapter

1 we briefly summarize the importance of study the dynamic system from the genetic

viewpoint. In Chapter 2 we develop the general framework for virus dynamic models.

We focus on drug resistance with parameters having Bayesian structure in Chapter

3. Chapter 4 discusses the EM algorithm of mixture models used in Chapters 2 and
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3. Some useful results have been given with strict math proof, which guarantees the

correctness of the algorithm. The final chapter, Chapter 5, we talk about the ongoing

research and future work.
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CHAPTER 1
INTRODUCTION

1.1 Problems

Many traits of agricultural, biological and biomedical importance are difficult to

study because they are often under the control of many genes each with a small effect

in an interactive manner. This situation has now been changed with the emergence

of sequencing and genotyping technologies that allow the generation of DNA-based

marker data, crucial for the genetic mapping of complex traits, almost with no limit.

These technical advances appeal to the development of powerful statistical methods

that can analyze the mapping data effectively and efficiently. The past two decades

have witnessed a dramatic growth of statistical methodologies suited for various types of

mapping populations and markers (see [9, 41, 43, 49, 67, 78, 97, 125, 129, 131, 139]).

A new challenge that now faces methodological development is how to dissect a

phenotypic trait into its biological components and then reorganize these components

into a new phenotype beneficial to humans.

(a) From static to dynamic mapping: One of the most interesting topics in genetic

studies is to use and develop dynamic models to compare the differences of genetic

control at different stages of complex traits (see [42, 45, 46, 64, 71, 72, 82, 126]). Unlike

the traditional static models that analyze phenotypic traits at individual time points, the

central motivation of dynamic models lies in the study of the temporal pattern of genetic

variation for a quantitative trait in a time course [1] and the identification of specific

genes (i.e., quantitative trait loci or QTLs) that determine such a time-dependent change

of the trait [113]. These models have been instrumental for detecting and mapping

dynamic QTLs for individuals traits, such as stem growth and root growth in forest trees

[120, 133], plant height in rice [137], tiller number increase in rice [20], biomass growth

in soybeans [54], body mass growth in mice [117, 136], body height growth in humans

[52], and drug response [57].
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(b) Understanding phenotypes as a dynamical system: The formation of

any phenotypic trait undergoes complex interactions and coordination of its different

components expressed at various organizational levels from cell to tissue to organ

to organism. A full understanding of these interactive relationships among components

may help shed light on the components of the biological systems and predict physiological

and pathological states of the systems. This has been feasible by developing a system

of differential equations that describe the dynamic behavior and coordination of the

biological system based on natural laws. Below is shown the two typical examples for

system dissection and modeling:

Example 1 Biomass partitioning: Plant biomass growth is not simply the addition

of individual parts (leaves, stem, and roots; Figure 1-1); more importantly, it entails

the coordination of these parts through natural laws. These laws include maximizing

leaf surface area for photosynthesis and minimizing the transport distance for water,

nutrients, and carbon. The coordination of leaf, stem, and root biomass for a plant can

be described by a system of ordinary differential equations (ODEs):

dML
dt

= αLM
βL
T − λLML,

dMS
dt

= αSM
βS
T ,

dMR
dt

= αRM
R
T − λRMR .

(1–1)

where ML , MS , and MR are the biomasses of the leaves (L), the stems (S), and the

roots (R), respectively, with whole-plant biomass MT = ML +MS +MR , α and β are the

constant and exponent power of an organ biomass scaling as whole-plant biomass, and

λ is the rate of eliminating ageing leaves and roots [12].

The interactions between different parts of a plant can be modeled and studied by

estimating and testing the ODE parameters (αL, βL,λL,αS , βS ,αR , βR ,λR).
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Figure 1-1. Leaf, stem, and root parts of a plant. M: biomass, L: length, D:
cross-sectional area, ρ: porosity of roots and stem. Adapted from [132] by
Zens and Webb (2002).

Example 2 Cell-viral system: How does viral load change in a patient′s body after

an antiviral drug is administrated? This process constitutes a complex dynamical system

in which different types of viral cells, including uninfected cells (x), infected cells (y), and

free virus particles (v), interact with each other to determine the pattern of viral load in

response to drugs ([35] by Ho et al. 1995; [80, 81] by Perelson et al. 1997, 1996; [96] by

Sedaghat et al. 2008). A basic model for describing short-term virus dynamics (see [5]

by Bonhoeffer et al. 1997) is expressed as

dx

dt
= λ− dx − βxv

dy

dt
= βxv − ay

dv

dt
= ky − uv ,

(1–2)

where uninfected cells are yielded at a constant rate, λ, and die at the rate dx ; free

viruses infect uninfected cells to yield infected cells with rate βxv ; infected cells die with
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rate ay ; and new virus is yielded from infected cells with rate ky and dies with rate uv .

The dynamic pattern of this system can be determined and predicted by the change of

these parameters (λ, d , β, a, k , u).

1.2 Genetic Control of Phenotypes

Existing dynamical system models can map QTLs for genetic variation in the

trajectory of a dynamic trait among individuals. If different genotypes at a given QTL

correspond to different shapes of curves, this QTL is thought to play a role in governing

differentiation in trait trajectories. Thus, by estimating the curve parameters for each

QTL genotype and testing the differences in these parameters among genotypes, we

can determine whether a dynamic QTL exists and if so, how it triggers an effect on

the formation process of a trait. New models based on dynamical systems, such as

(1–1) and (1–2), will be able to map QTLs for trajectories of individual traits as well as

interactions among different components of the system. Below is a description of how

QTL mapping within a dynamical system can be used to address fundamental biological

questions:

(a) Size-shape relationship: Size does matter, but shape may matter even more

in nature. Shape is one of the most conspicuous aspects of an organism′s phenotype

and provides an intricate link between biological structure and function in changing

environments. Given the parameters (αL, βL,λL,αS , βS ,αR , βR ,λR) for system (1–1),

one can see how much biomass has been allocated to the leaves, stem, and roots. It

is possible that some plants have a dominant main stem, with less leaves, while some

plants allocate more carbon to the roots (below ground) than the leaves and stem

(above-ground). Thus, by integrating the ODE (1–1) into a QTL mapping framework,

specific effects of a QTL on a plant′s size and form or shape can be estimated.

Furthermore, how the QTL governs the dynamic relationship between size and shape

can be quantified.
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(b) Structural-functional relationship: There has been a long-standing interest in

understanding the relationships between structure and function. The change of structure

for a system will quickly lead to the alteration of function. For a plant in drought soil,

more energy should be allocated into the root system in order to increase its survival

rate and fitness. If the ODE (1–1) is implemented with an additive fitness variable,

this will constitute a dynamical system for structural-functional relationships. Genetic

mapping of QTLs for such relationships will shed light on the genetic mechanisms

involved in balancing vegetative and reproductive growth.

(c) Cause-effect relationship: A web of directed events forms a complex cause-effect

relationship. The use of an antiviral drug can increase the amount of uninfected cells by

reducing the load of free virus particles in a patient, which reduces the likelihood of the

patient to progress into AIDS. Such cause-effect relationships between different types

of cells can be quantified by differential equations (1–2). Integrated with QTL mapping

models, one can determine how specific QTLs control the dynamic changes of different

types of cells in the course of time.

(e) Sink-source relationship: In plants, the function of carbohydrate source to sink

relationships determines their productivity. Carbohydrates are transported from supply

areas (sources) to areas of growth or storage (sinks). Carbohydrates are produced

through photosynthesis in the leaves and channeled through the phloem to the roots,

which act as the main carbohydrate sinks during growth. The rate of carbohydrate

transport is primarily ruled by the sink strength of plant organs. A dynamic system of

sink-sources relationships is composed of potential growth rate, carbon losses through

growth and maintenance respiration processes, and carbon demand related to active

reserve storage. The identification of specific QTLs that affect these components and

therefore sink-sources relationships can be made possible by constructing a system of

ODEs and integrating it with the principle of QTL mapping.
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1.3 Dissertation Goals

The motivation of this dissertation comes from a pressing need for mathematical

and statistical tools that map the genetic architecture of complex phenotypes important

to agriculture, biology, and biomedicine. The specific goals of this dissertation include

(1) Incorporate sophisticated differential equations into statistical models for QTL

mapping, allowing the understanding of biological problems of high complexity;

(2) Implement rigorous biological principles into the statistical infrastructure,

enabling biologically meaningful interpretations of the models and application for real

data analysis.

(3) Develop computational algorithms to handle various complexities of genetic and

phenotypic data. The EM algorithm coupled with various numerical methods for solving

differential equations will be used in estimation and testing, broadening the applications

of general statistical theory.
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CHAPTER 2
A DIFFERENTIAL EQUATION MODEL FOR FUNCTIONAL MAPPING OF A

VIRUS-CELL DYNAMIC SYSTEMS

2.1 Introduction

Several serious human diseases, such as AIDS, hepatitis B, influenza, and rabies,

are caused by viruses. To control these diseases, antiviral drugs have been developed

to prevent infection of new viral cells or stop already-infected cells from producing

infectious virus particles by inhibiting specific viral enzymes. This process constitutes

a complex dynamic system, in which different types of viral cells, including uninfected

cells, infected cells, and free virus particles, interact with each other to determine the

pattern of viral change in response to drugs [1–5]. A major challenge that faces drug

development and delivery for controlling viral diseases is to develop a quantitative model

for analyzing and predicting the dynamics of decline in virus load during drug therapy

and further providing estimates of the rate of emergence of resistant virus.

The development of such a model can now be made possible with recent advances

in two seemingly unrelated areas. First, the combination between novel instruments and

an increasing understanding of molecular genetics has led to the birth of high-throughput

genotyping assays for single nucleotide polymorphisms (SNPs). Through the construction

of a haplotype map (HapMap) with SNP data [6], we are able to characterize concrete

nucleotides or their combinations that encode a complex phenotype, and ultimately

document, map a nd understand the structure and patterns of the human genome

linked to drug response. Second, the past two decades have witnessed a tremendous

growth of interest in deriving sophisticated mathematical models for characterizing

virus dynamics from molecular and cellular mechanisms of interactions between virus

and drug [1–5,7–9]. These models mostly built with differential equations have been

instrumental for studying the function of virus and the origins and properties of virus

dynamics.
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These two advances can be integrated to identify specific genes or quantitative trait

loci (QTLs) that regulate a dynamic system of viral infection through a new statistical

model called functional mapping [10–15]. The basic idea of functional mapping is to map

dynamic QTL for the pattern of developmental changes in time course. The purpose of

this article is to propose a statistical strategy for implementing a system of differential

equations into the functional mapping framework, ultimately to map QTLs from the

host genome that determine the dynamic pattern of virus load in patients’ bodies. The

new strategy is founded on a set of random samples drawn from a natural population

at Hardy-Weinberg equilibrium. We integrate the Markov chain properties of dynamic

data into the model to facilitate the estimation of parameters that define virus dynamics.

Simulation studies were performed to investigate statistical properties of the model and

validate its usefulness and utilization.

2.2 Dynamic Models of Virus Load

2.2.1 Differential Equations

A basic model for describing short-term virus dynamics was provided by many

researchers [7–9]. This model includes three variables: uninfected cells, x , infected

cells, y , and free virus particles, v . These three types of cells interact with each other to

determine the dynamic changes of virus in a host’s body, which can be described by a

system of ordinary differential equations (ODE):

dx

dt
= λ− dx − βxv

dy

dt
= βxv − ay

dv

dt
= ky − uv ,

(2–1)

where uninfected cells are yielded at a constant rate, λ, and die at the rate dx ; free

virus infects uninfected cells to yield infected cells at rate βxv ; infected cells die at rate

ay ; and new virus is yielded from infected cells at rate ky and dies at rate uv [8]. The

system (2–1) is defined by six parameters {λ, d , β, a, k , u} and the initial conditions for
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x , y , and v . The dynamic pattern of this system can be determined and predicted by the

change of these parameters and the initial conditions of x , y , and v . There are some

practical problems in the real application. First, we can only observe the data for x , y ,

and v at discrete time points, and it is difficult to get the continuous dx
dt

, dy
dt

, and dv
dt

terms.

Second, any biological development is related to genes, but the model does not involve

any genetic components. Third, the dynamic change of the virus is accompanied by

noise which cannot be neglected in the dynamic modeling. Fourth, this random noise

or development noise will be carried from one stage to the next. It should be noted that

the model (2–1) used to explain our idea in this article is a basic sculpture of real virus

infection as it ignores the dynamics of immune responses and virus mutations.

