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Early detection of plant disease is critical for managing the disease. Many of these diseases 

have similar symptoms, making it difficult to expect which infection might occur. The right steps 

to discover the stress factor and disease spread are unknown. Recently, Florida avocado industry 

has started facing a devastating disease called laurel wilt; this disease has symptoms similar to 

nutrient deficiency and other diseases. Currently, aerial scouting by helicopter in combination 

with ground scouting is the common method to inspect laurel wilt disease. This is a time 

consuming and expensive method to manage huge areas prone to error because it depends on 

visual observation. The main objective of this study is to discriminate laurel wilt infected 

avocado trees from other diseases and nutrient deficiency such as Phytophthora root rot, salinity 

damage, and Fe and N deficiency. The dissertation includes description of laurel wilt and the 

effect of this disease on productivity in avocado crops in Florida, and the advantage of remote 

sensing technique and spectrodiometer band selection. It also includes review of some diseases 

and nutrient deficiencies with same symptoms, making it difficult to distinguish laurel wilt from 

other less risky factors. 
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In order to evaluate and select the best bands that could discriminate Lw from other 

factors, handheld spectrodiometer (SVC HR-1024) (Spectra Vista Cooperation, NY, USA) 

(350-2500 nm) was utilized to collect spectral data; the reflectance data were averaged each 10 

and 40 nm bands to reduce band r; also in that range unexpansive filters are available. From the 

result, there are several bands that could distinguish stress factor from healthy, especially in 

green, red, and near infrared (400-970 nm), therefore distinguishing between; best bands were 

selected and highest weight value (100%) healthy, laurel wilt, salinity damage, and phytophthora 

root rot   using neural network multilayer perceptron (MLP) and the best bands were selected in 

average 10 and 40 were between 700 to 750 nm and 800 to 862 nm, respectively. Stepwise 

discernment analysis (STEPDISC) and radial basis functions (RBF) were used but they were less 

accurate than MLP. Decision tree (DT) and K-nearest neighbor (KNN) method were used and 

showed the ability to distinguish healthy from other stress factors, but it have less accuracy than 

the MLP method. Therefore, we depend on MLP result to select 6 bands for Tetra cam, Canon 

cam, the most important bands were in red edge and near infrared. MLP method was run in all 

analysis; it was the best method of all. Best bands were selected and applied in image processing 

technique using two different types of cameras Canon (CanonSX260 NDVI, Canon U.S.A., Inc. 

Melville, NY, USA), Tetra cam 6 bands (Tetra cam, Inc., CA, USA) to classify Lw from healthy 

and other factors. Filter was built according to bands chosen for Tetra cam 6 bands (G: 580 nm; 

R650, Redge740 nm, Redge750 nm, NIR760, NIR850 nm), and Canon camera with 3 bands (B: 

390-520 nm; green, G: 470-570 nm; red-edge, R mod: 670-750 nm) to distinguish healthy plant 

from non-healthy such as laurel wilt (Lw), Phytophthora root rot (Prr), Fe and N deficiency. Two 

classification methods were utilized: neural network multilayer perceptron (MLP), and K-nearest 

neighbor. Image processing was applied for polygon region of interest (PROI) and overall region 
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of interest (OVROI). According to the results, MLP was the highest value for all treatments, and 

Tetra cam 6 bands - overall region of interest obtained the best result in all classifications. From 

the results, we could use these filters in order to distinguish healthy from other stress factors. It is 

possible to utilize inexpensive remote sensing technique to cover wide area with low cost in 

time. These images were processed in ENVI 4.5 (ITT Visual Information Solutions, Boulder, 

Colorado). Various vegetation indices were applied. Results showed that multispectral imaging 

has the potential to discriminate Lw from healthy and other stress factors. In this dissertation, the 

related literature on application of remote sensing in agriculture is studied. The application of 

remote sensing and the effect of stress plant is reviewed. The most important objective in this 

study is focused on disease detection to detect Lw and separate from healthy avocado trees, 

Phytophthora disease, salinity damage, and the separation of Lw and nutrient deficiency (N, Fe) 

followed by discussion of current operational developments. First, the fundamentals of remote 

detecting are introduced, followed by an explanation of the corporate application of remotely 

sensed data in agriculture field, and the effect of the diseases on crop growth parameters. The 

discussion continues with a brief introduction of various crops and various pathogens that could 

affect the crop production, and the effect of biotic factors and abiotic factors on yield production, 

the effect of detected disease in late stage, and the effect of similarity of symptom for some 

disease symptoms on grove management. Finally, several methods to connect crop growth with 

remote sensing observations are discussed. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Remote Sensing Technique 

Remote sensing is a technique that deals with objects and gets information without 

physical contact. The quantity of reflectance and emitted incident light could be the most 

important indicators to give information about the subject that has been detected; after that could 

be applied the process information in real condition. So when the light strikes the target, a 

number of things could occur. The light could be converted to energy because the object absorbs 

part of incident light, the second option the target could reflect the incident light, and the third 

option the light wavelength could be transmitted by the object. Man eyes can see the visible light 

which is reflected by the object. For example, we can see green color for plant because the most 

amount reflection is visible in green range (500-600 nm). Any change in light reflectance could 

decrease or increase green light reflectance, because objects have a tendency to selectively 

absorb, reflect, or transmit light at certain frequencies. As I mentioned, this happening in 

vegetable subject might reflect green light while absorbing all other frequencies of visible light 

in optimal case. On the other hand, some targets might selectively transport blue light while 

absorbing all other frequencies of visible light. The way in which visible light relates with an 

object is reliant on the incidence of the light and the nature of the particles of the material. 

Visible Light Absorbed, Reflected, and Transmitted 

This section will focus on why the object reflected or emitted some bands, so absorbing, 

transmitting, and reflecting light will be studied to know what the very important factors could 

effect on light incident and thus give information about the target situation. Any material 

contains atoms and molecules, and those contain electrons. Each electron has a tendency to 

vibrate at particular bands region. When a light bands with that same normal frequency imposed 
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upon an atom, then the electrons of that atom will be set into vibrational signal. If a light wave of 

a certain frequency strikes a substance with electrons having the same vibrational incidences, 

then those electrons will absorb the energy of the light wave and convert it into vibrational wave. 

In this case, the vibration energy will transfer to thermal energy instead of vibration motion. 

Therefore, the light incident of that given frequency is absorbed by the target; it is not possible to 

be released in the form of light. So the discriminatory absorption of light by exact substantial 

happens because the certain frequency of the light wave equals the frequency at which electrons 

in the atoms of that material vibrate. As we know, each atom and molecule has specific 

frequencies of vibration, so the light absorption varies depending on vibration intensity and, thus, 

will effect light selective absorbance. On the other hand, if the frequencies of the light bands do 

not match the natural frequency of vibration of the materials, then reflection and transmission 

will occur. Because of incompatibility between light incident and material electrons, the energy 

will be reemitted and reflected as light wave. The science scholars noticed the light property and 

applied the remote sensing technique. The color of object comes from light reflectance or 

diffusion to our eyes. So, if an object absorbs all of the frequencies of observable light except for 

the frequency associated with green light, then the object will appear green in the presence of 

ROYGBIV. And, if an object absorbs all of the frequencies of observable light excluding the 

incidence related with red light, then the item will look red in the attendance of ROYGBIV. 

Disease Detection Technique 

Disease in plant causes economic issue worldwide, especially for the agricultural industry. 

There are some diseases that kill all plants in a few days or weeks. There are many methods to 

detect disease or insect depending on availability of instruments in the field. 
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Scouting 

Farmers commonly use scouting to detect disease plants but this method is 

time-consuming and needs more laborers, especially for large area, so it is not precise. In some 

cases, the disease has the same visible symptoms of other diseases or nutrient deficiency; the 

human eyes cannot differentiate the cause of the disease. In some cases, dogs are used to help 

find disease by sniffing out pests or use aerial scouting by using helicopters to fly around the 

field, but this method is considered as inefficient and expensive (Kuflik et al., 2008, Hammond 

et al., 2006, Burgess, 1983). Scouting or routine field inspection needs people that have 

experience and attained some courses to learn how to detect disease; this study, training course 

increased the productivity of cotton crop. In Mexico and Central America countries, scouting is 

used to inspect infested cotton crop, but not for a huge area, they used only in limited area; 

recently, very few farmers used scouting for huge area. In some circumstances, scouting is 

applied to test pesticide management in small area (Matthews, 1996). (Allen and Roberts, 1974) 

studied the cost effectiveness and time-consuming per acre in different area and different season; 

they found the laborers need 4 to 6 weeks to cover 24 and 27 acres, respectively. In addition, the 

cost of each acre was 5.5¢/acre/week. It is clear that scouting or naked eyes detection needs large 

number of laborers and high cost and time-consuming than other techniques.  

Polymerase Chain Reaction (PCR) and DNA  

Polymerase chain reaction (PCR) and DNA is a good investigation method and precise, but 

are time-consuming and expensive. Each sample needs a long time and complex process to get 

results. Therefore, early decision is very important to reduce economic damage and control on 

disease to prevent spreading disease to another area through vector control, pesticide spraying, or 

eliminates infected plant to protect other plants and, thus, will increase the crop productivity. 

There are many scholars utilizing PCR method in order for pathogen detection (Henson and 
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French, 1993, Minsavage et al., 1994, Green et al., 1999, Ahrens and Seemuller, 1992). It was an 

accurate method (Kinard et al., 1996), but time-consuming and highly expensive (Schneider 

et al., 2004). 

Nondestructive Method 

Remote sensing technique use to cover large area in short time to get information in early 

disease stage to make the right decision. Visible near infrared spectroscopy on this method might 

be used in the field. In order to build remote sensing, you should first develop ground base 

sensor system to monitor stress and plant health (Sankaran et al., 2010b). From previous review, 

monitoring plant can be divided into two methods, destructive and nondestructive. In this project, 

we focused on the nondestructive method such as spectroscopy and imaging technique. 

VIS-NIR spectroscopy 

In remote sensing, a sensor is used that can detect the light that might be reflected, 

transmitted, and emitted when the human eyes would be unable to feel the light in some 

wavelength, especially in near infrared and microwave wavelength. The electromagnetic 

spectrum varies from shorter wavelengths to longer, so the light wavelength can be divided into 

several types: visible (400-700 nm), near infrared (700-1300nm), and mid infrared (1300-

3000 nm); this is the most important wavelength. Can be used it in spectrodiometer device to 

detect disease. However, visible range has short wavelength and high energy, while infrared 

range has longer wavelength but has less energy. 

Spectroscopy indirect and non-distractive method is a very useful method we can use in 

different ways such as disease detection, fruit quality, nutrient deficiency, soil elements, and 

different food processing (Zhang et al., 2007, Liu et al., 2003). Menesatti et al. (2010) 

emphasized that chemical analysis was a destructive method and time-consuming; therefore, he 

used VIS-NIR spectroscopy to estimate nutrient level N, P, K, Ca, Mg, Fe, Zn, and Mn in orange 



 

17 

leaves in different levels using foliar analysis and pen prop to obtain spectral reflectance for each 

leaf individually. The result showed high correlation when he used spectroscopy method. Fan 

et al. (2009) inspected firmness and soluble solids content (SSC) of Red Fuji apples by using 

VIS-NIR spectroscopy. The experiment was applied in different light source and different fruit 

orientation; 650-920 nm was applied and two calibration models were applied based on partial 

least square and obtained 86% classification correctness and r2 0.95. Camps and Christen (2009) 

examined the capability of portable VIS-NIR spectroscopy to decide apricot quality; the 

parameters used in this test were soluble solids content (SSC), total acidity (TA), and firmness 

(Fi) and use several varieties. For the second part of the experiment using VIS-NIR handled 

color intensity with correct efficiency; the results were encouraging to use this technique in the 

field during postharvest. Sirisomboon et al. (2009) studied the reflectance spectroscopy of 

VIS-NIR domain (600-1100 nm) to consider the outer such as frozen green soybean, and 

insect-eaten; while for inner of fresh green soybean pods caused by disease such as downy 

mildew and anthracnose, they analyzed the data using principle component analysis and they 

found the spectroscopy method can be used in the green soybean grading process. West et al. 