Let 0 = t0 < t1 < ... < tN = T denote a mesh on the time interval [0,T ] and define

∆tk = tk+1 − tk . The Euler approximation to the continuous differential equations (2–1) is

x(tk+1)− x(tk)
∆tk

= λ− dx(tk)− βx(tk)v(tk)

y(tk+1)− y(tk)
∆tk

= βx(tk)v(tk)− ay(tk)
v(tk+1)− v(tk)

∆tk
= ky(tk)− uv(tk),

(2–2)

or equivalently,

x(tk+1) = x(tk) + λ∆tk − dx(tk)∆tk − βx(tk)v(tk)∆tk

y(tk+1) = y(tk) + βx(tk)v(tk)∆tk − ay(tk)∆tk

v(tk+1) = v(tk) + ky(tk)∆tk − uv(tk)∆tk .

(2–3)

2.2.2 Markov Properties

Suppose there is a random sample with n patients from a population carrying a

certain virus. Each patient is measured for uninfected cells, x , infected cells, y , and

free virus particles, v , at a series of time points, (t0, t1, ... , tN). Thus, three sets of

serial measurements are expressed as xi = [xi(t0), ... , xi(tN)], yi = [yi(t0), ... , yi(tN)],
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and vi = [vi(t0), ... , vi(tN)], where the subscript i corresponds to the patient and tj ,

0 ≤ j ≤ N, are the measurement times.

A Markov transitional model is used to describe the random process of the system

by

xi(tk+1) = xi(tk) + λ∆tk − dxi(tk)∆tk − βxi(tk)vi(tk)∆tk + εxi (tk)

yi(tk+1) = yi(tk) + βxi(tk)vi(tk)∆tk − ayi(tk)∆tk + εyi (tk)

vi(tk+1) = vi(tk) + kyi(tk)∆tk − uvi(tk)∆tk + εvi (tk),

(2–4)

where εxi (tk) ∼ N(0,σ2x ), εyi (tk) ∼ N(0,σ2y ), and εvi (tk) ∼ N(0,σ2v ) are the innovation

errors for three variables, x, y, and v, respectively, each of which is assumed to be iid

and time-independent. To simplify our line of analysis, we assume that these three

variables are independent of each other, although this assumption can be relaxed.

For simplicity, we use xik , yik , and vik to stand for xi(tk), yi(tk), and vi(tk), respectively.

For a conditional density function, f (.|.), we derive the Markov properties of the dynamic

system (2–1) as follows:

Theorem 1.1: All the future values of uninfected cells, infected cells, and free virus

particles depend statistically only on their present values. That is,

f (xik+1, yik+1, vik+1|(xi1, yi1, vi1), ... , (xik , yik , vik)) = f (xik+1, yik+1, vik+1|(xik , yik , vik)),

f (xik+1|(xi1, yi1, vi1), ... , (xik , yik , vik)) = f (xik+1|(xik , yik , vik)),

f (yik+1|(xi1, yi1, vi1), ... , (xik , yik , vik)) = f (yik+1|(xik , yik , vik)),

f (vik+1|(xi1, yi1, vi1), ... , (xik , yik , vik)) = f (vik+1|(xik , yik , vik)).

The proof follows directly from (2–4) and the definitions of εxi (tk), εyi (tk), and εzi (tk).

From this theorem, we have the following results.

Corollary 1.2.1: Conditional on (xik , yik , vik), (xik−1, yik−1, vik−1) and (xik+1, yik+1, vik+1)

are statistically independent.
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Corollary 1.2.2: Conditional on (xik , yik , vik), xik−1 and xik+1 are statistically indepen-

dent.

Corollary 1.2.3: Conditional on (xik , yik , vik), yik−1 and yik+1 are statistically indepen-

dent.

Corollary 1.2.4: Conditional on (xik , yik , vik), vik−1 and vik+1 are statistically indepen-

dent.

Since

((xik+1, yik+1, vik+1)|(xik , yik , vik), (xik−1, yik−1, vik−1)) = f ((xik+1, yik+1, vik+1)|(xik , yik , vik)),

conditional on (xik , yik , vik), (xik−1, yik−1, vik−1) and (xik+1, yik+1, vik+1) are statistically

independent [16]. Hence, Corollary 1.2.1 holds. The proofs of Corollaries 1.2.2, 1.2.3,

and 1.2.4 can be made in a similar way.

Now, we get the following theorems:

Corollary 1.2.5: Conditional on (xik , yik , vik), (xij , yij , vij) for j = 0, 1, ... , k − 1 and

(xik+1, yik+1, vik+1) are statistically independent.

Corollary 1.2.6: Conditional on (xik , yik , vik), {xi1, ... , xik−1}, and xik+1 are statistically

independent.

Corollary 1.2.7: Conditional on (xik , yik , vik), {yi1, ... , yik−1}, and yik+1 are statistically

independent.

Corollary 1.2.8: Conditional on (xik , yik , vik), {vi1, ... , vik−1}, and vik+1 are statistically

independent.

All these corollaries will be used to derive computing algorithms for solving a system

of differential equations (2–4) embedded in functional mapping.

2.3 Functional Mapping

2.3.1 Genetic Design

Genetic mapping of QTLs can be based on linkage analysis for a pedigree [17]

or linkage disequilibrium analysis for a natural population [11]. In this article, we
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assume that the population used to map human QTLs for viral load trajectories is

composed of n patients randomly sampled from a natural population at Hardy-Weinberg

equilibrium (HWE). A panel of SNP markers are genotyped for all patients, aimed at the

identification of QTLs affecting virus dynamics. Suppose there is a functional QTL of

alleles A and a for virus dynamics. Let q and 1−q denote the allele frequencies of A and

a. The QTL forms three possible genotypes, AA, Aa, and aa. We assume that this QTL

is associated with a SNP marker of alleles M (in a frequency of p) and m (in a frequency

of 1−p). The detection of significant linkage disequilibrium between the marker and QTL

implies that the QTL may be linked with and,therefore, can be genetically manipulated

by the marker.

The four haplotypes for the marker and QTL are MA, Ma, mA and ma, with

respective frequencies expressed as p11 = pq+D, p10 = p(1−q)−D, p01 = (1−p)q−D,

and p00 = (1− p)(1− q) + D, where D is the linkage disequilibrium between the marker

and QTL. Thus, the population genetic parameters (p, q, and D) can be estimated by

solving a group of regular equations if we can estimate the four haplotype frequencies

Φ = (p11, p10, p01, p00). Joint marker-QTL diplotype frequencies can be expressed as

a product of the corresponding haplotype frequencies under the HWE assumption,

from which joint marker-QTL genotype frequencies are derived. Because the marker

is observed, an unknown genotype of the QTL can be inferred from the conditional

probability of the QTL genotype given a marker genotype.

Each sampled patient is measured for three different traits, uninfected cells, x ,

infected cells, y , and free virus particles, v , at a series of time points, (ti1, ... , tiTi ).

2.3.2 Likelihood

For a given QTL genotype j (j = 2 for AA, 1 for Aa, or 0 for aa), the parameters

describing virus dynamics are denoted by Θj = {λj , dj , βj , aj , kj , uj}. The comparisons

of these parameters between the three different QTL genotypes can determine whether

and how this QTL affects the pattern of virus dynamics.
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The likelihood of longitudinal viral data (xi , yi , vi) = {xi(tk), yi(tk), vi(tk)}Nk=0 and

marker information Mi for patient i is formulated by the mixture transitional Markov

model, expressed as

L(x, y, v;M) =

n∏

i=1

[
2∑

j=0

ωj |i fj(xi , yi , vi ;Θj ,Ψ)

]
, (2–5)

where ωj |i is a mixture proportion, that is, the conditional probability of QTL genotype

j given the marker genotype of subject i , which can be expressed as a function of

haplotype frequencies (Table 1), and fj(xi , yi , vi ;Θj ,Ψ) is a multivariate normal

distribution with QTL genotype-specific mean vector specified by ODE parameters

(Θj ) and covariance matrix specified by parametric, nonparametric, or semiparametric

models (Ψ) [10,15].

Based on the Corollaries given above, the multivariate distribution can be specified

by the following transition model

fj(xi , yi , vi ;Θj ,Ψ) = fj(xi1, yi1, vi1|Θj ,Ψ)
N−1∏

k=0

fj(xik+1, yik+1, vik+1|xik , yik , vik ;Θj ,Ψ) (2–6)

where

fj(xik+1, yik+1, vik+1|xik , yik , vik ;Θj ,Ψ)

= fj(xik+1|xik , yik , vik ;Θj ,Ψ)fj(yik+1|xik , yik , vik ;Θj ,Ψ)fj(vik+1|xik , yik , vik ;Θj ,Ψ),

fj(xik+1|xik , yik , vik ;Θj ,σ2x ) =
1√
2πσ2x

exp

[
− 1

2σ2x
(xik+1 − gj(xik+1))2

]
,

fj(yik+1|xik , yik , vik ;Θj ,σ2y ) =
1√
2πσ2y

exp

[
− 1

2σ2y
(yik+1 − hj(yik+1))2

]
,

fj(vik+1|xik , yik , vik ;Θj ,σ2v ) =
1√
2πσ2v

exp

[
− 1

2σ2v
(vik+1 − lj(vik+1))2

]
,
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with Ψ = (σ2x ,σ2y ,σ2v ), and

gj(xik+1) = xik + λj∆tk − djxik∆tk − βjxikvik∆tk

hj(yik+1) = yik + βjxikvik∆tk − ajyik∆tk

lj(vik+1) = vik + kjyik∆tk − ujvik∆tk .

(2–7)

2.3.3 Estimation and Algorithm

The EM algorithm [18,19] is implemented to get the maximum likelihood estimates

(MLE) of all unknown parameters. The gradient of the log-likelihood function

logL(x, y, v;M) =

n∑

i=1

log

[
2∑

j=0

ωj |i fj(xi , yi , vi ;Θj ,Ψ)

]
, (2–8)

is given by

5Θj logL(x, y, v;M) =
n∑

i=1

2∑

j=0

ωj |i fj(xi , yi , vi ;Θj ,Ψ)∑2
j ′=0 ωj ′|i fj ′(xi , yi , vi ;Θj ,Ψ)

5Θj log fj(xi , yi , vi ;Θj ,Ψ),

5Ψ logL(x, y, v;M) =
n∑

i=1

2∑

j=0

ωj |i fj(xi , yi , vi ;Θj ,Ψ)∑2
j ′=0 ωj ′|i fj ′(xi , yi , vi ;Θj ,Ψ)

5Ψ log fj(xi , yi , vi ;Θj ,Ψ),

and

5ωj|i logL(x, y, v;M) =

n∑

i=1

2∑

j=0

ωj |i fj(xi , yi , vi ;Θj ,Ψ)∑2
j ′=0 ωj ′|i fj ′(xi , yi , vi ;Θj ,Ψ)

5ωj|i log(ωj |i).

A iterative loop for the EM algorithm is formulated as follows. In the E step, the

posterior probability with which a patient i carries a specific QTL genotype j based on

the marker and phenotypic data is calculated by

Ωj |i =
ωj |i fj(xi , yi , vi ;Θj ,Ψ)∑2
j ′=0 ωj ′|i fj ′(xi , yi , vi ;Θj ,Ψ)

. (2–9)
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In the M step, the parameters are estimated by solving the following log-likelihood

equations:

5Θj logL(x, y, v;M) = 0, (2–10)

5Ψ logL(x, y, v;M) = 0, (2–11)

5ωj|i logL(x, y, v;M) = 0. (2–12)

Wang and Wu [11] proposed a closed algorithmic form to obtain the MLEs of haplotype

frequencies p11, p10, p01 and p00 and, therefore, allele frequencies of the marker (p)

and QTL (q) and their linkage disequilibrium (D) without proof. These will be proved in

Chapter 4. Genotype-specific mathematical parameters for viral dynamics and variances

for the three types of viruses are calculated by implementing the Newton algorithm with

the Armijo search [3].

2.4 Hypothesis Testing

2.4.1 The Significance of QTL

Whether there is a specific QTL responsible for viral dynamics described by a

system of differential equations (2–1) can be tested by using the following hypotheses:

H0 : Θj ≡ Θ, (j = 2, 1, 0)

H1 : At least one of the equalities above does not hold,

(2–13)

The likelihoods under the null (L0) and alternative hypotheses (L1) are calculated, from

which a log-likelihood ratio test statistic is computed by

LR = −2[(logL0(Θ̃, Ψ̃|x, y, z)− logL1(Φ̂, Θ̂j , Ψ̂|x, y, z,M)],

where the tildes and hats present the maximum likelihood estimates under the null and

alternative hypotheses, respectively. Because of violation of the regularity assumption,

the LR may not asymptotically follow a χ2-distribution with the degrees of freedom equal

to the difference of parameter numbers between the two hypotheses (2–13). For this
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reason, the threshold for claiming the existence of a significant QTL is determined from

empirical permutation tests [21] because this approach does not rely on the distribution

of LR values.