(2003) assisted in reducing pesticide and chemical application and to reduce the risk of pollution 

worldwide by using optical sensor to detect the diseases and spray in infected zone if it is 

un-necessary to spray the whole field and of course this will lead to economic efficiency in 

addition to keeping the environment clean. Magwaza et al. (2012) studied probability to verify 

the quality of citrus using nondestructive method in inner and outer quality measurement, 

including the selection of NIR characteristics for spectra capture, analysis, and summarized his 

work that it is possible to use this method in measuring the quality of fruit. Wu et al. (2008) had 

applied VIS-NIR spectroscopy in lab conditions to identify Botrytis cinerea on eggplant leaves 
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in early disease stage; principle component analysis was used to reduce the frequency of 

wavelength dimension in some bands, and they performed back propagation neural networks and 

obtained accuracy rate of 85% in calculating fungal contagions. Huang and Apan et al. (2004) 

utilized portable spectrometric VIS-NIR range (400-1300 nm) to investigate Sclerotinia rot 

disease in celery plant using partial least square regression model; they used raw data and first 

and second derivative data and they found the same result when they used full range (400-

2500 nm). Fu et al. (2007) detected brown heart in pears and compared transmission and 

reflectance modes of VIS-NIR by using spectrometric in range of 400-1110 nm with two types 

of varieties and two detectors “(Si: 670-1110 nm; InGaAs: 800-2630 nm)”. They implemented 

data by using discriminant analysis and they found it is possible to detect the disease in 

spectroscopy with transmission modes that had higher classification value that reached up to 

91%. Zhao et al. (2003) performed un experiment to examine the effect of the nitrogen on corn 

(Zea mays L. cv. 33A14) by using different levels of nitrogen and they measured different 

parameters of leaf hyperspectral reflectance, concentrations of chlorophyll and leaf area and 

concentration of N; they found there was a high correlation between N concentration and spectral 

reflectance. Cozzolino et al. (2011b) reviewed new sensor technique using mid-infrared (MIR), 

near-infrared (NIR), visible (VIS), and ultraviolet (UV) spectroscopy to monitor and improve 

grape and wine industry. Cozzolino et al. (2011a) also worked on red grape homogenates to 

examine concentration of minerals such as (Ca, K, Mg, P, S, Fe, and Mn) and electric 

conductivity (EC) by using NIR spectroscopy in range (400-2500 nm), they pre-processed the 

data using multiple scatter correction and then used partial least squares (PLS) regression and 

cross validation . Mg, S, and EC in grape could be figured out by using NIR reflectance 

technique. Ulissi et al. (2011) tried to avoid the expensive cost of using different analyzing 
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methods and compared to spectroscopy method; in this research they measured N concentration 

in “chemical standard analyses, chlorophyll meter readings, and N-NO3 concentration in petiole 

sap” and compared the result with VIS-NIR spectroscopy. The correlation between predicted 

values from spectral reflectance analysis and the practical chemical standards showed, in the 

independent assessment, extremely significant correlation coefficient (r = 0.94). Min et al. (2006) 

conducted the experiment in the field to estimate N level in the leaves of Chines cabbage. They 

also investigated N and water content in chemical standard method to compare the result with 

reflectance spectral method. Three different levels of N were used (40%, 80%, and 100%). 

Correlation coefficient spectrum, standard deviation spectrum, stepwise multiple linear 

regression (SNMR), and partial least squares (PLS) regression were used to decide wavelengths 

for N estimate models. They found there were significant correlation between water content and 

N prediction and they selected some bands that can be used to predict N deficiency (550, 840, 

1467, 1910, and 1938 nm). Ceccato et al. (2001) studied leaf level by using spectral vegetation 

index in short wave infrared. They didn’t get good results without use of another parameter 

(inner structure and dry substance to approach reasonable result). Also, they used near infrared 

wavelength combination with short wave. The aim of this research was to investigate the 

potential and approaches for using visual remote detecting. Cheng et al. (2006) utilized three 

vegetation indexes to find out the relationship between canopy water content and Equivalent 

Water Thickness (EWT). EWT was investigated using the MODTRAN-based suitable technique 

which was used to estimate their impact on the water content approximations. Thenkabail et al. 

(2000) studied the best bands and what was appropriate for describing agricultural yield 

biophysical variables for different crops (cotton, potato, soybeans, and sunflower) by using 

reflectance measurement in range 350-1050 nm. Three different reflectance methods were used: 
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optimum multiple narrow band reflectance (OMNBR), narrow band normalized difference 

vegetation index (NDVI). The best waves were collected in long and short wavelength (500, 550, 

650, 700, 900, and 950 nm). The aim of Thenkabail et al. (2004) research was to utilize spectral 

reflectance in range 400-2500 nm to estimate the vegetation and agriculture crop to reach the 

best narrow bands to classify different vegetation species such as shrubs, grasses, weeds, and 

four species from ecoregions of African savannas. Three classification methods were used. The 

significant accuracy classification was hyperspectral narrow bands because it was increasing the 

accuracy 9% and reached up to 43% to classify vegetation crop species. 

Hyperspectral and multispectral image 

Kuo et al. (2014) insisted use of hyperspectral imaging in general life purpose-not only in 

agriculture such as astronomy, medicine, food safety, forensics, and target detection. Qin et al. 

(2009) studied the ability of hyperspectral imaging to recognize canker disease from normal 

citrus fruit and infected citrus fruit; the spectral range they performed was between 450 and 

930 nm. Spectral information divergence classification method was used and they obtained 

overall classification accuracy of 96%; therefore, they confirmed that it is possible to use 

hyperspectral image to recognize citrus canker from other diseases that had the same symptoms. 

Li et al. (2014) proved the capability of hyperspectral imaging as an efficient method to detect 

Huanglongbing disease in citrus. Extended spectral angle mapping (ESAM), Mahalanobis 

distance, and an unsupervised method, K-means, were used as classification methods. The first 

method (ESAM) was the highest classification value at about 86%. Dong et al. (2014) detected 

thrips defect on green-peel citrus. They had selected 4 bands that could detect the disease in 

principle component analysis (PCA) in VIS-NIR region (523, 587, 700, and 768 nm); however, 

they obtained 96.5% classification accuracy for both methods PCA and B-Spline lighting 

correction. From this result, they confirmed that it is possible to recognize thrips disease in this 
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method. Kumar et al. (2012) had used both hyperspectral and multispectral images in order to 

detect citrus greening disease. The experiment was conducted in two time periods, 2007 and 

2009, from different groves. PCR method and portable spectrometric were used to validate 

image result. Two different soft wares were used (ENVI, ITT VIS) for hyperspectral image 

analysis. HLB infected areas were recognized using image-derived spectral library, “mixture 

tuned matched filtering (MTMF), spectral angle mapping (SAM), and linear spectral inmixing.” 

MTMF was the highest accuracy, then others. The precision of SAM using multispectral images 

was 87%. It was the highest value compared to other methods. Okamoto and Lee (2009) tried to 

detect HLB citrus disease for the varieties Tangelo, Valencia, and Hamlin. The authors found 

interesting result to identify the disease relatively with varieties. The fruit detection tests revealed 

that 80-89% of the fruit in the foreground of the validation set were recognized correctly, though 

many highly discriminated fruits were identified wrongly. Multispectral and fluorescence images 

were utilized in this study to detect yellow rust in wheat crop; the overall error was less in image 

fluorescence detection. In general, quadratic data analysis was a higher classification value than 

Self-Organizing Map; it reached up to 95% (Moshou et al., 2005). 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

Review on Laurel Wilt Disease, Biotic and Abiotic Factors Have the Same Symptoms 

The avocado crop is considered the second largest tropical tree after citrus in Florida, 7000 

acres were planted with avocado especially in the south part of the state. Avocado production 

makes a lot of money every year, reaching many millions of dollars in Florida and California. 

This high industry benefit is threatened by a new disease called laurel wilt (Lw). This disease has 

the ability to kill avocado tree through few weeks depending on the severity of the disease. Lw 

disease has the same symptoms in the early stage that make it difficult to recognize it from other 

stress, especially with aerial survey. This chapter discusses some factors that affect spectral 

reflectance, and reviews biotic and abiotic stress and the dynamic of control of these factors. 

Factors Affect Spectral Reflectance and Absorb in Leaf Area 

There are many factors that could affect spectral reflectance; this depends on leaf structure, 

water content, mineral tension, age and vigor of canopy, so spectral signature might change 

according to internal external structure factors, characteristic spectral features verified for the 

three main visual spectral fields: chlorophyll concentration, cell structure, and water content. 

Chlorophyll Concentration 

A healthy plant usually has dark green color, because it reflects bands in visible range 450-

540 nm because of the chlorophyll content. When the plant absorbs sunlight to process 

photosynthesis, are absorbed, blue (340-450) nm and red (650-750 nm), while reflecting green 

color. There are chlorophyll a and b, each one absorbs sunlight in different wavelength, so they 

both complement each other to provide cells plant with energy that is necessary to introduce 

glucose and carbohydrates. Gitelson et al. (2003) investigated the relationship between 

chlorophyll content and spectral reflectance for varices species (maple, chestnut, wild vine, and 
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beech leaves) and different wavelength range. They found out spectral range between 520-550 

nm and 695-705 nm correlated with the chlorophyll concentration for all leaves. Sims and 

Gamon (2002) tried to improve spectral indices for estimation of leaf pigment content for various 

species and leaf structure variation to utilize it in nondestructive method for large scale without 

wide calibration. The result showed there were no significant difference between leaf structure 

and chlorophyll content in red range. Also, carotenoid and anthocyanin monitors performed 

poorly for all spectral data. Chappelle et al. (1992) measured the spectral reflectance and 

concentration of chlorophyll a, chlorophyll b, and carotenoids in soybeans based on absorption 

light in specific wavebands. The linear relationship was very strong between ratio spectra and 

concentrations of the photosynthetic colors made the potential to improve a relation analysis of 

reflectance bands algorithm. Reduced light absorption by chlorophyll apparently amplified the 

reflectance of the visible wavebands (500-700 nm) (Sinclair et al., 1971) . 

Leaf Structure 

High reflectance in near infrared region is related to cell structure because of internal leaf 

scattering and no absorption comparing to visible region. The most definite original variations 

often happen in the visible spectral region rather than in the infrared because of the sensitivity of 

leaf pigment to functional disorders (Knipling, 1970). Penuelas and Filella (1998) found that 

spectral reflectance of healthy plant has different spectral signature in near infrared domain (700-

1300 nm) compering to infected plant.. Also, reflectance is directed by structural discontinuities 

faced in the leaf. Leaf layer is a very important indicator to identify leaf situation in near infrared 

region. Any change in reflectance slope belongs to leaf structure and ground area (Heermann and 

Khazenie, 1992, Horler et al., 1983). The position of the red-edge is defined as the position of the 

main inflexion point of the red-NIR slope. This is often also denoted as the red-edge index. Red 

edge position between 680 nm to 730 nm is a very critical parameter when utilizing remote 
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sensing. This region provides more information about the situation of the plant such as 

chlorophyll content, water and nutrient deficiency, stress condition, and senescence (Baranoski 

and Rokne, 2005). Sinclair et al. (1971) studied the leaves of six agronomic crops measuring 

spectral reflectance in fresh and middle stage and in the end of the season. Deviations in the 

internal structure of leaves might lead to rises in the near infrared wavelength (700-1300 nm). 

Water Content 

Drought or water stress is a very important indicator should consider when use the remote 

sensing. Far infrared 1300-2600 nm represents water stress and senescence, and increased 

reflectance in the far infrared wavelengths (1300-2600 nm) when they had water loss (Sinclair et 

al., 1971). Tucker (1979) used normalized difference vegetation index with reflectance data 

between 660 and 860 nm or near infrared region. Gao (1996) had developed another index 

focused on water loss. Normalized difference water index (NDWI) provided information about 

plant in range between 860 and 1240 nm. From the result, any lack in water would affect spectral 

signature in this range. Therefore, it is possible to combine both index (NDVI) and (NDWI) to 

obtain more information for image (Gao, 1996). Barrett and Curtis (1999) utilized different 

species and dissimilar leaf morphologies to determine water content in two NIR ranges (700-

1300 nm) and middle NIR (1300-2500 nm). Sims and Gamon (2003) confirmed water stress is a 

very important indicator for remote sensing application. Thin tissue has best correlated with the 

water content. The significant correlations with water content in three wavelength domains are 

(950-970, 1150-1260, and 1520-1540 nm). 