After a significant QTL is claimed, its significant association with the marker

considered can be tested by the following hypotheses:

H0 : D = 0 vs. H1 : D 6= 0, (2–14)

whose log-likelihood ratio test statistic asymptotically follow the χ2-distribution with one

degree of freedom.

2.4.2 Genetic Mechanisms

The model allows the test of whether the QTL triggers a pleiotropic effect on three

different types of cells. To do so, three null hypotheses for uninfected cells, infected cells,

and free virus particles are formulated as follows:

H0 : (λj , dj , βj) ≡ (λ, d , β), (2–15)

H0 : (βj , aj) ≡ (β, a), (2–16)

H0 : (kj , uj) ≡ (k , u), (2–17)

for j = 2, 1, 0. If all the null hypotheses are rejected, then this means that the QTL

pleiotropically affect these three different aspects of viral dynamics. The pleiotropic

effect of the QTL on any pair of three types of cells can also be tested accordingly. An

empirical approach for determining the critical threshold is based on simulation studies.

2.4.3 Physiological Control of QTL

Several physiological important parameters define the dynamic system (2–1),

including

(1) The average life-times, 1/d , 1/a, and 1/u, of uninfected cells, infected cells, and
free virus, respectively,
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(2) The average number of virus particles or the burst size, k/a, yielded over the
lifetime of a single infected cell,

(3) Basic reproductive ratio, R0 = βλk/(adu), i.e., the average number of newly
infected cells that arise from any one infected cell when almost all cells are
uninfected.

How a QTL affects these physiological aspects of viral dynamics separately or jointly can

be tested.

2.5 Application to Simulated Data

Monte Carlo simulation was performed to examine the statistical properties of the

model for genetic mapping of viral dynamics. Also, the use of the model to analyze

simulated data will validate its practical usefulness and utilization. We randomly choose

100 subjects from an HWE population. Consider one of the markers genotyped for all

subjects. This marker of two alleles M and m is used to infer a QTL of two alleles A

and a for viral dynamics based on the non-random association between the marker and

QTL. The allele frequencies are assumed as p = 0.6 for allele M 0.4 for allele m as

well as q = 0.6 for allele A and 0.4 for allele a. A positive value of linkage disequilibrium

(D = 0.08) between alleles M and A is assumed, suggesting that these two more

common alleles are in coupling phase.

The three QTL genotypes, AA, Aa, and aa, are each hypothesized to have different

response systems for uninfected cells, x , infected cells, y , and free virus particles,

v , constructed by equations (1). Six curve parameters {λj , dj , βj , aj , kj , uj} that define

QTL genotype-specific systems were chosen from their spaces of biological relevance

[8]. The phenotypic values of these three variables are expressed as the sum of the

genotype-specific means and innovation errors assumed to follow a multivariate normal

distribution. The phenotypic data were simulated for a practically reasonable number

of equally spaced time points (say 22) under two different levels of heritability, low

(0.1) and high (0.4). The genetic variance due to the QTL for virus response at a

middle measurement point was used to define the heritability. The residual variances
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for each of the three virus traits were then calculated under different heritabilities. To

assure the homoscedasticity of variances, the transforms-both-sides (TBS) model was

used to simulate innovation errors. The TBS model can preserve biological means of

parameters in original differential equations and also avoid negative phenotypic values

[12].

The differential equation-incorporated functional mapping model was used to

analyze the simulated data, with the results suggesting that the QTL responsible for

the dynamic system of viral infection can be detected using a molecular marker in

association with the QTL. As expected, population genetic parameters about QTL

segregation in a population can well be estimated with a closed form of the EM

algorithm derived in [11]. The curve parameters for virus responses of each QTL

genotype can be estimated accurately and precisely with a modest sample size

(100) even for a low heritability of viral loads (Tables 1.2 and 1.3). The precision of

all parameters can increase with increasing heritability level. By drawing the curves

of viral trajectories with six parameters, the dynamic behavior of the system can be

visualized. Figure 1 illustrates QTL genotype-specific curves of uninfected cells, infected

cells, and free virus particles in a dynamic system from a random run of simulation. It is

found that the shapes of the estimated curves are broadly consistent with the those of

the true curves, suggesting that the system can be reasonably estimated with the new

model.

Simulation studies showed that the new model displays reasonably high power, 0.75

for a modest heritability (0.1) and 0.99 for a high heritability (0.4), to detect a significant

QTL responsible for a dynamic system of viral infection. Hypothesis tests described in

Sections 1.4.2 and 1.4.3 provide a general platform for addressing the genetic control

machinery of viral dynamics. For a given set of simulation data, it appears that these

tests can be reasonably made. For example, the power for detecting a pleiotropic QTL

for three types of viral cell dynamics is adequately high (≥ 0.7) for a modest sample size
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and heritability level. On the other hand, under this circumstance, type I error rates for

detecting a significant QTL despite its absence is reasonably low (≤ 0.1). These results

suggest that our model will be practically useful in statistical analysis of the genetic

control of viral dynamics.

2.6 Discussion

A combination of functional mapping [10–15] and mathematical models [7-9]

provides new insights into the genetic control of virus population dynamics. In this

article, we have proposed a statistical model for mapping quantitative trait loci (QTLs)

that affect the dynamic pattern of viral infection. One of the meritorious advantages

of the new model, as compared to existing functional mapping models, lies in the

organization of multiple correlated aspects of viral infection into a dynamic system

through a group of ordinary differential equations and the implementation of such a viral

dynamic system into the framework of functional mapping. To our best knowledge, the

work presented here is a first model of genetic mapping which treats multiple complex

traits as a complex system.

The current model is not a simple extension of functional mapping for multiple

traits [22]. The previous multi-trait models do not take into account the relationships

of genotypic values of different traits, although they model across-trait correlations

in residual errors. The new model views multiple traits as a whole in which different

traits coordinate each other to determine the dynamic behavior of the system. Thus,

by altering one variable or trait, other variables will change, leading to the change of

the entire system. The genetic mapping of genes for a dynamic system will provide a

powerful means for understanding the genetic architecture of a biological process.

The mathematical strength of the new model is the deployment of a system of

differential equations in a genetic mapping context. The solution of multiple differential

equations, especially high-dimensional ones, is computationally challenging. In this

article, we apply a Newton algorithm with the EM setting to provide numerical estimates
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of the parameters that define the dynamic system. With the corollaries derived from

several assumptions of independence, the algorithm is shown from simulation studies

to be computationally efficient and provides precise estimates of the parameters, even

when the sample size used is modest (Tables 2-2 and 2-3).

As a demonstration of the new model, we assume that a dynamic system is

controlled by a single QTL, although this assumption is too simple in real world. The

genome-wide modeling of multiple QTLs throughout the genome can be incorporated

into the current model setting, allowing the characterization of epistatic interactions

among different QTLs [23,24]. A multi-locus linkage disequilibrium model has been

available to specify high-order non-random associations among multiple loci in a

natural population [25]. Although more parameters are involved in a multi-locus model,

the closed forms derived for the EM algorithm [25] facilitates the estimation of many

parameters at the same time. Also, a multi-locus model allows the test of the role of

genetic interference in recombination events between adjacent intervals. Although

linkage disequilibrium mapping has proven to be powerful for the high-resolution of

QTLs, it often gives spurious results due to population structure and other evolutionary

forces. A new genetic design that samples a set of random families, each composed

of parents and their offspring, can overcome this limitation of linkage disequilibrium

mapping [25,26]. This design allows the simultaneous estimation of the linkage and

linkage disequilibrium between different genes, thus making it possible to construct a

genome-wide linkage disequilibrium map for gene discovery.

Our model focuses on the identification of genes for a dynamic system of viral

changes in a host’s body before the administration of an anti-viral drug. When the

patients are treated with a drug, the equilibrium state of the system will be violated,

from which a new equilibrium will be generated. Bonhoeffer et al. [8] described a series

of differential equations that specify the dynamic change of the system after drug

treatment. The current model can be readily extended to model the genetic control of

32



Table 2-1. Joint genotype frequencies at the marker and QTL in terms of gametic
haplotype frequencies, from which the conditional probabilities of QTL
genotypes given marker genotypes can be calculated according to Bayes’
theorem.

AA Aa aa

Genotype Diplotype A|A A|a + a|A a|a Observations

MM M|M p211 2p11p10 p210 N1

Mm M|m 2p11p01 2p11p00 + 2p10p01 2p10p00 N2

mm m|m p201 2p01p00 p200 N3

viral declines in a response to the anti-viral drug and half-lives of infected cells in the

body. Perhaps, the most promising aspect of the new model is that it, when incorporated

with the dynamics of virus’ drug resistance, can provide scientific guidance for drug

delivery and development by characterizing genes for drug resistance. The emergence

of drug-resistant virus presents a main problem with antiviral therapy. A system of

differential equations that captures the essential dynamics of resistance is given in

the literature [27,28]. With the idea presented in this Chapter, they can be readily

incorporated into the functional mapping model, in a hope to achieve the maximum

prevention of virus resistance to drugs by determining an optimal administration dose

and time for individual patients based on their genetic makeups.
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Figure 2-1. Estimated and true curves for a system of viral infection including uninfected
cells, x , infected cells, y , and free virus particles, v for three genotypes at a
simulated QTL, AA, Aa, and aa, under different heritability levels, 0.1 (right
panel) and 0.4 (left panel). The broad consistency between the estimated
and true curves suggests that the model can provide a reasonably good
estimate of the dynamic system.
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CHAPTER 3
BAYESIAN INFERENCE FOR GENETIC MAPPINGS OF DRUG RESISTANCE

3.1 Introduction

Antiretroviral drugs designed to treat infection by retroviruses, primarily HIV, act by

inhibiting specific steps in the viral replication cycle [4, 6, 88]. Reverse-transcriptase

inhibitors prevent the reverse transcription of viral genomic RNA into proviral DNA and

thereby prevent the infection of new cells. Protease inhibitors influence the cleavage of

viral polyproteins, resulting in the production of noninfectious virus particles. Both types

of drugs are effective in reducing the viral load of infected individuals. Before treatment

is initiated, the virus load in the individual’s body is in a quasi steady state, i.e., the

virus load is constant over a short period of time [4]. When a drug is administered, the

virus load declines dramatically over several orders of magnitude after experiencing a

transient shoulder phase. However, if monotherapy is used, resistant virus will rebound

rapidly, in some cases within only a few weeks after the start of therapy.

While mathematical models have been widely used to study the decline of free

virus in treated patients [35, 77, 80, 81], a growing body of interest has emerged in

modeling the dynamics of viral drug resistance using a system of differential equations

[4–7, 88, 90, 91]. Mathematical models may be instrumental in shedding some light

on the prediction of the emergence of drug-resistant virus and ultimately the design of

long-term therapy. Given a great deal of variation in the rate and pattern of rebound of

resistant virus among different hosts [98], there is a pressing demand on the integration

of genetic information into mathematical models for the precise prediction of the

dynamics of decline in virus load during drug therapy and the rate of emergence of

resistant virus. The increasing availability of single nucleotide polymorphism (SNP)

data has made it possible to characterize concrete nucleotides or their combinations

that encode a complex phenotype and, ultimately, document, map and understand
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the structure and patterns of the human genome linked to the trait (The International

HapMap Consortium 2003[34]).

The purpose of this chapter is to use Bayesian to derive a statistical model for

identifying QTLs responsible for viral drug resistance. The new model is founded on a

set of random samples drawn from a natural population at Hardy-Weinberg equilibrium.

The Bayesian Markov chain properties of dynamic data will be incorporated into the

model to facilitate the estimation of parameters that define virus dynamics. We perform

simulation studies to investigate statistical properties of the model and validate its

usefulness and utilization. For standard Bayesian statistics theory, please see [89]. For

data analysis and modeling, our reference is [30].

3.2 Dynamic Models of Drug Resistance

3.2.1 Differential Equations

The basic model for describing virus dynamics is 2–1. The emergence of drug

resistant virus in the therapy can be described by incorporating the difference of

wild-type and mutant viruses into the equations, which is expressed as

dx

dt
= λ− dx − β1xv1 − β2xv2

dy1
dt

= β1(1− µ)xv1 + β2µxv2 − ay1
dy2
dt

= β1µxv1 + β2(1− µ)xv2 − ay2
dv1
dt

= k1y1 − uv1
dv2
dt

= k2y2 − uv2,

(3–1)

where there are five variables: uninfected cells, x , cells infected by wild-type virus, y1,

cells infected by mutant virus, y2, free wild-type virus, v1, and free mutant virus, v2.