Symptoms Similarity between Laurel Wilt and Other Plant Disease 

Laurel wilt is a vascular infection of redbay (Persea borbonia (L.) Spreng.) and other 

plants in the family Lauraceae in the United States. It is caused by a fungus (Raffaelea sp.) that is 

carried by an unoriginal beetle of Asian origin, the redbay ambrosia beetle (Xyleborus 
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glabratus Eichhoff) (Fraedrich et al., 2008). Since the early discovery of the redbay ambrosia 

beetle nearby Savannah, GA in 2002, laurel wilt has caused high mortality of redbay in Georgia, 

South Carolina, and Florida (Fraedrich et al., 2008). South Florida commercial avocado was 

discovered to be infected with laurel wilt in 2011 (Carrillo et al., 2012). The infection starts in 

the top, plus upper branches dead, wilting, and discoloration foliage in a few weeks. There are 

external symptoms in the tree stem, when removal of bark from wilted branch sections bare 

black-to-brown strips of staining in the sapwood and rare ambrosia beetle holes from which the 

yellowing extended into the neighboring wood. Laurel wilt is a disaster to the marketable 

avocado production and is a possible threat to the Lauraceae in the world (Mayfield et al., 

2008c).  

Avocado Scab 

Avocado scab is the most significant disease of avocado fruit and vegetation in Florida 

and is caused by the fungus Sphaceloma perseae Jenkins which attacks fresh leaves, tender 

tissue of the vegetation and fruit, creating spots that produce spores (Pernezny and Raid, 2001). 

The disease occurs on leaves as separate purplish to dark brown spots (Stevens, 1922).The spots 

are observable on both sides of the leaf and ultimately the middles my drop out, leaving slight 

irregular holes fringed with grayish brown tissue. The most dangerous period for fruit contagion 

is since the period of fruit set until it has reached a third or half of its regular size (Everett et al., 

2011) 

The disease acts on the leaves as separate spots, angular in form, commonly less than 

2 mm in diameter and brown in color. Spots repeatedly occur in groups or might combine to 

form irregular spots (Zentmyer, 1984). 
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Figure 2-1. Avocado leaves infected with laurel wilt disease. A) Early stage infected. B) Very 

late stage and. C) Late stage. Photo courtesy of author, Jaafar Abdulridha.  

Figure 2-2. Avocado Scab infected. Photo courtesy of author, Jaafar Abdulridha Cercospora Spot 

or Blotch 

A B 

C 
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Figure 2-3. Cercospora Spot or Blotch. Photo courtesy of author, Jaafar Abdulridha 

Verticillium 

The soil-borne disease is naturally related with plants grown on old land upon which are 

Verticillium susceptible. Leaves are rapidly wilting partially of the canopy, or on the full tree, 

and the quick death of the plants. The leaves turn brown and remain attached to the branches for 

an extended period (Zentmyer, 1984, McMillan, 1976). 

Algal spot is a disease of little commercial significance to the avocado business of Florida. 

The prominent greenish-gray spherical spots may be found on a large number of leaves with no 

obvious permanent harm to the tissue. The elder bad skin become reddish brown due to the 

masses of maturing forms (McMillan, 1976). 

 

Figure 2-4. Verticillium infected leaves. Photo courtesy of author, Jaafar Abdulridha Algal Spot 
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Figure 2-5. Algal Spot. Photo courtesy of author, Jaafar Abdulridha 

Powdery Mildew 

Powdery mildew may develop serious enough in the nursery to permit an application of 

fungicide. Greenish areas seem on the upper surface of new, increasing leaves which display the 

distinguishing powdery, and white, spore-bearing growth on the lower surface (Pernezny and 

Raid, 2001). Infection on mature leaves generally look purplish-brown initially and may or may 

not be covered with the white, powdery growth. The white surface growth may disappear as the 

leaf matures and climatic conditions favorable to fungus change (Crane, 2013). 

Figure 2-6. Powdery Mildew. Photo courtesy of author, Jaafar Abdulridha Seedling Blight 
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It occurs irregularly in the summer season. The fungus attacks the tender buds and leaves 

of nursery-grown trees. The lesions on the leaves are reddish-brown and enlarge rapidly along 

the larger veins. Lesions on young leaves are brownish-black and frequently cause curling and 

twisting of the leaves. Terminal buds are killed outright. The symptoms on the young, tender 

stems are dark, sunken, elongated lesions which occasionally split open (Zentmyer, 1952). 

 

 

Figure 2-7. Seedling blight. Photo courtesy of author, Jaafar Abdulridha Phytophthora Root Rot 

 

The symptom of this disease: leaves are small, pale green, often wilted with brown tips, 

and drop readily. Young branch dieback from the tips, and finally the tree is reduced to a bare 

framework of dying branches. Tree death may take from a few months to several years, 

depending on soil features, cultural performs, and ecological environments. The minor feeder 

roots on diseased trees may be absent in the progressive steps of decay. When current, they are 

regularly dark, brittle, and decayed, in divergence to vigorous trees which have plenty of 

creamy-white feeder roots (Demelash and Getachew, 2015, Machado et al., 2013). 

The symptom of freeze: firm, brittle, dead, and curled leaves, with a brown or bronze, 

water-soaked/discolored small branches, larger branches and trunks can split and lose bark, 

discolored fruit, with bronzed to blackened skin, browned buds and flowers, fruit stems can be 

killed or ring barked, causing heavy-fruit drop (Krezdorn, 1974). 
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Figure 2-8. Phytophthora Root Rot. Photo courtesy of author, Jaafar Abdulridha 

 

 

Figure 2-9. Freeze damage. Photo courtesy of author, Jaafar Abdulridha Freeze Damage 

Salt Damage 

Salinity comes from irrigation with salt water or from increasing the water table or from 

the soil itself, so it is a serious problem in the world. In southern Florida, sometime avocado trees 

are flooded with seawater. The first sign that the soil around your avocado tree has too much salt 

is tip burn on the leaves. The tips of some leaves begin to turn yellow and curl slightly, then the 

yellow areas travel farther into the leaf and along the sides (Bernstein, 1975). Some leaves might 

burn in spots on the interior, making brown or yellow circles along the inner vein (Bhatti and 

Loneragan, 1970). This is sometimes called sodium scorch (Ayers et al., 1952). Although the 

most visible sign of high soil salinity is leaf tip burn, other things are going on inside your 
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avocado tree. The salt stunts root growth, keeping the tree from getting the necessary nutrients to 

produce fruit (Jones, 2012). Excess salt in the soil can change the soil's density, keeping it from 

draining properly. This can flood the avocado tree's root system and kill it (Linderman et al., 

1983). The burned leaves have reduced green surface area, which prevents the tree from 

performing enough photosynthesis. This reduces the nutrients available to the tree. In addition to 

reducing the fruit yield, a lack of nutrients can stunt the tree's growth. The burned leaves 

eventually fall off, forcing the normally evergreen tree to expend energy producing new leaves 

before it can be healthy enough to produce fruit (Bar et al., 1997) 

Nutrient Deficiency 

Iron 

Iron deficiency is a critical problem for the plant because it effects the growth of tree and 

the quality of fruits. Iron lack also has an effect on absorbing some important minerals in soil 

such as phosphorus, copper (Abadia et al., 1999). Leaves turning yellowish is due to reductions 

in the leaf absorption of photosynthetic colors, chlorophylls, and carotenoids (Abadia et al., 

1999). Chlorosis may be caused by a real shortage of iron or by applications of extreme 

quantities of lime or phosphate to certain soils. It may be caused by flooding, poor drainage, or 

high levels of certain mineral elements in the soil such as manganese, copper, or zinc. The 

optical symptoms are often disorganized with other conditions such as a lack of magnesium, 

manganese, or boron or some other elements. A lack of iron in the soil is unusual but iron can be 

absent for absorption if soil pH is not between about 5 and 6.5 (Chen and Barak, 1982). 

Alkalinity of the soil (the pH is above 6.5) is a common issue in the soil that will lead to an effect 

on iron absorption. 

Scholars have studied iron deficiency and the impact of lack and over fertilizer on plants. 

(Mariotti et al., 1996) studied spectral reflectance when added five rate level from mg L (-1) 0 to 
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Figure 2-10. Avocado leaves with salinity damage. Photo courtesy of author, Jaafar Abdulridha 

 

4 mg L (-1) of iron to corn and sunflower crops to investigate the effect of iron in remote sensing 

technique. From the result, it was increased reflectance and diffusion, and shifted the red edge 

location of reflectance curves in the direction of shorter wavelengths. The symptom of iron 

deficiency was clearer than sunflower and needs more iron in order to be an optimal planting 

crop. (Zarco-Tejada et al., 2005) emphasized that it is possible to use remote sensing imagery to 

detect iron and nitrogen deficiency; canopy reflectance responded to nutrient deficiency. 

 

Figure 2-11. Iron deficiency. Photo courtesy of author, Jaafar Abdulridha 



 

33 

Nitrogen Deficiency 

The communed symptoms of nitrogen deficiency: green leaves turn to yellow or pale green 

and the vegetation part has less density than healthy plant because of being unable to make 

sufficient chlorophyll. Lower leaves look paler than young leaves, so symptoms would depend 

on growth age. These symptoms are confusing sometimes depending on soil condition and 

season, so it is not easy to recognize nitrogen deficiency with other stresses such as deficiencies 

in other nutrients, toxicity, herbicide damage, disease, insect harm, or environmental situations. 

Therefore, it is necessary to perform PCR test; as we mentioned, this is an accurate method but is 

a long process. Spectral reflectance is one nondestructive-alternative method, by measuring 

chlorophyll level at the field or by using image technique to determine nitrogen deficiency. 

Nitrogen is a very important element in plant construction; therefore, there are many studies that 

tried to detect N to determined lower and higher level in vegetation area to complicate the 

fertilizer application (Noh et al., 2005, Lukina et al., 1999, Goetz et al., 1983). It is possible to 

monitor different levels of nitrogen in three periods of season for corn crop and weeds, so there 

were specific bands (from 409 to 947 nm) that were effected in nitrogen stress for weeds and 

corn depending on growth stage (Goel et al., 2003). 

Phosphorus (P) Deficiency 

Phosphorus is very important for new plant tissue; any lack of this element will lead to 

damage of new tissue because it is a component of the complex nucleic acid structure of plants. 

Plants deficient in P are stunted in development and often have an irregular dark-green pigment. 

Sugars can store and cause anthocyanin pigments. The most communed symptom is a 

reddish-purple color. Red coloring may be encouraged by other features such as insect 

destruction. It is not easy to recognize P deficiency because it has the same symptoms of N and 

Fe deficiency specially or in early symptom of freeze damage, low temperature could affect soil 
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to P uptake. Mutangao and Kumar (2007) examined the ability of imaging spectroscopy and 

neural network map phosphorus concentration. The most common sensitive bands of 

phosphorous deficiency were in short wave 2015 and 2199 nm. Wiwart et al. (2009) studied 

three different legume crops under four elements of stress deficiency of nitrogen, phosphorus, 

potassium, and magnitude by digital color image analysis. All crops had strong response when 

the color of leaves changed, especially yellow lupine responded to the extreme degree of 

phosphorus shortage. Early detection could reduce the effect of disease and increase the 

productivity. When you have a quick diagnosis, then you have act quickly to reduce the risk of 

late stage for any stress (Chaerle et al., 2007). 

 

Figure 2-12. Avocado leaves with nitrogen deficiency. Photo courtesy of author, Jaafar 

Abdulridha 

Figure 2-13. The symptoms of phosphorus (P) deficiency. Photo courtesy of author, Jaafar 

Abdulridha 
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Potassium Deficiency 

Yellowing begins at the margin of the leaf and spears toward the veins. Brown spots 

develop within affected area. The margin associated with some interveinal yellowing on the rest 

of leaf (Barnard et al., 1991, Haas, 1939). The contrast with salt damage where there is generally 

little or no yellowing associated with the marginal burn, but potassium deficiency symptom has 

the same nutrient deficiency symptoms. Lukina et al. (1999) utilize spectral reflectance to 

determine whether deficiency of Nitrogen (N), Phosphorus (P), Potassium (K), Calcium (Ca), 

and Magnesium (M) changes spectral reflectance possessions of wheat leaves. Reflectance curve 

shifted down in visible range and red edge (412-770 nm) when there was lacking in potassium, 

calcium, and phosphorus. Fridgen and Varco (2004) investigated nitrogen and potassium 

deficiency in cotton crop by spectral reflectance in various levels in both elements. Partial least 

squares regression was used to predict the nutrient stress. When the K was sufficient, red edge 

was shifting toward longer wavelength with increased N supply. 