These five types of cells interact with each other to determine the dynamic changes of

drug resistant virus in a host’s body.
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The system (3–1) is defined by nine parameters {λ, d , β1, β2,µ, a, k1, k2, u} and

the initial conditions for x , y1, y2, v1, and v2. The dynamic pattern of this system can be

determined and predicted by the change of these parameters and the initial conditions

of x , y1, y2, v1, and v2. Again the application force us to introduce the Markov model by

using Euler scheme

x(tk+1)− x(tk)
∆tk

= λ− dx(tk)− β1x(tk)v1(tk)− β2x(tk)v2(tk)

y1(tk+1)− y1(tk)
∆tk

= β1(1− µ)x(tk)v1(tk) + β2µx(tk)v2(tk)− ay1(tk)
y2(tk+1)− y2(tk)

∆tk
= β1µx(tk)v1(tk) + β2(1− µ)x(tk)v2(tk)− ay2(tk)

v1(tk+1)− v1(tk)
∆tk

= k1y1(tk)− uv1(tk)
v2(tk+1)− v2(tk)

∆tk
= k2y2(tk)− uv2(tk).

(3–2)

For long term treatment not only the the drug resistance appears but also the parameters

change drastically. The longitudinal observations do not follow the model introduced in

Chapter 1. A better model is to assume that the parameters themselves are random

observations following certain distributions.

3.2.2 Bayesian Markov Model for Drug Resistance

A Bayesian transitional Markov model is used to describe the random process of the

drug resistance system by

xi(tk+1) = xi(tk) + λ∆tk − dxi(tk)∆tk − β1xi(tk)v1i(tk)∆tk − β2xi(tk)v2i(tk)∆tk + εxi (tk)

y1i(tk+1) = y1i(tk) + β1(1− µ)xi(tk)v1i(tk)∆tk + β2µxi(tk)v2(tk)∆tk − ay1(tk)∆tk + εy1i (tk)

y2i(tk+1) = y2i(tk) + (β1µxi(tk)v1i(tk) + β2(1− µ)xi(tk)v2i(tk)− ay2i(tk))∆tk + εy2i (tk)

v1i(tk+1) = v1i(tk) + k1y1i(tk)∆tk − uv1i(tk)∆tk + εv1i (tk)

v2i(tk+1) = v2i(tk) + k2y2i(tk)∆tk − uv2i(tk)∆tk + εv2i (tk),

(3–3)
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and the prior distributions

λ ∼ N(θλ,σ2λ)

d ∼ N(θd ,σ2d)

β1 ∼ N(θβ1,σ2β1)

β2 ∼ N(θβ2,σ2β2)

µ ∼ N(θµ,σ2µ)

a ∼ N(θa,σ2a)

k1 ∼ N(θk1,σ2k1)

k2 ∼ N(θk2,σ2k2)

u ∼ N(θu,σ2u),

(3–4)

where εxi (tk) ∼ N(0,σ2x ), εy1i (tk) ∼ N(0, σ2y1), εy2i (tk) ∼ N(0,σ2y2), εv1i (tk) ∼ N(0,σ2v1),
and εv2i (tk) ∼ N(0,σ2v2) are the errors for five variables, x , y1, y2, v1, and v2, respectively,

each of which is assumed to be iid and time-independent. Again we assume that these

error terms of the five variables are independent of each other, although this assumption

can be relaxed. The priors are also assumed to be independent, which is biologically

meaningful.

For simplicity, we use xik , y1ik , y2ik , v1ik , and v2ik to stand for xi(tk), y1i(tk), y2i(tk),

v1i(tk), and v2i(tk), respectively. Just as in Chapter 1, we have:

Theorem 2.2.1: All the future values of uninfected cells, cells infected by wild-type

virus, cells infected by mutant virus, free wild-type virus, and free mutant virus depend
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statistically only on their present values, i.e.,

f (xik+1, y1ik+1, y2ik+1, v1ik+1, v2ik+1|(xi1, y1i1, y2i1, v1i1, v2i1), ... , (xik , y1ik , y2ik , v1ik , v2ik))

= f (xik+1, y1ik+1, y2ik+1, v1ik+1, vik+1|(xik , yik , vik)),

f (xik+1|(xi1, y1i1, y2i1, v1i1, v2i1), ... , (xik , y1ik , y2ik , v1ik , v2ik))

= f (xik+1|(xik , y1ik , y2ik , v1ik , v2ik)),

f (yik+1|(xi1, y1i1, y2i1, v1i1, v2i1), ... , (xik , y1ik , y2ik , v1ik , v1ik))

= f (yik+1|(xik , y1ik , y2ik , v1ik , v2ik)),

f (vik+1|(xi1, y1i1, y2i1, v1i1, vi1), ... , (xik , y1ik , y2ik , v1ik , vik))

= f (vik+1|(xik , y1ik , y2ik , v1ik , vik)).

Furthermore, from this theorem, we have the following results.

Corollary 2.2.1 Conditional on (xik , y1ik , y2ik , v1ik , v2ik), (xik−1, y1ik−1, y2ik−1, v1ik−1, v2ik−1)

and (xik+1, y1ik+1, y2ik+1, v1ik+1, vik+1) are statistically independent.

Corollary 2.2.2: Conditional on (xik , y1ik , y2ik , v1ik , v2ik), xik−1 and xik+1 are statisti-

cally independent.

Corollary 2.2.3: Conditional on (xik , y1ik , y2ik , v1ik , v2ik), y1ik−1 and y1ik+1 are statisti-

cally independent.

Corollary 2.2.4: Conditional on (xik , y1ik , y2ik , v1ik , v2ik), y2ik−1 and y2ik+1 are statisti-

cally independent.

Corollary 2.2.5: Conditional on (xik , y1ik , y2ik , v1ik , v2ik), v1ik−1 and v1ik+1 are statisti-

cally independent.

Corollary 2.2.6: Conditional on (xik , y1ik , y2ik , v1ik , v2ik), v2ik−1 and v2ik+1 are statisti-

cally independent.

Corollary 2.2.7: Conditional on (xik , y1ik , y2ik , v1ik , v2ik), (xij , y1ij , y2ij , v1ij , v2ij) for

j = 0, 1, ... , k − 1 and (xik+1, y1ik+1, y2ik+1, v1ik+1, v2ik+1) are statistically independent.
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Corollary 2.2.8: Conditional on (xik , y1ik , y2ik , v1ik , v2ik), {xi1, ... , xik−1}, and xik+1 are

statistically independent.

Corollary 2.2.9: Conditional on (xik , y1ik , y2ik , v1ik , v2ik), {y1i1, ... , y1ik−1}, and y1ik+1

are statistically independent.

Corollary 2.2.10: Conditional on (xik , y1ik , y2ik , v1ik , v2ik), {v1i1, ... , v1ik−1}, and v1ik+1

are statistically independent.

Corollary 2.2.11: Conditional on (xik , y1ik , y2ik , v1ik , v2ik), {v2i1, ... , v2ik−1}, and v2ik+1

are statistically independent.

Of course all the above results condition on the random parameters and the proof of

them is similar to that of Chapter 1.

3.3 Genetic Mapping for Drug Resistance

3.3.1 Likelihood Function

We use the same genetic design as Chapter 1. For a patient the dynamic model is

described by the random vector Υi = {λi , di , β1i , β2i ,µi , ai , k1i , k2i , ui} of prior distribution.

The Υi for the patients with the same QTL genotype j have the same distribution with

mean {θjλ, θjd , θjβ1, θjβ2, θjµ, θja, θjk1, θjk2, θju} (j = 2 for AA, 1 for Aa, or 0 for aa). The drug

resistance is determined by the distribution and structure of these random vectors.

The likelihood of longitudinal viral data (xi , y1i , y2i , v1i , v2i) = {xi(tk), y1i(tk), y2i(tk),
v1i(tk), v2i(tk)}Nk=0 and marker information Mi for patient i is formulated by the mixture of

Bayesian transitional Markov model, expressed as

L(x, y1, y2, v1, v2;M) =

n∏

i=1

[
2∑

j=0

ωj |i fj(xi , y1i , y2i , v1i , v2i |Υj ,Ψ)f (Υj |Θj)
]
, (3–5)

where ωj |i is a mixture proportion that reflects the QTL genotype j of patient i , and

fj(xi , y1i , y2i , v1i , v2i ;Υj ,Ψ) is a multivariate normal distribution with QTL genotype-specific

random vector specified by Υj and covariance matrix specified by Ψ.
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The multivariate distribution can be specified by the following transition model

fj(xi , y1i , y2i , v1i , v2i ;Υj ,Ψ) = fj(xi1, y1i1, y2i1, v1i1, v2i1|Υj ,Ψ)

×
N−1∏

k=1

fj(xik+1, y1ik+1, y2ik+1, v1ik+1, v2ik+1|xik , y1ik , y2ik , v1ik , v2ik ;Υj ,Ψ) (3–6)

where

fj(xik+1, y1ik+1, y2ik+1, v1ik+1, v2ik+1|xik , y1ik , y2ik , v1ik , v2ik ;Υj ,Ψ)

= fj(xik+1|xik , y1ik , y2ik , v1ik , v2ik ;Υj ,Ψ)fj(y1ik+1|xik , y1ik , y2ik , v1ik , v2ik ;Υj ,Ψ)

fj(y2ik+1|xik , y1ik , y2ik , v1ik , v2ik ;Υj ,Ψ)fj(v1ik+1|xik , y1ik , y2ik , v1ik , v2ik ;Υj ,Ψ)

fj(v2ik+1|xik , y1ik , y2ik , v1ik , v2ik ;Υj ,Ψ),

fj(xik+1|xik , y1ik , y2ik , v1ik , v2ik ;Υj ,σ2x ) =
1√
2πσ2x

exp

[
− 1

2σ2x
(xik+1 − gj(xik))2

]
,

fj(y1ik+1|xik , y1ik , y2ik , v1ik , v2ik ;Υj ,σ2y1) =
1√
2πσ2y1

exp

[
− 1

2σ2y1
(y1ik+1 − h1j(y1ik))2

]
,

fj(y2ik+1|xik , y1ik , y2ik , v1ik , v2ik ;Υj ,σ2y2) =
1√
2πσ2y2

exp

[
− 1

2σ2y2
(y2ik+1 − h2j(y2ik))2

]
,

fj(v1ik+1|xik , y1ik , y2ik , v1ik , v2ik ;Υj ,σ2v1) =
1√
2πσ2v1

exp

[
− 1

2σ2v1
(v1ik+1 − l1j(v1ik))2

]
,

fj(v2ik+1|xik , y1ik , y2ik , v1ik , v2ik ;Υj ,σ2v2) =
1√
2πσ2v2

exp

[
− 1

2σ2v2
(v2ik+1 − l2j(v2ik))2

]
,

Ψ = (σ2x ,σ
2
y1,σ

2
y2,σ

2
v1,σ

2
v2),

gj(xik) = xik + λj∆tk − djxik∆tk − β1jxikv1ik∆tk − β2jxikv2ik∆tk

h1j(y1ik) = y1ik + β1j(1− µj)xikv1ik∆tk + β2jµjxikv2ik∆tk − ajy1ik∆tk

h2j(y2ik) = y2ik + β1jµjxikv1ik∆tk + β2j(1− µj)xikv2ik∆tk − ajy2ik∆tk

l1j(v1ik) = v1ik + k1jy1ik∆tk − ujv1ik∆tk

l2j(v2ik) = v2ik + k2jy2ik∆tk − ujv2ik∆tk ,

(3–7)
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and,

f (Υj |Θj) = 1√
2πσ2λ

exp

[
− 1

2σ2λ
(λj − θjλ)

2

]
1√
2πσ2d

exp

[
− 1

2σ2d
(dj − θjd)

2

]

1√
2πσ2β1

exp

[
− 1

2σ2β1
(β1j − θjβ1)

2

]
1√
2πσ2β2

exp

[
− 1

2σ2β2
(β2j − θjβ2)

2

]

1√
2πσ2µ

exp

[
− 1

2σ2µ
(µj − θjµ)

2

]
1√
2πσ2a

exp

[
− 1

2σ2a
(aj − θja)

2

]

1√
2πσ2k1

exp

[
− 1

2σ2k1
(k1j − θjk1)

2

]
1√
2πσ2k2

exp

[
− 1

2σ2k2
(k2j − θk2)

2

]

1√
2πσ2u

exp

[
− 1

2σ2u
(uj − θju)

2

]
,

3.3.2 Estimation and Algorithm

To get the estimates we need to solve the following optimization problem

argmax

n∑

i=1

log

[
2∑

j=0

ωj |i fj(xi , y1i , y2i , v1i , v2i |Υi ,Ψ)f (Υi |Θj)
]

which is untractable since the Υi are unobservable. But our main focus is on the

estimates of Ψ and Θj an alternative way is to work on marginal likelihood function in

stead of the joint one. Let

fj(xi , y1i , y2i , v1i , v2i |Ψ,Θj) =
∫
fj(xi , y1i , y2i , v1i , v2i |Υi ,Ψ)f (Υi |Θj)dΥi

then we solve

argmax

n∑

i=1

log

[
2∑

j=0

ωj |i fj(xi , y1i , y2i , v1i , v2i |Ψ,Θj)
]

for the estimates of Ψ, and Θj ; which can be similarly obtained as in Chapter 1 and the

details are given in Chapter 4.

Our next task here is about testing.
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3.3.3 Testing the Significance of QTL and Drug Resistance

The significance of QTL for viral dynamics of differential equations (3–1) can be

tested by using the following hypotheses:

H0 : Θj ≡ Θ, (j = 2, 1, 0)

H1 : At least one of the equalities above does not hold,

(3–8)

The likelihoods under each hypothesis are calculated from which a log-likelihood ratio

test statistic is calculated.

After a significant QTL is claimed, its significant association with the marker

considered can be tested by the following hypotheses:

H0 : D = 0 vs. H1 : D 6= 0, (3–9)

whose log-likelihood ratio test statistic asymptotically follow theχ2-distribution with one

degree of freedom.

The significance of drug resistance can be tested by:

H0 : (λj , dj , β1j , β2j) ≡ (λ, d , β1, β2) uninfectedcells (3–10)

H0 : (µj , β1j , β2j , aj) ≡ (µ, β1, β2, a) cells infected by wild and mutant virus (3–11)

H0 : (k1j , uj) ≡ (k1, u) free wild− type virus (3–12)

H0 : (k2j , uj) ≡ (k2, u) free mutant virus, (3–13)

for j = 2, 1, 0. If all the null hypotheses are rejected, then this means that the QTL

pleiotropically affect these five different aspects of viral dynamics. The pleiotropic effect

of the QTL on any pair of five types of cells can also be tested accordingly. An empirical

approach for determining the critical threshold is based on simulation studies.

3.4 Computer Simulation and Discussion

We perform a similar Monte Carlo simulation to examine the statistical properties

of the model for genetic mapping of the dynamics of viral drug resistance. The results
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are shown in Tables 2.1 and 2.2. These results suggest that our model will be practically

useful in statistical analysis of the genetic control of drug resistance in viral dynamics.

The resistance of virus to an antiviral drug is one of the most important reasons

of the failure of drug treatment to achieve complete viral suppression [21] . The

identification of genes that control the dynamic pattern of viral drug resistance will

provide useful information to understand the emergence of drug resistance and better

predict treatment outcomes. In this chapter, we have developed a statistical model

for mapping quantitative trait loci (QTLs) that affect the rate and pattern of rebound

of resistant virus after drug therapy. This model integrates a system of differential

equations for the dynamic change of viral drug resistance into functional mapping

developed by Wu and group [64, 113], from which a number of hypotheses about the

interplay between genetic actions and viral dynamics can be formulated and addressed.

The current model is not a simple extension of functional mapping for multiple

dynamic traits [135]. The previous multi-trait models do not take into account the

relationships of genotypic values of different traits, although across-trait correlations

due to residual errors are considered. The new model views multiple traits as a whole

in which different traits coordinate each other to determine the dynamic behavior of the

system. Thus, by altering one variable or trait, other variables will change, leading to

the change of the entire system. The genetic mapping of genes for a dynamic system

will provide a powerful means for understanding the genetic architecture of a biological

process.

The mathematical strength of the new model is the deployment of a system of

differential equations in a genetic mapping context. The solution of multiple differential

equations, especially high-dimensional ones, is computationally challenging. In this

article, we apply a Newton algorithm within the EM setting to provide numerical

estimates of the parameters that define the dynamic system. With the theorems derived

from several assumptions of independence, the algorithm is shown from simulation
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studies to be computationally efficient and provides precise estimates of the parameters,

even when the sample size used is modest (Tables 3-1 and 3-2).

As a demonstration of the new model, we assume that a dynamic system is

controlled by a single QTL, although this assumption is too simple in real world. The

genome-wide modeling of multiple QTLs throughout the genome can be incorporated

into the current model setting, allowing the characterization of epistatic interactions

among different QTLs. A multi-locus linkage disequilibrium model has been available to

specify high-order non-random associations among multiple loci in a natural population

[114]. Although linkage disequilibrium mapping has proven to be powerful for the

high-resolution of QTLs, it often gives spurious results due to population structure and

other evolutionary forces. A new genetic design that samples a set of random families,

each composed of parents and their offspring, can overcome this limitation of linkage

disequilibrium mapping [55]. This design allows the simultaneous estimation of the

linkage and linkage disequilibrium between different genes, thus making it possible to

construct a genome-wide linkage disequilibrium map for gene discovery.

The emergence of drug-resistant virus may be due to the preexistence of drug

resistant strains before the initiation of therapy or the generation of resistant virus during

the course of treatment. It is important to identify which process is more likely to be

true, drug resistant virus preexists before the onset of therapy or they are produced

by residual virus replication during the course of antiviral treatment, because each

process requires different drug regimens to maximize the clinical benefits [7]. [90, 91]

developed a mathematical model to investigate analytically the mechanisms underlying

the emergence of drug-resistant variants during antiviral treatment. By incorporating this

mathematical model into our functional mapping framework, it is possible to test whether

there is a specific QTL that determines each of these two processes and how they can

be predicted with genetic information of the QTL detected.
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CHAPTER 4
EM ALGORITHM FOR SOLVING MIXTURE MODELS IN COMPLEX GENETIC TRAITS

4.1 Introduction

The study of the mixture models has more than one hundred years. There are

more than one thousand papers and articles and several monographs about it. The

application spreads almost all scientific and engineering areas. Our main focus in this

chapter is to study the mixture densities of the form of (2–5), which are widely used in

genetics. We are not going to review the literatures about the mixture models since this

has been done by many authors (see [24, 65, 66, 87] and their references). First, we are

going to give a brief review of genetic theory and EM algorithm. Then we discuss the

theoretical properties of the EM algorithm for mixture model (2–5). We also fit a group of

real genetic data and use computer to do simulation study.

4.2 Algorithm

4.2.1 Genetic Design

Here we briefly review the concept of genetic design used in Chapter 1. The

natural human population from which n individuals are sampled is assumed to be at

Hardy-Weinberg equilibrium (HWE). A panel of SNP markers are genotyped for all

subjects, aimed at the identification of QTLs affecting a special growth factor. Suppose

there is a functional QTL of alleles A and a for the growth. Let q and 1 − q denote the

allele frequencies of A and a. The QTL forms three possible genotypes, AA (symbolized

by 2), Aa (symbolized by 1), and aa (symbolized by 0). We assume that this QTL is

associated with a SNP marker of alleles M (in a frequency of p) and m (in a frequency of

1 − p). The detection of significant linkage disequilibrium between the marker and QTL

implies that the QTL may be linked with and, therefore, can be genetically manipulated

by the marker.

The four haplotypes for the marker and QTL are MA, Ma, mA, and ma, with

respective frequencies expressed as p11 = pq+D, p10 = p(1−q)−D, p01 = (1−p)q−D,
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and p00 = (1− p)(1− q) + D, where the linkage disequilibrium between the marker and

QTL. Thus, the population genetic parameters (p, q, and D) can be estimated by solving

a group of regular equations if we can estimate the four haplotype frequencies. Joint

marker-QTL diplotype frequencies can be expressed as a product of the corresponding

haplotype frequencies under the HWE assumption, from which joint marker-QTL

genotype frequencies are derived. Because the marker is observed, an unknown

genotype of the QTL can be inferred from the conditional probability of the QTL

genotype given a marker genotype.

4.2.2 Likelihood

For a given QTL genotype j (j = 0, 1, 2), the parameters describing biological growth

are denoted by Θj . The comparisons of these parameters between the three different

QTL genotypes can determine whether and how this QTL affects the pattern of the

trajectory.

The likelihood of longitudinal genetic data Yi for i = 1, ... , n, with

Yi ′ = (Yi(1), ... ,Yi(m))

and marker information Mj for patient i is formulated by the mixture model, expressed

as

L(Θ,Ψ, p, q,D|Y;M) =
2∏

k=0

mk∏

i=1

[
2∑

j=0

ωj |k(p, q,D,Mk)fj(Yi |Θj ,Ψj)
]
P (Mk |p) , (4–1)

where ωj |k(p, q,D,Mk), a function of p, q, D, and Mk , is a mixture proportion that

reflects the QTL genotype j of individual i with marker k , which can be inferred from its

marker genotype [106], and fj(Yi |Θj ,Ψj) is usually a multivariate normal distribution

with QTL genotype-specific mean vector being function of Θj , and covariance matrix

specified by Ψj .
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Again, based on [106],

P (M2|p) = p2, P (M1|p) = 2p(1− p), P (M0|p) = (1− p)2;

and

ω2|2 =
(pq +D)2

p2
, ω1|2 =

2(pq +D)(p(1− q)−D)
p2

, ω0|2 =
(p(1− q)−D)2

p2
;

ω2|1 =
2(pq +D)((1− p)q −D)

2p(1− p) , ω0|1 =
2(p(1− q)−D)((1− p)(1− q) +D)

2p(1− p) ,

ω1|1 =
2(pq +D)((1− p)(1− q) +D) + 2(p(1− q)−D)((1− p)q −D)

2p(1− p) ;

ω2|0 =
((1− p)q −D)2
(1− p)2 , ω0|0 =

((1− p)(1− q) +D)2
(1− p)2 ;

ω1|0 =
2((1− p)q −D)((1− p)(1− q) + D)

(1− p)2 .

Plugging the above formulae in (4–1) and canceling all common factors, we know that

our likelihood function consists of the product of the following three parts

m1∏

i=1

[(pq +D)2f2(Yi |Θ2,Ψ2) + 2(pq +D)(p(1− q)−D)f1(Yi |Θ1,Ψ1)

+(p(1− q)−D)2f0(Yi |Θ0,Ψ0)], (4–2)

m2∏

i=1

[Π1f2(Yi |Θ2,Ψ2) + Π2f1(Yi |Θ1,Ψ1) + Π3f0(Yi |Θ0,Ψ0)], (4–3)

with

Π1 = 2(pq +D)((1− p)q −D),

Π2 = (2(pq +D)((1− p)(1− q) +D) + 2(p(1− q)−D)((1− p)q −D)),

Π3 = 2(p(1− q)−D)((1− p)(1− q) +D).
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and

m3∏

i=1

[((1− p)q −D)2f2(Yi |Θ2,Ψ2) + 2((1− p)q −D)((1− p)(1− q) +D)

·f1(Yi |Θ1,Ψ1) + ((1− p)(1− q) +D)2f0(Yi |Θ0,Ψ0)]. (4–4)

Therefore our likelihood function (4–1) can be rewritten as

L(Θ,Ψ, p, q,D|Y;M) =
2∏

k=0

mk∏

i=1

[
2∑

j=0

$j |k(p, q,D,Mk)fj(Yi |Θj ,Ψj)
]

(4–5)

with

$2|2 = (pq +D)
2, $1|2 = 2(pq +D)(p(1− q)−D), $0|2 = (p(1− q)−D)2;

$2|1 = 2(pq +D)((1− p)q −D), $0|1 = 2(p(1− q)−D)((1− p)(1− q) +D),

$1|1 = 2(pq +D)((1− p)(1− q) +D) + 2(p(1− q)−D)((1− p)q −D);

$2|0 = ((1− p)q −D)2, $0|0 = ((1− p)(1− q) +D)2;

$1|0 = 2((1− p)q −D)((1− p)(1− q) +D).

Or, simply

L(Θ,Ψ, p, q,D|Y;M) =
n∏

i=1

[
2∑

j=0

$j |i(p, q,D,Mk)fj(Yi |Θj ,Ψj)
]

(4–6)

Now our purpose is to maximize (4–6) with respect to p, q, D, Θ, and Ψ under the

condition that fj has multiple normal distribution or Markov model construction with

normal distribution.

4.2.3 Algorithm

The gradient of log-likelihood function

logL(Θ,Ψ, p, q,D|Y;M) =
n∑

i=1

log

[
2∑

j=0

$j |i(p, q,D,Mk)fj(Yi |Θj ,Ψj)
]
, (4–7)
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is given by

5Θj logL (Θ,Ψ|M,Y) =
n∑

i=1

$j |i fj(Yi |Θj ,Ψj)∑2
j ′=0 ωj ′|i fj ′(Yi |Θj ′,Ψj ′)

×5Θj logfj(Yi |Θj ,Ψj),

5Ψ logL(Θ,Ψ|M,Y) =
n∑

i=1

2∑

j=0

$j |i fj(Yi |Θj ,Ψj)∑2
j ′=0$j ′|i fj ′(Yi |Θj ′,Ψj ′)

×5Ψj log fj(Yi |Θj ,Ψj),

and

5$j|i logL(Θ,Ψ|M,Y) =
n∑

i=1

2∑

j=0

$j |i fj(Yi |Θj ,Ψj)∑2
j ′=0$j ′|i fj ′(Yi |Θj ′,Ψj ′)

5$j|i log($j |i).