 

Figure 2-14. Avocado leaves show potassium deficiency. Photo courtesy of author, Jaafar 

Abdulridha 
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Magnesium 

Magnesium deficiency effect on chlorophyll concentration; therefore, when we have heavy 

deficiency symptoms, the leaves turn to yellowish color. In fact, Mg is a mobile element, moves 

from old leaf to new flush to make up shortfall. Therefore, the symptoms appear on old leaves 

and so on (Cakmak et al., 1994). Basically, these symptoms are the same as some diseases and 

nutrient deficiency, start with yellowing leaf, so it is necessary to take advantage of 

electromagnetic spectral technique. Mariotti et al. (1996) confirmed previous study that insisted 

on spectral reflectance rapid method for disease and nutrient detection. However, in this study, 

they examined the effect of several element deficiencies such as Fe, S, Mg, and Mn deficiency 

on reflectance, absorbance, and transmittance spectra of wheat, barley, and corn. All treatments 

showed reduction of chlorophyll and thus spectral reflectance gave low reflectance and 

transmission, decreased leaf absorbance, and shift down the red-edge position, defined as the 

variation point that happens in the quick transition among red and near-infrared. 

Manganese 

The first appearance is on new leaves because Mn is non-mobile from old leaf to new 

tissue. Interveinal chlorosis is the most popular symptom. In addition, there are a series of 

brownish-black spots appearing in the canopy that has a lack of Mn. Young leaves. In minor 

grains, grayish zones seem near the base of fresher leaves. The symptoms looks like symptoms 

of another disease or nutrient deficiency, so there are many studies which tried to recognize Mn 

deficiency and other stresses such as (Bravo et al., 2003, Moshou et al., 2003) 

Copper 

Leaves with a lack of copper shows pale color, in advance stage leaves dried, curly, weak 

connection with branches causes die-back, yellow tip, exanthema copper disease of new leaves. 

Deficiency of copper affects flavor, storage capability, and sugar content of fruits and can affect 
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productivity as well. It is a really serious problem when we have Cu shortage. Bernal et al. 

(2007) compared the effect of extra Cu on soybean crop planted in soil and hydroponic method 

to monitor the change on leaves and root plant. Fluorescence radiation was utilized. The results 

significantly designate that changed Cu-uptake and transference pathways need function in leaf 

cells matched with root cells. Liu et al. (2012) applied successfully fluorescent sensing platform 

for label-free sensitive and selective detection of Cu. 

Boron 

Carrero et al. (2005) utilized spectrophotometric to detect boron. Azometihine-H-boron 

complex technique was settled in order to flow boron in soil, fruits tissue, and leaf tissue of 

coffee plantations from different areas. 
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CHAPTER 3 

DETECTION AND DIFFERENTIATION BETWEEN LAUREL WILT DISEASE, 

PHYTOPHTHORA DISEASE, AND SALINITY DAMAGE USING A HYPERSPECTRAL 

SPECTRODIOMETER TECHNIQUE 

Introduction 

Avocado is the second most important tropical fruit crop in Florida after citrus 

(NASS/USDA, 2009). The avocado crop is valuable to the state economy, and the avocado 

industry brings in a substantial amount of “new dollars” to the state, resulting in an overall 

economic impact of close to $100 million per annum (Evans, 2015). However, the revenue from 

avocado in Florida has been greatly reduced, 50%, by the effects of laurel wilt (Lw) disease 

(Evans, 2015, Evans et al., 2014). Lw disease has caused serious losses in fruit quality and 

quantity, resulting in reduced sales, and an increase in agro-industrial waste, pesticide costs, and 

management expenses (Evans et al., 2014). Laurel wilt disease has been reported as a major 

threat to the commercial production of avocado in Florida (Carrillo et al., 2013, Ploetz et al., 

2013). One vector of Lw disease is the redbay ambrosia beetle (Evans et al., 2014, Kuhns et al., 

2014, Kendra et al., 2014). The redbay ambrosia beetle, Xyleborus glabratus Eichhoff 

(Coleoptera: Curculionidae: Scolytinae) is associated with fungal symbionts such as Raffaelea 

lauricola (Fraedrich et al., 2008, Hanula et al., 2008), a fungi that kills the tree by blocking water 

flow to the canopy (Kendra et al., 2013). 

The secretion of redbay ambrosia beetle saliva helps to spread the fungus R. lauricola from 

tree to tree (Carrillo et al., 2012). In addition, the fungus R. lauricola grows rapidly inside the 

wooden stems (Jeyaprakash et al., 2014, Carrillo et al., 2013). The fungi reduce the tree’s ability 

to transfer nutrients and water to the branches and leaves. Generally, the disease causes the color 

of the leaves to change from green to a red-purple brown color, the underside of the bark to 

become black, and small pores and holes to form inside the outermost layer of bark (Ploetz et al., 
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2010). All of these symptoms may indicate the presence of the redbay ambrosia beetle in the tree 

(Ploetz et al., 2010, Fraedrich et al., 2008). Many of the disease symptoms are similar to those 

caused by other diseases such as Phytophthora root rot (Phytophthora cinnamomi) or factors 

such as lightening damage, freeze damage, or drought stress (Sankaran et al., 2012), making 

visual detection of Lw difficult. Moreover, the development of external symptoms signifies 

colonization of the host (Ploetz et al., 2012b). It may not be possible to manage the disease once 

plants display external symptoms (Inch and Ploetz, 2012). An advanced and rapid method for 

detecting Lw that can distinguish these biotic and abiotic stresses is therefore needed (Sankaran 

et al., 2010a). Currently, the only method to manage Lw disease is complete removal of the 

infected tree, including the root, so that vectors cannot transfer the disease to healthy trees 

(Evans et al., 2010, Hanula et al., 2008, Sankaran et al., 2012). Lw disease has spread very 

quickly in just a few years through Florida and other states (Ploetz et al., 2012b), so it is 

necessary to find a rapid method to detect the disease in a timely manner to at least reduce the 

spread of the redbay ambrosia beetle. There are several methods to detect the disease such as 

scouting and polymerase chain reaction (PCR) (Henson and French, 1993). Those methods are 

costly and time-consuming; therefore, it is necessary to use other methods to detect the disease 

(Bravo et al., 2003). Spectral reflectance is a method that is rapid and non-destructive (Graeff 

and Claupein, 2003). Spectral reflectance methods depend on reflected or emitted radiation from 

different bodies, so each material has a different spectral signature (Curran, 2000). For plant 

signatures, the spectral reflectance is either increasing or decreasing depending on physical 

(external) factors such as chlorophyll and pigment concentration which are used as an indicator 

of the plant condition in the visible range (450-760) nm (Blackburn, 1998, Broge and Leblanc, 

2001). There are also interior factors such as physiological structure, condition of the cell wall, 
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water content, surface roughness, and stoma activity which will effect light penetration through 

the leaf structure, so spectral signature in the near infrared (NIR) range of 760 to 2500 nm is 

used to indicate these leaf features (Moran et al., 1997, Pinter et al., 2003). 

It is possible to use Visible-Near Infrared (V-NIR) techniques to distinguish healthy from 

unhealthy leaves (Vrindts et al., 2002, Mahlein et al., 2010). Ma et al. (2012) used a visible 

remote sensor with different multispectral wavelengths to detect citrus greening. Some studies 

confirmed that spectrometric methods are more effective, more accurate, less time-consuming, 

and nondestructive compared to DNA analysis methods (Menesatti et al., 2010, Tomkiewicz and 

Piskier, 2012). Franke and Menz (2007) utilized spectral data at different wavelengths to monitor 

the powdery mildew disease of leaf rust at different stages of development. Fungicide treatment 

was then applied using precision agriculture to determine the interaction of the crop with the 

fungicide. Results were compared with chemical analysis and showed an increase in early 

disease detection from 56% to 88.6%, which was considered an acceptable result regarding early 

disease detection.  

The goals of the present study were to i) determine the hyperspectral mean reflectance 

curves of Lw infested trees at different stages of development and ii) select the optimal spectral 

bands for discrimination of damage due to Lw, H, Prr, and salinity. 

Materials and Methods 

Host Plants and Inoculation in Greenhouse 

Experiments were conducted in Miami-Dade County in an indoor controlled environment 

at the University of Florida’s Tropical Research and Education Center (TREC) in Homestead, 

FL. Avocado leaves were obtained from the “Simmonds” variety of avocado trees grown in pots 

in greenhouse trials where different treatments were used to induce the same symptoms and 

produce some factors. 
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        Healthy leaves                Lw early stage               Lw late stage 

                    

Prr early stage                Prr late stage            Salinity early stage         Salinity late stage  

Figure 3-1. Avocado leaves in different stress stages. Photos courtesy of author, Jaafar 

Abdulridha 

Avocado trees were 1 year old and almost 1 m tall. The pre experiment methodology for 

each treatment is explained below: 

Laurel wilt (Lw): Ten plants were inoculated with Lw at approximately 5 cm above soil 

level by drilling four small holes around the circumference of the trunk, each hole receiving 

25 µL of a R. lauricola spore dilution at a concentration of 30, 000 colony forming unit 

(cfu)/mL for a total of 3, 000 cfu/plant. Holes were sealed with paraffin wrap. For the early 

inoculated stage of Lw, new shoots were wilted and the leaf color changed from a dark oily 

green to light green on most, while others turned fully yellow. 

Salinity (Sln): One liter of salt solution was applied to each tree. The sea water was 

similar to that of the sea water from the east coast of Florida with a salt concentration of 36 g/L. 

Leaves showed some browning symptoms after a few days. Then, another liter of the sea water  
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Figure 3-2. Laboratory setup including spectrodiometer and halogen light sources. Photo 

courtesy of author, Jaafar Abdulridha 

was applied on experimental day 17. Further, browning symptoms were fully developed, similar 

to those of leaves affected by Lw. 

Phytophthora root rot (Prr): Ten plants were inoculated by infecting 10 pots with 6 grams 

of wheat seed colonized with Phytophthora cinnamomi. After 14 days, a very few early 

symptoms of Prr appeared in the form of the yellowing of some leaves. 

Control (H): These plants were grown in full sun. 

During the early growth stage, the plants showed few symptoms or a symptom of Lw and 

Prr, so some leaves did not turn to totally yellow, especially those infected with Phytophthora 

cinnamomi. However, during the late stage, the plants showed many symptoms of Lw and Sln 

such as discoloration and necrotic leaves depend on the severity of the stress factor. Figure 3-1 

shows bunch of the tested avocado leaves during these two stages. 

Spectral Data Collection 

Forty leaves were sampled from each of the control (H) and treated plants. Multi scans 

were taken at different positions in order to reduce the variability of the device and the leaves. 

Spectrometric (SVC) 

Light source 

Calibration panel 
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Five reflectance spectra per each leaf were collected at different stages of symptom 

development: early stage, and late stage, depending on symptomatic appearance. A handheld 

spectrodiometer (SVC HR-1024) (Spectra Vista Cooperation, NY, USA) with a 4° field-of-view 

optical lens in the spectral range of 350 to 2500 nm was used. Two portable halogen work lamps 

(500 W) were used as the light source, and the reference reflectance spectra were acquired using 

a white reflectance reference panel (Spectralon Reflectance Target, CSTM-STR-99-100; 168 

Spectra Vista Corporation) (Figure 3-2). A spectral data was used in visible and near infrared 

domain from 350 to 950 nm. Spectral data were averaged to 10 nm and 40 nm, and used based 

on (Thenkabail et al., 2000, Thomasson et al., 2001), as well as the available waveband filters on 

the market that would be cost-effective during sensor development. 

Data Analysis and Classification 

SPSS software (SPSS 13.0, Inc., Chicago) was utilized in this study for spectral analysis. 

Discriminant analysis and two neural networks, i.e., multiyear perceptron (MLP) and radial basis 

function (RBF), were used to classify H, Lw, Prr, and Sln based on the 10 nm and 40 nm 

averaged reflectance data. The classifications were conducted in two stages of disease 

development: early and late. The analyses were performed independently for the early and late 

stage spectral data, as well as in a data set composed of all of the reflectance data in order to 

select the best bands for different development stage. 

Stepwise discriminant analysis (STEPDISC) 

Discriminant analysis permits the setting up of a predictive model of group membership 

based on characteristics observed in each case (Franke and Menz, 2007). This method 

determines significant differences between variables so that repetitive variables can be 

eliminated (de Castro et al., 2012). The STEPDISC procedure combined forward selection and 

backward elimination of the variables; forward selection was employed for the inclusion of a 
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variable, and backward elimination was used for the removal of variables no longer significant in 

the model (de Castro et al., 2012). A Wilks’s lambda was performed to determine the 

significance of each discriminant function; the lower the Wilks’s lambda value, the greater the 

spectral differentiation between groups (Karimi et al., 2005). Thus, at each step, the variable that 

minimized the overall Wilks’s lambda was entered (Franke and Menz, 2007). The data were 

randomized and separated into two independent parts: one was used to develop and construct the 

model; the second was used to validate the accuracy. The data set was divided into 30% for 

training and 70% for validation. 

Neural networks 

Artificial neural networks operate by machine learning, in that inputs and outputs are given 

to the network one at a time, and the network incrementally improves a model to approximate 

the input/output function (Thenkabail et al., 2005). Once the neural network has learned to carry 

out the desired function, the input values can be entered and the neural network will calculate the 

output (Franke and Menz, 2007). Two neural networks were used: multilayer perceptron (MLP) 

and the radial basis function (RBF). 

The MLP neural model is a fully connected multilayer feed-forward supervised learning 

network trained by a back-propagation algorithm which reduces the quadratic error standard 

(Franke and Menz, 2007). In the MLP, no values are fed back to earlier layers, and the 

dimensions of the MLP is described as size of input layer × size of hidden layer × size of output 

layer (Park and Sandberg, 1993, Keranen et al., 2003). In this study, the input layer was the 

spectrometric data of H, Lw, Prr, and Sln leaves.  

The RBF is also a fully connected feed-forward neural network with an input layer, a 

hidden layer, and an output layer (Franke and Menz, 2007). The variables of the input and output 

layers were the same as those used in the MLP method. The main differences between these two 
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neural networks are that in the RBF, the associates between the input and output layers are not 

weighted, and the transfer purposes on the hidden layer nodes are radially symmetric 

(Jayawardena et al., 1997). The capability of MLP and RBF for every classification model was 

determined by a hold-out cross-validation method. Cross validation consecutively classified all 

variables, but the first one to develop a classification function and then classify the variable was 

left out (Burks et al., 2005). The full dataset was randomly split into three datasets by 

partitioning the active dataset into training, testing, and holdout samples. 

Results 

Figures 3-3 A, B, and C, respectively, show the spectral signature of the early and late 

stage disease development of Lw, Prr, and Sln as well as H. There were apparent reflectance 

differences in the red-edge and NIR regions for early and late stage development for all 

treatments. Higher differences were found between the late stage of each treatment and the 

healthy plants, suggesting the potential to discriminate disease at that level of decline. Spectral 

signatures at the early stage are very similar to those for H and were therefore more difficult to 

discrimination at that stage of development by observation. In the late stage, external symptoms 

had developed, leaves were wilted or desiccated and were a dull gray-green or brown color while 

leaves in the early stage were still green, just beginning to lose turgidity. 

Early Stage 

Figure 3-3 C for the early stage of the Sln treatment shows higher reflectance values in the 

near infrared domain than for late stage, typical of green vegetation. The same trend occurred for 

other diseases (Figure 3-3 A and B). Figure 3-3 C shows a similar spectral signature for H and 

Prr at early stage, since after 14 days, very few early symptoms of Prr appeared. Figure 3-4 

shows the comparison between H spectral, Lw signature and each of the other diseases, Prr, and 

Sln at both stages. Figure 3-4 A shows the reflectance of different bands for H, Lw, and Prr and 
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did not show a significant difference for spectral reflectance in the blue bands. On the other 

hand, Lw disease always exhibited lower reflectance in the NIR domain (750-950) than H and 

other diseases. 

Table 3-1 shows the classification results obtained from MLP and RBF for 10 nm and 

40 nm bandwidth data. The results obtained with MLP were better than those achieved with 

RBF, with correct classification percentages ranging from 96% to 99% in all stages and 

comparisons (Table 3-1). RBF obtained the lowest classification rate (65%) for 10 nm at early 

stage between H, Lw, and Sal. Table 3-2 shows the classification result for STEPDISC analysis 

and the bands that were chosen on the basis of their order of entry into the STEPDISC procedure 

selection to discriminate between healthy, Lw, Sln, and Prr leaves at early and late stages. The 

most frequently selected wavelengths were found in the red-edge range (717-750 nm) for the 

10 nm bandwidth, and in the red-edge and blue for 40 nm. In each of the cases studied, a small 

Wilks’s lambda (0.2-0.0) was obtained, indicating the high discriminatory power of every set of 

selected wavebands. 

Late Stage 

The development stages of Lw disease varied in the visible and NIR ranges. The late stages 

had high reflectance in the 1300-2500 nm range. The late developmental stage showed a lower 

reflectance in the NIR range of 700-950 nm. Reflectance curves for plants affected by Sln varied 

from stage to stage depending on salinity concentration. Figure 3-3 C which shows Lw’s spectral 

reflectance in the visible range from 550 to 700 nm increased during the late stage. Lw’s late 

stage showed a significant difference in spectral reflectance spectra for healthy plants. The Prr 

late stage displayed lower reflectance than that of the healthy plants (Figure 3-3 B). The spectral 

signature curve showed variation in reflectance values, especially for Prr late stages in the NIR 
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domain. Percentage was 98-92% for all MLP. STEPDISC was the second-best method, with 

RBF being the worst of the three classification methods. 

Combination of Early and Late Stages 

Table 3-4 shows the MLP and RBF classification results for the early and late development 

stages together for the 10- and 40-nm bandwidths. RBF produced a low value and a high value of 

classification for the combination of H, Lw, and Prr 40 nm (65%) and (71%), respectively. MLP 

resulted in a high classification value for the combination of H, Lw, and Prr at 10 nm, while the 

combinations of H, Lw, and Sal at 40 nm and H, Lw, and Prr at 40 nm had the lowest value. NIR  

Table 3-1. Hyperspectral classification of laurel wilt (Lw), healthy (H), Phytophthora root rot 

(Prr), and salinity damage (Sal) and best band selection using MLP and RBF 

classification for different stages. 

Stage and 

Parameter setting 

Importance variable (nm) Neuron of 

hidden 

layer 

Neuron of 

output 

layer 

Over all 

classification (%) 

Early stage 10nm     

MLP - H, Lw, Sal 717, 750, 739, 526, 952, 772 1 10 96 

MLP - H, Lw, Prr 750, 739, 952, 728, 717, 772 1 10 96 

RBF - H, Lw, Sal 615, 627, 649, 660, 671, 681 1 8 65 

RBF - H, Lw, Prr 794, 806, 783, 817, 705, 693 1 10 71 

 

Early stage 40 nm  

    

MLP - H, Lw, Sal 738, 780, 944, 615, 697, 656 1 7 97 

MLP - H, Lw, Prr 491, 780, 697, 944, 615, 862 1 7 97 

RBF - H, Lw, Sal 944, 697, 903, 615, 738, 862 1 10 73 

RBF - H, Lw, Prr 409, 421, 433, 445, 457, 469 1 6 60 

 

Late stage 10 nm 

    

MLP - H, Lw, Sal 885, 874, 952, 852, 841, 761 1 6 99 

MLP - H, Lw, Prr 491, 780, 697, 944, 615, 862 1 6 99 

RBF - H, Lw, Sal 761, 874, 885, 728, 952, 739 1 10 77 

RBF - H, Lw, Prr 409, 421, 433, 445, 457, 469 1 10 97 

 

Late stage 40 nm 

MLP - H, Lw, Sal 

 

 

862, 780, 738, 944, 410, 903 

 

 

1 

 

 

9 

 

 

98 

MLP - H, Lw, Prr 862, 738, 410, 944, 697, 903 1 9 97 

RBF - H, Lw, Sal 738, 944, 903, 410, 862, 697 1 7 77 

RBF - H, Lw, Prr 410, 532, 450, 574, 38, 862, 697 1 8 93 
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A 

 

 

Figure 3-3. Spectral signature for A) laurel wilt, B) phytophthora root rot, and C) salinity damage 

in early and advance stages. 

B 

 

C 
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(700-900 nm) was the most frequent range, especially the red-edge, with the exception of the 

combination of H, Lw, and Prr at 10 nm under MLP for which the blue and green bands were the 

most common (445, 515, 504, 433). Stepwise classification values are shown in Table 4. The 

lowest classification in Table 4 is that of the combination of H, Lw, and Sal at 40 nm having a 

cross validation value of 80%. The average of all categories at 10 nm had a higher value than the 

average of the categories at 40 nm. The wavebands between 700 and 800 nm were the most 

common for all categories. The correct classification percentage was 98-92% for all MLP. 

STEPDISC was the second best method, with RBF being the worst of the three classification 

methods. 

 

Table 3-2. Hyperspectral classification of laurel wilt (Lw), Healthy (H), Phytophthora root rot 

(Prr), and salinity damage (Sal) and best band selection using STEPDISC analysis 

for different stages 

 

Stage Input data Best bands selected Wilks’s 

Lambda 

Cross 

validation (%) 

Early stage 

10 m 

H, Lw, Prr 806, 761, 548, 638, 885, 941, 

537 

0.2 82 

 H, Lw, Sal 908, 745, 852, 504, 445, 638, 

604 

0.2 86 

Early stage 

40 nm 

H, Lw, Prr 618, 781, 822, 904, 657, 575, 

410, 740, 451, 945, 493 

 

0.2 

 

83 

 H, Lw, Sal 595, 904, 781, 410, 534, 740, 

698, 657, 616, 493 

0.2 82 

Late stage 

10 nm 

H, Lw, Prr 817, 829, 761, 409, 941, 548, 

560, 421 

0.0 98 

 H, Lw, Sal 560, 761, 806, 750, 885, 829, 

409, 421, 504593, 515 

0.05 92 

Late stage 

40 nm 

H, Lw, Prr 817, 829, 761, 409, 941, 548, 

560, 421 

0.0 98 

 H, Lw, Sal 560, 761, 806, 750, 885829, 

409, 421, 504, 593, 515 

 

0.05 92 
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Table 3-3. Reflectance classification using MLP and RBF methods for H, Lw, salinity, and Prr in 

early and late stage combined. 

 

 

Table 3-4. Classification reflectance result using STEPDISC for H, Lw, salinity, and Prr in 

early and late stage combined. 