Here we use 5$j|i to denote the gradient of log-likelihood with respect to p, q, and D.

Let

Φ = (p, q,D,Θ′,Ψ′)′

Then to get the MLE of (4–7) we need to find the critical points that satisfy

5Φ logL(Φ|M,Y) = 0 (4–8)

According to large sample theory we have the following existing theorem

Theorem 4.1. (Existence Theorem) Suppose that fj are non-degenerate normal

distributions, and the Fisher information matrix I(Φ) of (4–7) exists and is positive

definite at the true parameter value Φ0, then there exists a δ > 0 such that for sufficiently

large n, in the neighborhood {Φ|||Φ−Φ0|| < δ} of Φ0, with probability 1, there is a unique

solution Φ of (4–8) and
√
n(Φ−Φ0) has asymptotical distribution N(0, I(Φ0)−1).

Proof It follows immediately from Redner and Walker [87] since our component

distributions are all normally distributed.

To get the critical points the following Newton iteration is an attractive method

Φt+1 = Φt − αk(52logL(Θ,Ψ, p, q,D|Y;M))−15 logL(Θ,Ψ, p, q,D|Y;M) (4–9)
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but it often gives us negative values for the estimates of the frequencies p, and q. At

the same time the computation of Hessian causes a lot of mess. In order to avoid these

embarrassing situations, we prefer to using EM algorithm to solve the problem. The

general EM algorithm was originally proposed by Dempster, Laird, and Rubin [22] to

solve the maximum-likelihood problems with missing data. The framework of using EM

algorithm for solving maximum-likelihood estimates of finite mixture distributions can be

found in [24, 66, 87] and their references. Here we briefly review the EM algorithm for

our convenience. For the detail please see [22, 87], and its extensions [65].

Suppose our observed data are Y, which are incomplete. And the complete data

are X = (Y,Z), of which Z cannot be observed. Moreover, the MLE of L(Φ|X) is

much easier to solve than that of L(Φ|Y). If we let K(X|Y,Φ) denote the conditional

distribution of X given (Y,Z), and

Q(Φ|Φt) = E(logf (X|Φ)|Y,Φt), H(Φ|Φt) = E(logK(X|Y,Φ)|Y,Φt) (4–10)

then the EM algorithm consists of the following two steps:

1. E-step. Compute Q(Φ|Φt),

2. M-step. Compute arg max Q(Φ|Φt).
Dempster, Laird, and Rubin (see [22]) have proved that Q(Φ|Φt) is increasing, and

H(Φ|Φt) is decreasing. Wu (see [111]) has proved the convergence.

EM algorithm framework has been used to solve the MLE of the mixture models

with distribution density function

f (yi ;Φ) =

g∑

j=1

pj fj(yi ;Φj) (4–11)

by many authors(see [24, 65, 66, 87] and their references). In the rest of this paper we

are going to show that the EM algorithm can be used to solve our problem (4–5), namely

(4–1), and we also justify our choice of priors.
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Let us define the variable

Zikj = 1 if object i with marker k belongs to genotype j , (4–12)

Zikj = 0 otherwise. (4–13)

Then Zikj for k , j = 0, 1, 2, and Y are our ”complete” data. The corresponding likelihood

function is

Lc(Θ,Ψ, p, q,D|Y;Z;M) =
2∏

k=0

mk∏

i=1

2∏

j=0

[
ωj |k(p, q,D,Mk)fj(Yi |Θj ,Ψj)P (Mk |p)

]Zikj

=

2∏

k=0

mk∏

i=1

2∏

j=0

[
$j |k(p, q,D,Mk)fj(Yi |Θj ,Ψj)

]Zikj , (4–14)

which gives us the log likelihood function

logLc(Θ,Ψ, p, q,D|Y;Z;M) =
2∑

k=0

mk∑

i=1

2∑

j=0

Zikj
[
log$j |k(p, q,D) + logfj(Yi |Θj ,Ψj)

]
(4–15)

Now following the EM algorithm we have

Q(Φ|Φ(t)) =
2∑

k=0

mk∑

i=1

2∑

j=0

E(Zikj)
[
log$j |k(p, q,D) + logfj(Yi |Θj ,Ψj)

]
, (4–16)

and the next step is to maximize (4–16) with respect to our parameters. To do this we

first find the E(Zikj) by using the following theorem.

Theorem 4.2. In (4–16)

E(Zikj) =
$j |k(pt , qt ,Dt)fj(Yi |Θ(t)j ,Ψ(t)j )∑2
j ′=0$j ′|k(pt , qt ,Dt)fj ′(Yi |Θ(t)j ′ ,Ψ(t)j ′ )

. (4–17)

Proof For any single missing value Zikj with the observation Yi the likelihood

function is

Lc(Θj ,Ψj , p, q,D|Yi ;Zikj ;Mk) =
[
$j |k(p, q,D,Mk)fj(Yi |Θj ,Ψj)

]Zikj , (4–18)
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and the corresponding log likelihood function is

logLc(Θj ,Ψj , p, q,D|Yi ;Zikj ;Mk) = Zikj
[
log$j |k(p, q,D,Mk) + logfj(Yi |Θj ,Ψj)

]
(4–19)

Therefore,

E

(
∂logLc(Θj ,Ψj , p, q,D|Yi ;Zikj ;Mk)

∂$j |k(p, q,D,Mk)

)
= E

[
Zikj

(
1

$j |k(p, q,D,Mk)

)]
(4–20)

On the other hand, if we do not include missing value Zikj for Yi our likelihood function is

L(Θ,Ψ, p, q,D|Yi ;Mk) =

2∑

j=0

$j |k(p, q,D,Mk)fj(Yi |Θj ,Ψj), (4–21)

Hence,

E

(
∂logL(Θ,Ψ, p, q,D|Yi ;Mk)

∂$j |k(p, q,D,Mk)

)
= E

[
$j |k fj(Yi |Θj ,Ψj)∑2
j ′=0$j ′|k fj ′(Yi |Θj ′,Ψj ′)

(
1

$j |k

)]
(4–22)

(4–20) and (4–22) are the two sides of the same coin. Following the definition of E-step

we get (4–17).

Therefore, in the E step the posterior probability with which an individual i has a

specific QTL genotype j based on the marker information Mk and phenotypic data is

calculated by

Ωj |i =
$j |i fj(Yi |Θj ,Ψj)∑2
j ′=0$j ′|i fj ′(Yi |Θj ′,Ψj ′)

. (4–23)

The following theorem is very useful in our M-step computation.

Theorem 4.3. In the M-step of EM algorithm the optimal solution of p11, p10, p01 and p00

are:

p̂11 =
1

2n

[
m1∑

i=1

(2Ω2|i +Ω1|i) +
m2∑

i=1

(Ω2|i + ξΩ1|i)

]
(4–24)

p̂10 =
1

2n

[
m1∑

i=1

(Ω1|i + 2Ω0|i) +
m2∑

i=1

(
Ω0|i + (1− ξ)Ω1|i

)
]

(4–25)

p̂01 =
1

2n

[
m3∑

i=1

(2Ω2|i +Ω1|i) +
m2∑

i=1

(
Ω2|i + (1− ξ)Ω1|i

)
]

(4–26)
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p̂00 =
1

2n

[
m3∑

i=1

(Ω1|i + 2Ω0|i) +
m2∑

i=1

(
Ω0|i + ξΩ1|i

)
]

(4–27)

with

ξ =
p11p00

p11p00 + p10p01
, (4–28)

and the optimal solutions for p, q, and D are:

p̂ = p̂11 + p̂10, q̂ = p̂11 + p̂01, D̂ = p̂11 − p̂q̂ (4–29)

Proof Note that (4–16) can be written as

Q(Φ|Φ(t)) =
2∑

k=0

mk∑

i=1

2∑

j=0

E(Zikj)logfj(Yi |Θj ,Ψj)

+

m1∑

i=1

{
E(Zi22)

[
log(p211)

]
+ E(Zi21) [log(2p11p10)] + E(Zi20)

[
log(p210)

]}

+

m2∑

i=1

{E(Zi12) [log(2p11p01)] + E(Zi10) [log(2p10p00)]}

+

m2∑

i=1

{E(Zi11) [log(2p11p00 + 2p10p01)]}

+

m3∑

i=1

{
E(Zi02)

[
log(p201)

]
+ E(Zi01) [log(2p01p00)] + E(Zi00)

[
log(p200)

]}

Under the constrain condition

p211 + 2p11p10 + p
2
10 + 2p11p01 + 2p11p00 + 2p10p01 + 2p10p00 + p

2
01 + 2p01p00 + p

2
00 = 1

the Lagranian function is

L(Θ,Ψ,p,λ) = Q(Φ|Φ(t)) + λ(p211 + 2p11p10 + p
2
10 + 2p11p01 + 2p11p00

+ 2p10p01 + 2p10p00 + p
2
01 + 2p01p00 + p

2
00 − 1). (4–30)
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Differentiate (4–30) with respect p11, p10, p01, and p00, we get,

∂L
∂p11

=

m1∑

i=1

{
E(Zi22)

2

p11
+ E(Zi21)

1

p11

}
+

m2∑

i=1

E(Zi12)
1

p11

+

m2∑

i=1

E(Zi11)
p00

p11p00 + p10p01
+ λ(2p11 + 2p10 + p01 + 2p00)

=

m1∑

i=1

{
E(Zi22)

2

p11
+ E(Zi21)

1

p11

}
+

m2∑

i=1

E(Zi12)
1

p11

+

m2∑

i=1

E(Zi11)
p00

p11p00 + p10p01
+ 2λ, (4–31)

∂L
∂p10

=

m1∑

i=1

{
E(Zi21)

1

p10
+ E(Zi20)

2

p10

}
+

m2∑

i=1

E(Zi10)
1

p10

+

m2∑

i=1

E(Zi11)
p01

p11p00 + p10p01
+ λ(2p11 + 2p10 + 2p01 + 2p00)

=

m1∑

i=1

{
E(Zi21)

1

p10
+ E(Zi20)

2

p10

}
+

m2∑

i=1

E(Zi10)
1

p10

+

m2∑

i=1

E(Zi11)
p01

p11p00 + p10p01
+ 2λ, (4–32)

∂L
∂p01

=

m2∑

i=1

{
E(Zi12)

1

p01
+ E(Zi11)

p10
p11p00 + p10p01

}

+

m3∑

i=1

{
E(Zi02)

2

p01
+ E(Zi01)

1

p01

}
+ λ(2p11 + 2p10 + 2p01 + 2p00)

=

m2∑

i=1

{
E(Zi12)

1

p01
+ E(Zi11)

p10
p11p00 + p10p01

}

+

m3∑

i=1

{
E(Zi02)

2

p01
+ E(Zi01)

1

p01

}
+ 2λ, (4–33)
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and

∂L
∂p00

=

m2∑

i=1

{
E(Zi10)

1

p00
+ E(Zi11)

p11
p11p00 + p10p01

}

+

m3∑

i=1

{
E(Zi01)

1

p00
+ E(Zi00)

2

p00

}
+ λ(2p11 + 2p10 + 2p01 + 2p00)

=

m2∑

i=1

{
E(Zi10)

1

p00
+ E(Zi11)

p11
p11p00 + p10p01

}

+

m3∑

i=1

{
E(Zi01)

1

p00
+ E(Zi00)

2

p00

}
+ 2λ. (4–34)

By KTT condition, we have

p̂11 =
1

−2λ

[
m1∑

i=1

{2E(Zi22) + E(Zi21)}+
m2∑

i=1

{
E(Zi12) + E(Zi11)

p11p00
p11p00 + p10p01

}]
(4–35)

p̂10 =
1

−2λ

[
m1∑

i=1

{E(Zi21) + 2E(Zi20)}+
m2∑

i=1

{
E(Zi10) + E(Zi11)

p10p01
p11p00 + p10p01

}]
(4–36)

p̂01 =
1

−2λ

[
m2∑

i=1

{
E(Zi12) + E(Zi11)

p10p01
p11p00 + p10p01

}
+

m3∑

i=1

{2E(Zi02) + E(Zi01)}
]
(4–37)

and

p̂00 =
1

−2λ

[
m2∑

i=1

{
E(Zi10) + E(Zi11)

p11p00
p11p00 + p10p01

}
+

m3∑

i=1

{E(Zi01) + 2E(Zi00)}
]
(4–38)

which complete the proof of (4–24), (4–25), (4–26), (4–27), and (4–28) since λ = −n.
The proof of (4–29) follows from the invariant theorem of maximum likelihood.

Note The formulas were obtained by Wang and Wu [106]. The proof has never

been given as we know.

Also in the M step, the other parameters are estimated by solving the following

log-likelihood equations:

5Θj logL (Θ,Ψ|M,Y) =
n∑

i=1

$j |i fj(Yi |Θj ,Ψj)∑2
j ′=0$j ′|i fj ′(Yi |Θj ′,Ψj ′)

· 5Θj logfj(Yi |Θj ,Ψj) = 0 (4–39)
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5Ψ logL(Θ,Ψ|M,Y) =
n∑

i=1

2∑

j=0

$j |i fj(Yi |Θj ,Ψj)∑2
j ′=0$j ′|i fj ′(Yi |Θj ′,Ψj ′)

· 5Ψ log fj(Yi |ij) = 0 (4–40)

where ij = (Θj ,Ψj). Even for normal distributions it is often impossible for us to solve

(4–39), and (4–40) explicitly. Therefore we have to turn to iterative method. Here we

introduce the following iterative:

Θ
(t+1)
j = Θ

(t)
j − αt

(
n∑

i=1

Ωj |i 52Θj log fj(Yi |Θ
(t)
j ,Ψ

(t)
j )

)−1

5Θj logL(Θ(t),Ψ(t)j |Y) (4–41)

Ψ
(t+1)
j = Ψ

(t)
j − βt

(
n∑

i=1

2∑

j=0

Ωj |i 52Ψj log fj(Yi |i
(t)
j )

)−1

5Ψj logL(Θ(t),Ψ(t)j |Y) (4–42)

where αt , and βt are determined by the Armijo line search [3]. Of course, the

method used in (4–41) and (4–42) is just conditional Newton Algorithm. A way to

save computation is to use only the diagonal elements.

Let us summarize our algorithm as follows:

1. Use pt , qt , Dt , Θ(t), and Ψ(t) to compute pt+1, qt+1, and Dt+1 through
(4–24-4–29),

2. Use pt+1, qt+1, Dt+1, Θ(t), and Ψ(t) to compute Θt+1, and Ψ(t+1) through (4–41),
and (4–42),

We continue the above two steps until it converges.

Instead of using conditional Hessian matrices as we do in (4–41), and (4–42) we

can hybrid Wang and Wu formulas with Newton Algorithm, and use

((Θ(t+1))′,Ψ(t+1))′ = ((Θ(t))′,Ψ(t))′ − αk(52Θ∪ΨlogL(Θ,Ψ, p, q,D|Y;M))−1

· 5Θ∪ΨlogL(Θ,Ψ, p, q,D|Y;M) (4–43)

4.2.4 Main Results

Our modified algorithm is actually a Rao-Blackerzation. We have the following

theorem
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Theorem 4.4. If (4–24-4–29) are used to compute p, q, and D, then the sampling errors

by using (4–41-4–42) to solve the critical points of (4–7) are smaller than that of Newton

method (4–43) if both of them are convergent

Proof Let us define binary latent variables Zij as

P(Zij = 1) = Ωj |i =
$j |i fj(Yi |Θj ,Ψj)∑2
j ′=0$j ′|i fj ′(Yi |Θj ′,Ψj ′)

Treat solving the critical points of (4–7) as a random process Y . Then

Var(Y ) = Var(E(Y |Z)) + E(Var(Y |Z)) (4–44)

where Z denotes the collection of all Zij for i = 1, ... , n, and j = 0, 1, 2. The Hessian of

(4–41-4–42) is conditional on Z. Therefore its variance is Var(E(Y |Z)) but that of (4–43)

is Var(E(Y |Z)) + E(Var(Y |Z)).
Then, we prove the estimators of p, q, and D are consistent. We see it is a trade off

between Newton algorithm and EM. EM is slower than Newton but its error is smaller.

Second, we prove the estimators of p, q, and D are consistent.

Theorem 4.5. If p̂, q̂, and D̂ are given by (4–29), then p̂ → p, q̂ → q, and D̂ → D as

n → ∞. Also, p̂ is equal to the MLE of multinomial distribution n!
m1!m2!m3!

(p2)m1(2p(1 −
p))m2((1− p)2)m3 with observation (m1,m2,m3). Furthermore, if p̂11, p̂10, p̂01, and p̂00 are

defined by (4–24), (4–25), (4–26), and (4–27), then p̂11 → pq + D, p̂10 → p(1 − q) − D,

p̂01 → (1− p)q −D, and p̂00 → (1− p)(1− q) + D, as n → ∞.

Proof According to the definition of Ω2|i , we know

mk∑

i=1

(Ω2|i +Ω1|i +Ω0|i) = 1 (4–45)

for k = 0, 1, 2. We also know

limn→∞
m1
n
= p2 (4–46)

limn→∞
m2
n
= 2p(1− p) (4–47)
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Therefore, using (4–24), and (4–25), we have

p̂ = p̂11 + p̂10

=
1

2n

[
m1∑

i=1

(2Ω2|i +Ω1|i) +
m2∑

i=1

(Ω2|i + ξΩ1|i)

]

+
1

2n

[
m1∑

i=1

(Ω1|i + 2Ω0|i) +
m2∑

i=1

(
Ω0|i + (1− ξ)Ω1|i

)
]

=
1

2n

[
2

m1∑

i=1

(Ω2|i +Ω1|i +Ω0|i) +
m2∑

i=1

(Ω2|i +Ω1|i +Ω0|i)

]

=
1

2n
[2m1 +m2]

→ p2 + p(1− p) (as n → ∞)

= p

which completes the proof of p̂ → p, and also shows that p̂ = 2m1+m2
2n

, namely the MLE of

the multinomial distribution MN
(
n; p2, 2p(1− p), (1− p)2).

To prove q̂ → q let us assume the genotype numbers of AA, Aa, and aa are n1, n2,

and n3, respectively, then the likelihood of joint distribution can be written as

L(Θ,Ψ, p, q,D|Y;A) =
n1∏

i=1

(
q2f2(Yi |Θ2)

) n2∏

i=1

(2q(1− q)f2(Yi |Θ2))

·
n3∏

i=1

(
(1− q)2f2(Yi |Θ2)

)
(4–48)

Then the log likelihood function becomes

logL(Θ,Ψ, p, q,D|Y;A) = n1log(q
2) +

n1∑

i=1

logf2(Yi |Θ2)

+ n2log(2q(1− q)) +
n2∑

i=1

logf1(Yi |Θ1)

+ n3log((1− q)2) +
n3∑

i=1

logf0(Yi |Θ0)
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with

n1 =

n∑

i=1

2∑

k=0

Zik2, n2 =

n∑

i=1

2∑

k=0

Zik1, n3 =

n∑

i=1

2∑

k=0

Zik0. (4–49)

By Theorem4.2,

n1 =

n∑

i=1

E(Ω2|i). (4–50)

So we can use
n∑

i=1

Ω2|i =
m1∑

i=1

Ω2|i +
m2∑

i=1

Ω2|i +
m3∑

i=1

Ω2|i (4–51)

to estimate n1.

Similarly, we can use

n∑

i=1

Ω1|i =
m1∑

i=1

Ω1|i +
m2∑

i=1

Ω1|i +
m3∑

i=1

Ω1|i (4–52)

to estimate n2. On the other hand, according to (4–24), (4–26), and (4–29) we have

q̂ = p11 + p01

=
1

2n

[
m1∑

i=1

(2Ω2|i +Ω1|i) +
m2∑

i=1

(Ω2|i + ξΩ1|i)

]

+
1

2n

[
m3∑

i=1

(2Ω2|i +Ω1|i) +
m2∑

i=1

(
Ω2|i + (1− ξ)Ω1|i

)
]

=
1

2n

[
2

(
m1∑

i=1

Ω2|i +
m2∑

i=1

Ω2|i +
m3∑

i=1

Ω2|i

)]

+
1

2n

[
m1∑

i=1

Ω1|i +
m2∑

i=1

Ω1|i +
m3∑

i=1

Ω1|i

]
,

which can be used to estimate

1

2n
(2n1) +

1

2n
(n2) −→P q2 + q(1− q) = q (as n −→ ∞). (4–53)

To prove D̂ →P D (as n → ∞) we assume that the genotype numbers of AA, Aa,

and aa are m11, m12, and m13, respectively, among the marker type MM, then

m1 = m11 +m12 +m13. (4–54)
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Therefore, the likelihood function for the marker type MM ONLY should be

L(Θ,Ψ, p, q,D|Y;M2) =

m11∏

i=1

[
(pq +D)2

p2
f2(Yi |Θ2,Ψ2)P (M2)

]

×
m12∏

i=1

[
2(pq +D)(p(1− q)−D)

p2
f1(Yi |Θ1,Ψ1)P (M2)

]

×
m13∏

i=1

[
(p(1− q)−D)2

p2
f0(Yi |Θ0,Ψ0)P (M2)

]

=

m11∏

i=1

[
(pq +D)2f2(Yi |Θ2,Ψ2)

]

×
m12∏

i=1

[2(pq +D)(p(1− q)−D)f1(Yi |Θ1,Ψ1)]

×
m13∏

i=1

[
(p(1− q)−D)2f0(Yi |Θ0,Ψ0)

]

whose log likelihood function is

2m11log(pq +D) +

m11∑

i=1

logf2(Yi |Θ2,Ψ2) +m12[log(pq +D) + log(p(1− q)−D)]

+

m12∑

i=1

logf1(Yi |Θ1,Ψ1) + 2m13log(p(1− q)−D) +
m13∑

i=1

f0(Yi |Θ0,Ψ0).(4–55)

which means

m11 =
∑m1
i=1 Zi22 =

∑m1
i=1 E(Ω2|i),

m12 =
∑m1
i=1 Zi21 =

∑m1
i=1 E(Ω1|i),

m13 =
∑m1
i=1 Zi20 =

∑m1
i=1 E(Ω0|i).

(4–56)
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If we let m21, m22, m23, and m24 denote the genotype numbers of AA, Aa, aA, and aa

among the marker type Mm, then consider

L(Θ,Ψ, p, q,D|Y;M1) =

m21∏

i=1

[
2(pq +D)((1− p)q −D)

2p(1− p) f2(Yi |Θ2,Ψ2)P (M1)

]

×
m22∏

i=1

[
2(pq +D)((1− p)(1− q) +D)

2p(1− p) f1(Yi |Θ1,Ψ1)P (M1)

]

×
m23∏

i=1

[
2(p(1− q)−D)((1− p)q −D)

2p(1− p) f1(Yi |Θ1,Ψ1)P (M1)

]

×
m24∏

i=1

[
(p(1− q)−D)((1− p)(1− q) +D)

2p(1− p) f0(Yi)P (M1)

]

=

m21∏

i=1

[2(pq +D)((1− p)q −D)f2(Yi |Θ2,Ψ2)]

×
m22∏

i=1

[2(pq +D)((1− p)(1− q) +D)f1(Yi |Θ1,Ψ1)]

×
m23∏

i=1

[2(p(1− q)−D)((1− p)q −D)f1(Yi |Θ1,Ψ1)]

×
m24∏

i=1

[(p(1− q)−D)((1− p)(1− q) +D)f0(Yi |Θ0,Ψ0)]

with log likelihood function

m21log[2(pq +D)((1− p)q −D)] +
m21∑

i=1

logf2(Yi |Θ2,Ψ2) +m22log[2(pq +D)

·((1− p)q −D)] +
m22∑

i=1

logf1(Yi |Θ1,Ψ1) +m23log[2(p(1− q)−D)((1− p)q −D)]

+

m23∑

i=1

f1(Yi |Θ1,Ψ1) +m24log[2(p(1− q)−D)((1− p)(1− q) +D)] +
m24∑

i=1

f0(Yi |Θ0,Ψ0)

=

m2∑

i=1

[2(pq +D)((1− p)q −D)f2(Yi |Θ2,Ψ2) + (2(pq +D)((1− p)(1− q) +D)

+2(p(1− q)−D) · ((1− p)q −D))f1(Yi |Θ1,Ψ1)

+2(p(1− q)−D)((1− p)(1− q) +D)f0(Yi |Θ0,Ψ0)].
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Hence, we get

m21 =

m2∑

i=1

Zi12 =

m2∑

i=1

E(Ω2|i), (4–57)

m22 +m23 =

m2∑

i=1

Zi11 =

m2∑

i=1

E(Ω1|i), (4–58)

and

m24 =

m2∑

i=1

Zi10 =

m2∑

i=1

E(Ω0|i). (4–59)

Similarly, if we assume that m31, m32, and m33 represent the genotype numbers of

AA, Aa, and aa among the marker mm, we have

m31 =
∑m3
i=1 Zi02 =

∑m3
i=1 E(Ω2|i),

m32 =
∑m3
i=1 Zi01 =

∑m3
i=1 E(Ω1|i),

m33 =
∑m3
i=1 Zi00 =

∑m3
i=1 E(Ω0|i).