Input data Best bands selected (nm) Cross validation (%) 

 

H, Lw, Sal - 10 nm 

 

772, 794, 504, 548, 705, 638, 693, 681, 

604, 717, 615, 445 

 

87 

H, Lw, Prr - 10 nm 750, 885, 829, 952, 548, 649, 693, 638, 

705, 537, 515, 681 

89 

H, Lw, Sal - 40 nm 780, 820, 491, 532, 944, 410, 574, 697, 

450, 656 

80 

H, Lw, Prr - 40 nm 780, 862, 944, 532, 574, 738, 697, 656, 

410, 450, 615 

81 

 

Stage and parameter Importance variable Neuron of 

hidden layer 

(nm) 

Neuron of 

output layer 

(nm) 

Overall 

Classification 

(%) 

H, Lw, Sal - 10 nm - MLP 750, 717, 433, 705, 

772, 693, 604 

1 9 94 

H, Lw, Sal - 10 nm - RBF 705, 537, 548, 409, 

717, 560, 526, 941, 

952, 433, 615 

1 9 67 

H, Lw, Prr - 10 nm - MLP 445, 515, 504, 433, 

638, 705, 750, 817, 

421, 739, 952, 493, 

615, 761, 604 

1 8 98 

H, Lw, Prr - 10 nm - RBF 671, 681, 660, 649, 

638, 693, 627 

1 8 71 

H, Lw, Sal - 40 nm - MLP 738, 780, 944, 862, 

903, 450 

1 7 93 

H, Lw, Sal - 40 nm - RBF 944, 903, 862, 738, 

656, 532, 450, 820, 

491, 615, 574, 410, 

780, 697 

1 9 70 

H, Lw, Prr - 40 nm - MLP 944, 821, 656, 862 1 8 93 

H, Lw, Prr - 40 nm - RBF 944, 697, 903, 532, 

738, 656, 574, 615, 

862, 780, 821, 410 

1 8 65 
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Discussion 

The chlorophyll and pigment in leaves strongly absorb blue and red light in order to 

conduct the photosynthesis that is necessary for plant metabolism, meaning that any change in 

concentration of the chlorophyll will lead to changes in spectral reflectance depending on the 

pigment ratio (Chernick et al., 1988, Carter and Knapp, 2001). NIR domain reflectance can 

provide good indicators of cell structure damage to leaves caused by disease, drought, and 

nutrient deficiency. Any overall change in the leaf will impact the spectral reflectance which 

would be good indicators to use in hyperspectral detection methods (Broge and Leblanc, 2001, 

West et al., 2003). The spectral signature for healthy plants had high absorption in red, green, 

and blue, with a green peak at 550 nm. Each stage had unique spectral reflectance signatures, 

indicating a relationship between spectral signature and the appearance of disease symptoms. 

The main purpose of this study was to select bands that can be used to differentiate 

between healthy, laurel wilt diseased, salinity damaged, and Phytophthora root rot infested trees. 

Several wavebands were obtained for each category depending on the severity of the disease or 

salinity level. There are many studies on band selection to obtain best bands in the VIS-NIR to 

reduce the huge number of narrow bands, minimize redundancy, and to obtain a statistic model 

without a long process, i.e., a smaller data set would be more convenient and more efficient in 

hyperspectral analysis (Gamon and Surfus, 1999, Chang and Liu, 2014). The MLP classification 

method resulted in classification values for all these treatments. This is related to the progressive 

nature of disease development, which makes it easier to differentiate the late stage than the early 

stage. Earlier detection can prevent extensive damage to plants. By detecting disease at the early 

stage, particularly before symptom onset, growers can spray or remove the affected tree before 

the disease spreads to the rest of the grove. It is very difficult to recognize laurel wilt symptoms 

because there are other factors which cause the same symptoms during the early stage. The 
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results from this study can be used to develop image processing analysis methods for real-time 

specific disease management. The use of inexpensive remote sensing techniques and aerial 

images can then be used over large areas to help reduce the damage caused by laurel wilt 

diseases. The result of this study agrees with the results of other studies using classification 

methods (Franke and Menz, 2007). Classification values were higher in the late stage than in the 

early stage for the purpose of combining the early stage and late stage data to obtain wavebands 

could be used in early and late stage at the same time because not all tree leaves show a lot of 

symptoms at the same time. The observation of symptom depending on severity of disease and 

disease development stage (Blackburn, 1998, Pant et al., 2014). Environmental factors and the 

population of the vectors also affect the dynamic disease transmission in plants (Ploetz et al., 

2010, Sankaran and Ehsani, 2012, Garrett et al., 2006). Lw disease showed symptom in different 

position start on the top of tree and then separate to other part of canopy. Fast decision-making 

and time-effective spraying at specific locations will lead to preservation of the environment. 

Accurate band selection and classification are important to encourage the grower to use these 

methods for timely and appropriate decision making. This is the first instance in which the 

spectral signature of leaves from avocado trees has been used to determine spectral reflectance 

and to recommend appropriate bands to detect laurel wilt disease and other factors. 

Conclusions 

Results from this study showed that it is possible to classify laurel wilt, Phytophthora root 

rot, and salinity damage from healthy trees using hyperspectral signature analysis at 400-950 nm 

under laboratory conditions for early stage and late stage in 10 nm and 40 nm interval bands. The 

most common bands selected for the early stage were 638, 781, 410, 451, and 493 nm. The most 

common bands for the late stage were 817, 829, 761, 409, 941, 548, 560, 421, 806, and 750 nm. 

When the stages were combined, the best bands selected by MLP methods were 750, 705, 445, 
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671, 738, and 944 nm. MLP was found to be the best classification method, with classification 

value reaching up to 98% in some stages using both 10 nm and 40 nm bandwidths. It is possible 

to use this method to classify avocado stress conditions in future studies using hyperspectral 

imaging or other remote sensing techniques. Ten-nm and 40-nm filter bands are inexpensive 

filters that can be used in remote sensing to reduce the cost of monitoring system. The selected 

bands can be used in a camera with 6 or 4 bands and can be used for future image processing to 

reduce the cost and time associated with scouting. These results could be very useful in 

sanitizing groves by eliminating infested trees completely from the orchard, as currently there are 

no inexpensive fungicides or pesticides that control laurel wilt. 
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CHAPTER 4 

DETECTION OF LAUREL WILT DISEASE AND NUTRIENT DEFICIENCY FOR 

AVOCADO TREES USING SPECTROMETRIC TECHNIQUES 

Introduction 

Laurel wilt (Lw) is a vascular disease caused by Raffaelea lauricola, a fungal symbiont 

vectored by the redbay ambrosia beetle Xyleborus glabratus (Carrillo et al., 2013, Moshou et al., 

2005). R. lauricola affects members of the Lauraceae plant family by inhibiting the flow of water 

and nutrients (Ayala-Silva et al., 2012, Bates et al., 2013). Lw has killed many thousands of 

avocado trees, which has caused significant economic losses (Hanula et al., 2008). Profits for the 

avocado industry dropped from $356 million to $183 million, about 50% of total avocado 

production (Evans et al., 2010). Lw was first reported in the United States in 2002, and rapidly 

spread to other states. It was first observed in commercial avocado production in Miami-Dade 

County in 2011 (Ploetz et al., 2012b). The symptoms of Lw disease are not distinct from other 

diseases and nutrient deficiencies. The leaves turn from oily green to red or purple color in early 

stages and progresses to gray and brown in later stages of the disease. An entire tree can die in 

less than 60 days, after which the leaves can remain on the branches for over a year. Early 

detection of infected trees is critical because the disease can kill the entire tree within a few 

weeks. Sanitation is the best method for mitigating disease spread, which requires removing the 

tree and chipping it, as well as destruction of the roots to prevent root graft transmission (Ploetz 

et al., 2012b). It is not easy to recognize the symptom of Lw from nutrient deficiency symptom, 

especially in the early stage, so monitoring for the early detection of nutrition deficiencies in 

avocado trees would help identify the amount of fertilization needed to prevent damage from 

malnutrition. Monitoring nitrogen, iron, magnesium, and phosphorous can also prevent excessive 

fertilization, which is costly and causes environmental pollution (Gunkel et al., 2007, 

Boroujerdnia et al., 2007). Traditional plant tissue analysis is a very accurate method for crop 
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nitrogen stress detection, but these methods are time-consuming, labor-intensive, and costly 

(Huang and Schulte, 1985). Therefore, new techniques for identifying the nutritional 

requirements of plants are needed for cost- and time-effective management of large areas (Vina 

et al., 2004). Remote sensing is capable of covering a large area in a short time (Reyniers and 

Vrindts, 2006). Osborne et al.(2004) used multispectral to detect nitrogen deficiency to assist 

growers in making management decisions for maintaining proper nitrogen levels within their 

plants. Feng et al.(2006) emphasized the importance of using multi-band (red, green, blue, and 

near-infrared) to monitor nitrogen levels, especially when applying precision crop production 

management operations to obtain accurate information. Noh and Zhang (2012) recommended 

using multispectral bands to manage nitrogen application, and use of precision agriculture to add 

the proper amount of fertilizer to specific locations. Thus, the system can minimize the amount 

of nitrogen leached into the soil, and potentially increase production yield. Moshou (2005) 

detected yellow rust disease using a hyperspectral sensor between 450 and 900 nm and 

fluorescence imaging, and was able to identify the disease in its early stages before visible 

symptoms appeared. Two classification methods were used, quadratic discriminant analysis 

(QDA) and self-organized mapping (SOM), with the latter method having fewer error 

classifications that reached 1%. Bauriegel et al. (2011) studied the possibility of detecting wheat 

infected with Fusarium ssp. in the early stages of disease before separating to whole field by 

using 400-1000 nm spectral sensors indoors. Principle component analysis and ‘Spectral Angle 

Mapper’ (SAM) were used to classify the disease in different growth stages to determine in 

which stages discrimination of Fusarium ssp is possible. Apan et al. (2004) determined the 

relationship between water content in the leaves and orange rust disease in sugar canes using 

VIS-INR spectroscopy. They found a high correlation between water stress and infection of the 
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leaves with orange rust disease using “Disease - Water Stress Indices”. Osborne et al. (2002a) 

determined it is possible to detect nutrition deficiencies such as N and P in corn (Zea mays. L.) 

using VIS-NIR spectroscopy, especially in green and red bands in different growth stages with 

four different N rates (0, 67, 134, and 269 kg N ha (-1)) and four different P rates (0, 22, 45, and 

67 kg P ha (-1)). Zhoa et al. (2005) determined N deficiency on Sorghum using photosynthetic 

rate (Pn), chlorophyll (Chl), and N concentrations, and hyperspectral reflectance to differentiate 

N levels at different stages and compared the results. They found a significant relationship 

between Chl and N concentrations with red and green wavelengths at the red edge in the 

reflectance spectral curve. Osborne et al. (2002b) utilized spectral radiance techniques to 

determine water stress and N at various stages with five N rates (0, 45, 90, 134, and 269 kg N ha 

(-1)), and found there were three wavelengths, 510, 705, and 1135, that could distinguish N 

deficiency without water stress. Tarpley et al. (2000) applied reflectance indices to diagnose N 

levels in cotton leaves at multiple growth stages. They discovered that NIR and red edge bands 

(700, 755, 920, and 1000 nm) had better results and higher accuracy than the chlorophyll content 

method. Strachan et al. (2002) tried to differentiate the morphological status of corn crops over 

time by using hyperspectral measurement in NIR to recognize nutrient deficiencies numerous 

times throughout the growing period. Canonical discriminant analysis was used, and they found a 

good time to detect chlorophyll reduction in mid and late stages through spectral in red and red 

edge for N deficiency and senescence period. Many other researchers have studied N and water 

stress (Pattey et al., 2001, Ferwerda et al., 2005, Feng et al., 2008, Schlemmer et al., 2005, 

Serrano et al., 2000, Sims and Gamon, 2002). 

Vegetation indices are also a good indicator for changes in the physiological and 

morphological status of plants and whether or not they are stressed (Huete et al., 1994, Qi et al., 
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1994). Therefore, spectral vegetation indices SVIs are used wildly in remote sensing applications 

to verify the conditions of crops (Gilabert et al., 2002). SVIs have helped crop management by 

providing information about plant pigment, chlorophyll concentration, and water content. 

Researchers that have studied this technique include (Jackson et al., 2004, Mahlein et al., 2010, 

Chen et al., 2005, Feng et al., 2012, Anderson et al., 2004). The purpose of this study is to i) 

select bands that can distinguish between plants that are healthy and those that have laurel wilt, 

iron deficiency, and nitrogen deficiency in early and late stages of symptom development; ii) 

detect laurel wilt in avocado trees and utilize a classification method to differentiate between the 

disease and nutritional deficiencies. 