(4–60)

For multinomial distribution MN(n; π1, ... , π10) with

π1 = (pq +D)
2, (4–61)

π2 = 2(pq +D)(p(1− q)−D), (4–62)

π3 = (p(1− q)−D)2, (4–63)

π4 = 2(pq +D)((1− p)q −D), (4–64)

π5 = 2(pq +D)((1− p)(1− q) +D), (4–65)

π6 = 2(p(1− q)−D)((1− p)q −D), (4–66)
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π7 = 2(p(1− q)−D)((1− p)(1− q) +D), (4–67)

π8 = ((1− p)q −D)2, (4–68)

π9 = 2((1− p)q −D)((1− p)(1− q) +D), (4–69)

π10 = ((1− p)(1− q) +D)2. (4–70)

and observation (m11,m12,m13,m21,m22,m23,m24,m31,m32,m33,m41,m42,m43), by

invariant theorem the MLE for pq +D is

p̂11 = p̂q +D =
2m11 +m12 +m21 +m22

2n
, (4–71)

since

(pq +D)2 + (pq +D)(p(1− q)−D) + (pq +D)((1− p)q −D) + (pq +D)

·((1− p)(1− q) +D) = pq +D.

Similarly, we have

p̂10 = ̂p(1− q)−D = m12 + 2m13 +m23 +m24
2n

, (4–72)

due to

(pq +D)(p(1− q)−D) + (p(1− q)−D)2 + (p(1− q)−D)((1− p)q −D) +

(p(1− q)−D)((1− p)(1− q) +D) = p(1− q)−D,

and

p̂01 = ̂(1− p)q −D = m21 +m23 + 2m31 +m32
2n

, (4–73)
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since

(pq +D)((1− p)q −D) + (p(1− q)−D)((1− p)q −D) + ((1− p)q −D)2 +

((1− p)q −D)((1− p)(1− q) +D) = (1− p)q −D,

and

p̂00 = ̂(1− p)(1− q) +D = m22 +m24 +m32 + 2m30
2n

, (4–74)

because

(pq +D)((1− p)(1− q) +D) + (p(1− q)−D)((1− p)(1− q) +D) + ((1− p)q −D)

·((1− p)(1− q) +D) + ((1− p)(1− q) +D)2 = (1− p)(1− q) + D.

Therefore

p̂11 −→P pq +D (as n −→ ∞) (4–75)

p̂01 −→P (1− p)q −D (as n −→ ∞) (4–76)

p̂10 −→P p(1− q)−D (as n −→ ∞) (4–77)

p̂00 −→P (1− p)(1− q) +D (as n −→ ∞). (4–78)

Hence

D̂ = p̂11 − p̂q̂ −→P D (as n −→ ∞). (4–79)

But the problem is we can not estimate m22, and m23 directly since we can only estimate

their sum. Therefore, in the iterative algorithm (4–28) is defined, which involves the
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second layer of the EM algorithm for ”complete” data likelihood

m22∏

i=1

(2(pq +D)((1− p)(1− q) +D)) f1(Yi |Θ1,Ψ1)

·
m23∏

i=1

(2(p(1− q)−D)((1− p)q −D)) f1(Yi |Θ1,Ψ1)

and ”incomplete” data likelihood

m22+m23∏

i=1

(2(pq +D)((1− p)(1− q) +D) + 2(p(1− q)−D)((1− p)q −D)) f1(Yi |Θ1,Ψ1)

respectively. The details have been omitted.

Well, for univariate distribution, or the variance and covariance matrices have nice

structure, we do not always recommend to use (4–42) to solve for Ψ. Since in univariate

case we can easily get the unbiased estimators of variance parameters.

Theorem 4.6. (Capture Theorem) Let fj be non-degenerate normal distributions and Ω

be a closed bounded parameter subspace containing the MLE

(p∗, q∗,D∗,Θ(∗0),Θ(∗1),Θ(∗2),Ψ∗)

of L(Θ,Ψ, p, q,D|Y;M). If (p∗, q∗,D∗,Θ(∗0),Θ(∗1),Θ(∗2),Ψ∗) is the only critical point of

L(Θ,Ψ, p, q,D|Y;M) in Ω and the sequence {(Θ(t),Ψ(t), pt , qt ,Dt)} generated by the

above algorithm always in Ω for all t. Then (Θ(t),Ψ(t), pt , qt ,Dt) → (Θ∗,Ψ∗, p, q∗,D∗)

as t → ∞. Furthermore, ||(Θ(t),Ψ(t), pt , qt ,Dt) − (Θ∗,Ψ∗, p, q∗,D∗)|| converges to zero

linearly.

Proof Since Q(Φ|Φ(t)) is continuous with respect to both Φ and Φ(t),

{(Θ(t),Ψ(t), pt , qt ,Dt)}

converges to a stationary point of L(Θ,Ψ, p, q,D|Y;M), which must be

(p∗, q∗,D∗,Θ(∗0),Θ(∗1),Θ(∗2),Ψ∗)
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in Ω. The second part follows [69, 70].

4.3 DSE Data Analysis

DSE is a data set about the genetic study of body mass index (BMI) for different

genotypes. We are going to study its relationship with different markers. The density

functions for the components of the mixture model are

fj(yi |µj ,σ2) = 1

2πσ2
exp

{
−(yi − µj)

2

2σ2

}
, j = 1, 2, 3, (4–80)

Therefore in the M-step of EM algorithm we have

Theorem 4.7. Under the assumption of (4–80)

µ̂j =

∑2
k=0

∑mk
i=1Ωj |ikyi∑2

k=0

∑mk
i=1Ωj |ik

, σ̂2 =

∑2
k=0

∑mk
i=1

∑2
j=0Ωj |ik(yi − µ̂j)

2

n
. (4–81)

Proof Using (4–16) and (4–23) we have

∂L
∂µj
=

∂Q(µ,σ2|µ(t),σ2(t))
∂µj

=

2∑

k=0

mk∑

i=1

Ωj |ik

(
yi − µj
σ2

)
, (4–82)

and

∂L
∂(σ2)

=
∂Q(µ,σ2|µ(t),σ2(t))

∂(σ2)
=

2∑

k=0

mk∑

i=1

2∑

j=0

Ωj |ik

(
− 1

2σ2
+
(yi − µj)

2

2(σ2)2

)
. (4–83)

∂L
∂µ
= 0 and ∂L

∂(σ2)
= 0 give us (4–81).
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Table 4-1. Estimates of the Parameters for five codons in DSE data

Parameters Codon16 Codon27 Codon49 Codon398 Codon492
p 0.6059 0.6154 0.8429 0.7384 0.5581
q 0.9469 0.9294 0.9542 0.9667 0.9165
D 0.0173 -0.0272 0.0131 -0.0257 0.0466
µ1 28.2374 27.8987 28.2138 28.6255 29.4148
µ2 41.3258 40.1542 42.4086 44.7031 29.1139
µ3 100.8900 100.8900 100.8900 100.8900 100.8900
σ2 30.1626 28.2537 44.2228 31.2721 59.184

4.4 Numerical Experiment

After proving the above theorems we must do numerical experiment to check our

results. We simulate 200 times at the sample size 200 for heritabilities of H2 = 0.1 and

H2 = 0.4. Simulation is consistent with our theorems. We follow the usual definition for

computation error:

ComputationError =
||TrueValue − Estimate||

TrueValue

although this may cause problem when true value is zero. Table 4.4 shows that Theo-

rem 4.4 is correct. But we must note here that Theorem 4.4 holds only if both methods

follow the same computation procedures, namely, the optimization methods must be

the same. If one is gradient method and the other is not, then there is no reason that

Theorem 4.4 will hold since the computation process is not the same.
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Table 4-2. The MLEs of parameters for three different QTL genotypes, and the
association between the marker and QTL in a natural population assuming
that the heritability of the assumed QTL is H2 = 0.1. The numbers in the
parentheses are the square roots of the mean square errors of the MLEs.

Phenotypic Parameters
AA Aa aa

Given MLE Given MLE Given MLE
µ 21 21.3902(0.5057) 25 22.8251(0.6833) 31 31.2811(3.5474)

Genetic Parameters and Variances
Given MLE

p 0.56 0.5604(0.0406)
q 0.89 0.8597(0.0680)
D 0.03 0.0460(0.0108)
σ2 31.36 32.1692(0.0104)

Table 4-3. The MLEs of parameters for three different QTL genotypes, and the
association between the marker and QTL in a natural population assuming
that the heritability of the assumed QTL is H2 = 0.4. The numbers in the
parentheses are the square roots of the mean square errors of the MLEs.

Phenotypic Parameters
AA Aa aa

Given MLE Given MLE Given MLE
µ 21 21.0125(0.2373) 25 23.9699(0.4672) 31 29.9134(0.5133)

Genetic Parameters and Variances
Given MLE

p 0.56 0.5586(0.0226)
q 0.89 0.8558(0.0370)
D 0.03 0.0382(0.0173)
σ2 4.9723 5.334(0.5133)
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Table 4-4. Comparison the MLEs of Newton method and EM algorithm for Estimating the
parameters of three different QTL genotypes, and the association between
the marker and QTL in a natural population assuming that the heritability of
the assumed QTL is H2 = 0.1. The number in the parentheses are the
computation errors.

Parameters True Value Newton EM
p 0.56 0.6681(0.1930) 0.5605(0.0008)
q 0.89 0.7114(0.2007) 0.8619(0.0316)
D 0.03 0.0452(0.5067) 0.0363(0.2100)
µ1 21 24.9405(0.1876) 21.3798(0.0181)
µ2 25 19.9910(0.2004) 22.8305(0.0868)
µ3 31 37.8412(0.2207) 31.3667(0.0118)
σ2 31.36 34.6325(0.1044) 31.7875(0.0136)

4.5 Conclusion and Discussion

In this chapter we focus on the solution of mixture models used in solving complex

genetic traits in the past years. We first prove the existence theorem, which is a simple

corollary of [87]. Then we strictly follow EM algorithm and provide the E-step in our

second theorem. In Theorem 4.3 we give the solution for genetic parameters p, q, and

D. In the past years people always say that EM algorithm is slow. Here we show it will

gives us smaller computation errors (Theorem 4.4). Theorem 4.5 or consistent theorem

show that the accuracy of p, q, and D are driven by sample size and the accuracy of

other parameters. More research results and computations tips will be given in the follow

up research.
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CHAPTER 5
ONGOING RESEARCH AND FUTURE WORK

Besides writing this dissertation I also have coauthored several published papers

with Dr. Hager, and Dr. Wu. Another several papers have been accepted to be

published. Three papers are in the process of being completed. In the past three

years I have given five posters, papers, or talks at various conferences and a total of

several thousand dollars have been awarded to me to support my travels. Right now we

are focusing on the following projects:

1. Family Based Linkage Disequilibrium: We are going to present a statistical
algorithm for constructing a joint linkage-linkage disequilibrium map by simultaneously
estimating the recombination fractions and linkage disequilibria using multilocus
marker data in a natural human population. The data are a set of random
unrelated families, each including a father, a mother and a varying number of
offspring, sampled from a population at Hardy-Weinberg equilibrium. The strategy
is to provide an algorithm and study its theoretical and practical properties.

2. Sequencing Complex Diseases: We are going to study specific sequence variants
that are responsible for disease risk based on the haplotype structure provided by
HapMap. As an example we are going to model the data from a human obesity
study with 155 patients.

3. Soybean data–Application of our methodology: As an application of Chapter 1 we
are going to study Soybean Data and model its biological development.

(a) The data were collected by a group of Chinese scientists. Sample size is 184.
The data contain the following information:

i. 25 linkage segments,

ii. 498 markers (genes) for each sample,

iii. Distances between markers.
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(b) Soybean follows the following growth dynamic model:

dML
dt

= αLM
βL
T − λLML,

dMP
dt

= αPM
βP
T ,

dMS
dt

= αSM
βS
T ,

dMR
dt

= αRM
R
T − λRMR .

(5–1)

where ML, MP , MS , and are the biomass of leaves, petioles, and stems,respectively;
and MT is the total biomass. All the Ms were collected at different time points.

Our research goal for this project is to use our method and interval functional
mapping and find the genes affecting the soybean growth dynamic model (5–1).

4. Decay dynamics of HIV-1: We plant to use use Markov chain model to characterize
specific genes or quantitative trait loci (QTLs) that affect viral life trajectories within
the framework of a dynamic system. The purpose is to focus on different genes for
different stage.

In the future we are going to study:

1. Bayesian method: Use Bayesian approach to study linkage and put prior on our p,
and q.

2. RNA related problem.

3. Protein.
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