Materials and Methods 

Greenhouse Samples  

The experiment was carried out at the University of Florida’s Tropical Research and 

Education Center in Miami-Dade County, Florida, near Florida’s commercial avocado 

production area (CAPA). Ten plants were chosen for each treatment, four leaves were collected 

from each plant, and the trees were one meter high and almost one year old. The experiment had 

four different treatments, healthy (H), laurel wilt (Lw), iron (Fe), and nitrogen (N) deficiency. To 

induce laurel wilt symptoms, 10 plants were each inoculated with 3,000 colony forming units 

(CFUs) of Raffaelea lauricola. Four holes were drilled into different sides of each plant’s stem 

with a 7/64” drill bit 5 cm above the graft union, and 25 µL of inoculum prepared with a hem 

cytometer at a concentration of 30,000 CFUs/mL was pipetted into each hole and wrapped with 

para film to seal the wound. To induce nutrient deficiencies, 20 avocado trees were transplanted 

into a nutrient-free matrix (sand and perlite). Half of the plants received 1 L of Hoagland’s 

solution once a week containing all essential nutrients except iron, while the other half received 

1 L of Hoagland’s solution containing all essential nutrients except nitrogen. 
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Figure 4-1. Leaf pictures of: A) iron deficiency, B) nitrogen deficiency, and healthy plant. Photo 

courtesy of author, Jaafar Abdulridha 

Iron deficiency 

A 

A 

B 
C 

Nitrogen deficiency Healthy plant 
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Data Collection 

Within the laboratory, spectral data were collected with a spectrometric (SVC HR-1024, 

Spectra Vista Cooperation, NY) with four fields of view (Figure 1) ranging from 400 to 970 nm, 

which can be measured with an inexpensive filter. Spectral data were averaged every 10 and 

40 nm to normalize the large quantity of spectral data and select bands within these groups, 

which resulted in 49 and 15 bands, respectively, for the 10 and 40 nm averages. Calibration with 

a white panel was performed ever 40 scans (Spectral Reflectance Target, CSTM-SRT-99-100, 

Spectra Vista Cooperation, NY). The spectral data were collected for non-infected, Lw, Fe 

deficiency, and N deficiency in both laboratory and greenhouse conditions. Two halogen light 

sources were used to create optimal conditions for performing the scans and reduce errors. The 

SVC device was situated so that the lens was 50 cm above the sample pointing down at it, and 

images were taken five times in different positions for each sample. Samples were collected from 

the Lw plants before external disease symptoms were apparent (Figure 4-2). 

Feature Extraction 

Selection of spectral reflectance bands and classification, two different feature extraction 

methods, multilayer perceptron (neural network), and tree decisions were used to select the best 

bands and classify them at the same time. MLP was used because it was reported to have high 

accuracy in a previous study by Abdulridha et al. (2016); MLP has high accuracy, therefore was 

used as decision tree to confirm the result. 

Multilayer perceptron is the most common classification method, also known as a 

supervised network, because it needs output to get results for the desired purpose. The target of 

this form of the network is to create maps for the input to output in the correct form using the 

history of the data background. Therefore, it is possible to create the data yield when the chosen 

yield data is unidentified. A graphical representation of an MLP is shown in Figure 4-2. 
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The algorithm backpropagation worked repeatedly on all of the data input to the system to 

frequently represent it in the neural network. With each performance, the yield of the neural 

network is related to the preferred yield and an error rate is computed. This error rate is fed back 

to the neural network and used to correct the weight of the data taken, reducing error with each 

repetition so that the neural network continuously gets closer to creating the preferred yield. The 

neural network has been applied in remote sensing classification in other studies (Atkinson and 

Tatnall, 1997, Tzeng et al., 1994, Benediktsson et al., 1990, Heermann and Khazenie, 1992, 

Foody et al., 1995). 

 
Figure 4-2. Hidden layer and output layer in neural network multilayer perceptron (MLP). Photo 

courtesy of author, Jaafar Abdulridha 
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Decision trees (DTs) are a non-parametric managed learning process used for 

organization and regression. The objective is to produce a model that calculates the value of a 

goal variable by learning simple choice instructions deducted from data features. DTs are 

capable of handling data measured on different rulers in the absence of any molds for the 

proportion distributions of the data individually from the modules, elasticity, and capability to 

handle non-linear relationships among features and modules (Friedl and Brodley, 1997). 

Decision trees can be qualified rapidly and are quick in execution. They can be used for feature 

selection/reduction as well as for organization resolutions. An expert can understand the methods 

used by a decision tree, and it is not a “black box”, like the neural network, which conceals its 

processes. Decision trees were used for remote sensing data classification in studies by (McIver 

and Friedl, 2002, Pal and Mather, 2003, Lees and Ritman, 1991). 

Two extraction and classification methods were recognized for the spectral wavebands for 

early and late stages in 10 nm and 40 nm, respectively, for all categories. The best bands were 

selected and classified to get the highest accuracy to differentiate laurel wilt infested and nutrient 

deficient plants from healthy controls. In this experiment, 6 bands were selected in high weight 

values that reached 70% in MLP, and DTs were used to select the most important bands. To get 

high accuracy, four input ratio methods were used in MLP: training: testing: hold out 

i) 70%:20%:10%, ii) 60%:30%:10%, iii) 60%:20%:20%, and iv) 80%:10%:10%. Important 

wavebands were selected from the methods that achieved the highest accuracy. 

Vegetation Indices 

To compute the vegetation indices for this study, the following waveband ranges were 

used within the 400-970 nm range: Green (550, 570, 580 nm), red (650, 660 nm), red edge 

740 nm, red edge 750 nm, NIR1 761 nm, and NIR2 850 nm (de Castro et al., 2015). Bands were 

applied to randomize and calculate the vegetation ratio. 23 VIs were applied for H, Lw, Fe, and 
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N deficiency using ranges from previous literature. The vegetation indices used were: normalize 

difference vegetation index (NDV1) using 761 nm, and (NDV2) using 850 nm, simple ratio 

index (SR1) using 761 nm (Rouse et al., 1973), (SR2) using 850 nm, modified triangular 

vegetation index (MTV 1), (MTV 2) (Ashish, 2013) , renormalize difference vegetation index 

(Roujean and Breon, 1995), triangular vegetation index (TV 1) (Broge and Leblanc, 2001), 

modified chlorophyll absorption in reflection index (m CAR) (650, 760, 580 nm) (Haboudane 

et al., 2004), red-edge vegetation-edge stress index RVS 1, RVS 2 (Merton and Huntington, 

1999) green vegetation index VI green (Gitelson et al., 2003), green NDVI (Gitelson and 

Merzlyak, 1996), structure intensive pigment index (SIPI) (Zarco-Tejada et al., 2000), 

transformed chlorophyll absorption in reflectance index (TCARI) (Haboudane et al., 2002), 

photochemical reflectance index (PRI), disease-water stress index 1 (DSWI-1), DSWI-2, water 

index (WI), ratio of WI and ND, and ND 750/705. VIs give an indicator for pigment and 

chlorophyll concentration, water stress, and leaf cellular structure using ratios that indicate a high 

or low amount compared to a non-stressed control plant. After calculating the vegetation ratio, 

two classifications and selection methods, MLP and DTs, were used to identify the best 

vegetation indices that could be used to diagnose the Lw and nutrient deficiency. 

Results 

Wavebands selection: The spectral reflectance displayed distinguishes power. Table 4-1 

and 4-2 show the best bands selected in the MLP and DTs classification methods for early and 

late stages using the 10 nm and 40 nm averages, respectively. In Table 4-1, the classifications 

were almost 98%, and the most useful bands were selected in visible (VI) (493, 534, 575 nm) 

Red edge (700-750 nm), and near infrared (NIR) (800-970 nm). In this table, for early and late 

stage, 10 nm bands were selected between NIR1 and NIR2 (760-850 nm) and MLP classification 

was 98% and 97%, respectively. The most important bands averaged every 40 nm in early and 
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late stages were between the visible green band region 900 nm NIR, but the higher values were 

in visible domain, and for Red edge (534 and 740nm) the weight values were between 78% and 

100% for the first 6 bands for early stage 40nm H, Lw, Fe, and N, and the classification was 

100%. Additionally, the most significant variables for the late stage 40 nm were between 740 

and weighted 100%, and the lower bands in the first 6 bands were 451 nm. Table 4-2 described 

the decision tree classifications and band selection. Overall accuracy was less than the MLP, 

between 75% and 85%, and the most common bands were (698, 705, 750 and 822 nm). 

Abdulridha et al. (2016) ( data not published yet) and de Castro et al. (2015) recommended that 

700-900 nm was the most important region for distinguishing Lw in avocado trees. In early 

stages of the disease, it was difficult to recognize spectral reflectance in the visible range, but 

there was a significant difference in Red edge and NIR (Figure 4-2 A and B). N deficiency had 

higher reflectance between 700 and 950 nm, while Lw had lower reflectance in this region and 

had sharp shifting to the NIR domain. In Figure 4-2, spectral bands are exhibited in two different 

ways. In the VIS and NIR region, N and Fe had almost same reflectance from 540 to 740 nm 

which peaked above the spectral reflectance of healthy plants. Inverse exhibition was in the NIR 

region and Lw shifted down in Red edge, after which reflectance increased rapidly in all 

wavebands. Fe and H had identical curves in Red edge, while N deficiency had lower reflectance 

in the 740-1340 nm range, after which the reflectance signature increases in the water stress area 

(970-1450 nm) (Genc et al., 2013, Zygielbaum et al., 2012, Sims and Gamon, 2003, Dobrowski 

et al., 2005). In both spectral signature curves and band selections, results showed promising 

bands for the detection of Lw and separating it from the other stress factors. 

Vegetation index: Table 4-3 shows the vegetation index for early and late stages used to 

evaluate the vegetation indices for two classifications MLP and DTs. In early and late stage, the 
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Table 4-1. Hyperspectral classification and band selection analysis for heathy (H), laurel wilt 

(Lw), Fe and N deficiency using multilayer perceptron neural network in early and 

late stage.  

Stage and parameters  Important wavelengths 

(nm) 

Over all 

classification 

(%) 

Early stage 10 nm H, Lw, Fe, N 841 930 750 717 829 739 98 

 100% 98% 97% 94% 93% 92%  

Late stage 10 nm H, Lw, Fe N 885 896 874 863 930 852 97 

 100% 100% 97% 97% 92% 91%  

Early stage 40 nm H, Lw, Fe, N 534 575 945 822 493 976 98 

 100% 95% 95% 92% 86% 78%  

Late stage 40 nm H, Lw, Fe, N 740 781 698 904 863 451 96 

 100% 87% 70% 64% 58% 53%  

 

MLP reported a higher classification from 91%-98% than DTs 80%-82%. Early stage MLP SR 

850 was the most important of the vegetation indices, while the lowest was MTVI2 (50%). Late 

stage ND 750/705, WI, RVS 1, G were the most significant vegetation indices weighted 98% and 

61%, respectively. Vegetation indices showed a potential for the detection of Lw and separating 

it from N and Fe deficiency. 

However, spectral reflectance exhibited varied signatures Fe and N exhibited as almost 

reached same peak value in 540 nm. Lw exhibited different symptoms compared to the early 

 

Table 4-2. Spectral signature analysis (classification and band selection) for H, Lw, Fe, and N 

deficiency using decision trees in different stages  

Stages and parameters  Important wavelengths 

(nm) 

Overall classification 

(%) 

Early stage 10 nm H, Lw, Fe, N  705, 671, 660, 649, 

469, 693, 445, 627 

80 

Late stage 10 nm H, Lw, Fe N 750, 761, 772, 783, 

739, 794, 806, 817 

82 

Early stage 40 nm H, Lw, Fe, N 822, 781, 904, 945, 

976, 451, 493, 657 

75 

Late stage H, Lw, Fe N 698, 617, 493, 575, 

451, 410, 534, 781 

77 
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Table 4-3. The important vegetation indices and overall classification in early and late stages. 

Using multilayer perceptron (MLP) and decision trees (DTs).  
Stages and  

classification 

methods 

Important vegetation indices Overall  

Classification 

(%) 

MLP Early stage   SR 850 PRI NDV850 ND750/705 GNDVI2 mTCARI 98 

 100% 94% 77% 74% 68%   

 SIPI GNDVI 1 WI TVI SIPI MTVI 2  

 63% 57% 55% 52% 51% 50%  

MLP Late stage ND 750/705 WI RVS 1 G NDVI 760 GNDVI2 91 

 100% 85% 64% 61% 58% 54%  

 ND 750/660 RDVI      

 50% 50%      

Decision trees PRI, Ratio (WI/ND 750/660), ND 750/660, G,  

 

VI green, NDVI 760, SR 760, mTCARI, NDV 850 

82 

 

stage, with high reflectance in the green and red region up to red edge (Abdulridha et al., 2016 

not publish yet). Leaves with Lw symptoms turn yellow, then brown and necrotic in later stages 

Discussion 

The best band selection and classification methods were described in Table 4-1 and 4-2 for 

MLP and DTs, respectively, for early stage and late stage in both averages 10 and 40 nm. DTs 

had lower classifications from 75% to 82%, MLP bands with higher classifications and overall 

accuracy were used for early stages for 10 and 40 nm band averages, and the classification 

reached to 98%. The most useful band collected was in the red edge and NIR, where any change 

in cell structure, leaves pigment concentration, water stress, and cell solution can affect the 

spectral reflectance (Asrar et al., 1984, Gitelson et al., 2003, Sims and Gamon, 2002) . However, 

early detection before symptoms appear is important to reduce the economic losses. Disease 

development will lead to changes in the spectral signature in visible bands or in NIR bands. 

Within the visible bands, there was no significant difference between H, Lw, Fe, and N 

deficiency in the late stages of symptom development. 
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Figure 4-3. Spectral signature reflectance of laurel wilt leaves affected with Fe and N deficiency 

at different disease and nutrient deficiency in indoor conditions. A) Early stress stage 

and B) advance stress stage.  

A 

B 
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It was difficult to identify symptoms of Fe and N deficiency within bands in the visible 

region, but it was possible to detect them in the 740-1000 nm range using NIR. N had higher 

reflectance than Fe. This is a good indicator that it is possible to monitor nutrient deficiency in 

early stages (Rodriguez et al., 2006, Alabbas et al., 1974). In late stages, the symptoms of Lw 

were different from Fe and N deficiency using spectral reflectance, and Lw leaves looked like 

they were in the senescent stage and had brown spots, while N and Fe turned to yellow, and 

young leaves turned pale green color. In general, different disease and nutrient deficiencies have 

the same symptoms in early stages, so it is not possible to confirm symptoms with 100% 

accuracy unless another method of remote sensing or PCR methods are specially designed for 

testing large areas. The purpose for determining the 6 bands for use in remote sensing techniques 

was to detect Lw and classify N and Fe deficiency in the field, so these bands will be used in the 

field with a camera to cover a large area for aerial imagery. Many other studies have applied this 

technique to detect diseases and nutrient deficiencies for various crops (Qin et al., 2009, Qin and 

Zhang, 2005, Prabhakar et al., 2011, Hamed Hamid, 2005). Currently, aerial Lw surveys in 

Miami-Dade County are visually performed by a surveyor in a helicopter. Each flight is 

extremely expensive, so unmanned aerial imagery may become a cost-effective solution for 

identifying trees for removal. 

Conclusion 

MLP achieved the highest overall classification at 99% for early and late stages, while DTs 

were less accurate for all treatments. The most important bands selected with the MLP method in 

early stages for bands averaged every 10 and 40 nm, respectively, were (841, 930, 750, 717, 829, 

739), and (534, 575, 945, 822, 493, 976). The wave bands were wide in visible and NIR. Bands 

with the best values for late stages averaged every 10 and 40 nm, respectively, were (885, 896, 

874, 863, 930, and 852) and (740, 781, 698, 904, 863, 451). Almost all of the important bands 
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were in red edge and near infrared domain. Vegetation indices in the range from 400 to 970 nm 

were higher for MLP with 92%-98% accuracy for early and late stages compared to the DTs 

classification of 82%. The vegetation indices selected were (SR 850, PRI) and (ND 750/705, WI) 

for early and late stage, respectively. In general, spectral signature reflectance and vegetation 

indices have potential promise for detecting Lw and distinguishing it from other biotic factors.
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CHAPTER 5 

EVALUATION OF TWO TYPES OF CAMERA TO DISTINGUISH AVOCADO DISEASE 

AND STRESS FACTORS IN DIFFERENT SEGMENTATION METHODS 

Introduction  

Avocado is a tropical crop that constitutes a significant economic value in Florida (Evans 

et al., 2010). In the last few years, Lw infection (produced by the Raffaela lauricola) was 

discovered in avocado (Persea Americana) growing regions in south Florida. The avocado 

production dropped dramatically by 50% as trees were being killed and remaining crops were 

inferior, low quality, and defective (Evans et al., 2010). Scholars expect avocado industry to 

collapse in the next few years unless steps are taken to stop the spread of Lw. Laurel wilt is a 

vascular disease causing high mortality in redbay trees (Mayfield et al., 2008b). The disease is 

caused by formerly undescribed classes of Raffaelea, a fungal inherent of the non-local redbay 

invasive insect Xylebratus glabratus Eichhoff (Fraedrich et al., 2008, Rabaglia et al., 2006). The 

first Lw detection was in the United States, near Savannah, GA in 2002. The fungus grew in the 

avocado trees, causing trees to die in a few weeks (Fraedrich et al., 2008). There are two types of 

symptoms. One appears on the outer sapwood, as a dark discoloration. The second type appears 

on the leaves, turning them from oily green to yellow. In the advanced stages, the leaves curl and 

turn brown (Dreaden et al., 2008, Mayfield et al., 2008a). There are many disease and nutrient 

deficiencies that show the same symptoms. It is necessary to distinguish Lw from other stressors, 

to make the right and timely decision to reduce the effect of Lw. Currently, there is no chemical 

application effective on this disease. Therefore, trees are removed and burned which is the only 

way to reduce the spread of this disease which has no cure reported to date (Evans et al., 2010). 

Visually, it is very difficult to recognize Lw from other stress factors, especially in the 

asymptomatic and early stages, in order to locate a defective tree. There are various methods to 

diagnose general diseases: a visual method includes ground scouting and aerial surveys. 
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However, these methods are not accurate, and are expensive not only for avocado crop (Sankaran 

et al., 2010b, Qin et al., 2009, Qin and Zhang, 2005). Microarray technology (Boonham et al., 

2003), DNA, and RNA are both accurate, but time consuming and costly (MacKenzie et al., 

1997). The efficiency of ground scouting is difficult. It involves covering large areas from time 

to time. Many thousands of acres are cultivated in avocado. Futach et al. (2009) studied the 

efficiency of ground scouting, and they found it was 47% to 61% effective in detecting HLB in 

citrus orchards but  it was time consuming and costly in terms of labor. Rapid identification and 

removal of Lw-infected trees will decrease the extent of Lw in avocado orchards. Thus, there is a 

need for new field-based, immediate, and precise detection equipment for improving scouting 

efficiency to discover disease in orchards (Sankaran et al., 2011). Spectral reflectance from 

vegetative portions in the short length of visible regions and long wavebands in the near infrared 

domain of the electromagnetic spectra can be considered as indicator of plant stress (Sankaran et 

al., 2012, Sankaran and Ehsani, 2012). Many studies have used image processing based on 

spectral reflectance waveband already selected to recognize healthy plants from non-healthy 

ones. Moshou (2005) confirmed the possibility of using a multi-band fusion infection detection 

system, applied in the real-time detection of plant disease in the field. They got satisfactory 

results after they used a multispectral camera. The overall discrimination error was 11.3% when 

they discriminated healthy plants, with a yellow rust defective plant. The classification rate 

between healthy and unhealthy was 94.5% by using quadratic data analysis (Moshou et al., 

2004). The target of this study was to moderate the effect of toxic residue levels of pesticide 

applications and increase the environmental maintenance by studying spectral reflectance 

between healthy and non-healthy wheat crops (yellow rust). Neural network multilayer 

perceptrons were used, and the classification rate was 99% higher than Self-Organizing Maps in 
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early stage. From this result, they could build non-expensive remote sensors to apply in the field. 

Muhammed (2005) studied how the spectral signature worked with disease severity, and 

confirmed that development stage could change the reflectance signature and normalization 

values. The best classification result was obtained by using nearest-neighbor method. Camargo 

and Smith (2009a) found methods in image processing to convert RGB images of the diseased 

plant or leaf into the H, I3a, and I3b color transformations. Neighborhood classification methods 

were used for each pixel and the gradient of variation between them (Camargo and Smith, 

2009b). Examinations showed the performance of colored images by using a support vector 

machine (SVM) classifier, and examinations of diseases in cotton crop regions were exposed in 

digital images. Nilsson (1995) emphasized that spectral image application would increase 

correctness and precision application in order to obtain a high level of accuracy to reduce disease 

damage. Qin and Zhang (2005) demonstrated that a hyperspectral imaging technique coupled 

with the spectral information divergence (SID) classification method, based on the image 

organization process, could be used for discriminating citrus canker from other confounding 

citrus pathogens. The classification accuracy was 96%. Balasundaram (2009) classified canker 

citrus peel and the severity of development disease stage. They pursued different citrus varieties. 

A spectrophotometer, with a wavelength range of 200-2500 nm, was used to measure the spectral 

reflectance data of citrus peel. The result of discriminant classification was 98%. A hyperspectral 

camera of 369-1042 nm was employed to attain hyperspectral pictures of green fruits of multiple 

citrus varieties. Linear discriminant analysis was used to classify different citrus varieties. The 

classification values varied depending on variety by 70-85% (Okamoto and Lee, 2009). A 

thermal and a visible sensor of a citrus canopy were combined to improve fruit detection. Two 

image fusion methods were tested:  the Laplacian pyramid transform (LPT) and fuzzy logic. 
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Both image fusion approaches enhanced fruit detection when related to use the thermal image 

individually (Bulanon et al., 2009). Lewis et al.(2001) recognized different types of vegetation 

canopies by using hyperspectral imagery in a semi-arid climate, and found that it was possible to 

use short wave and near infrared spectral reflectance technology. In the short wavebands infrared 

cellulose–lignin had highest absorption amount than in narrow bands because of the availability 

of wax and oil in the leaves. There is another study which focused on the comparison between 

image analysis and stereomicroscope for fruit trials. Fruit shape, fruit length, and fruit size were 

used as parameters to compare both methods. It was found there are no significant differences 

between the two methods; therefore, image analysis was recommended to save time, labor, and 

reduce human error (Mix et al., 2003). The fruit industry also considered the benefit of image 

processing to classify good fruit from defective fruit. Ariana et al.(2006) utilized image analysis 

to recognize multiple varieties and multiple fruit properties standard, black rot, decline, soft 

burn, and superficial scald tissues. Artificial neural network organization models were 

established, and the method is capable of accurate recognition of diverse types of disorders on 

apples. The present study evaluated the application of two types of cameras in different band 

filters selected and different development disease stages between healthy and Lw and classified 

H, Lw, Prr, Fe, and N deficiency in two regions of interest: the polygon region of interest (PROI) 

and the overall region of interest (OVRI) in the asymptomatic stage (Asy) and symptomatic stage 

(Sym). 

Material and Methods 

Study Zone 

The affected wavebands were selected in previous studies after spectral analysis were done 

in lab conditions. The images were taken and analyzed at the Citrus Research and Education 

Center (CREC), Lake Alfred, University of Florida (latitude and longitude coordinates 
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28.101880°, - 1.713923). Figure 1 shows a regular picture (RGB) from a Sony camera. There 

were five classes needed to be classified. Tree pots were distributed randomly in a rectangular 

area (6 m × 4.20 m) to make sure they were in the same light conditions and vegetation density. 

Avocado trees were grown and inoculated in greenhouses at the Tropical Research and 

Education Center, University of Florida, Homestead. Ten trees were inoculated with Lw R. 

lauricola by applying it into four holes that were drilled into the tree trunk. Each hole was filled 

in 750 conidia of the fungus. The total amount was 3,000 per plant. Holes were sealed with 

paraffin wrap. After 10 days, symptoms began, and some leaves started to turn yellow. After 24 

days, the leaf color changed to brown. In reference to Phytophthora root rot (Prr), 10 plants were 

injected with 6 grams of wheat seeds populated with Prr cinnamomi. After 60 days, captured 

images for these plants showed a decline. 

Nutrient Deficiency 

Twenty avocado trees were transplanted into a non-nutrient matrix (sand and perlite). Half 

of the plants received Hoagland’s solution with complete nutrients except iron, and the other half 

were given complete nutrient except for nitrogen. Images were captured after two years. Spectral 

reflectance measurements were taken and explained in previous chapters. Spectral reflectance 

data were collected under controlled laboratory conditions at the Tropical Research and 

Education Center, University of Florida (TREC) with a handheld spectrodiometer (SVC HR-

1024 spectrodiometer, Spectra Vista Corporation at 50 cm height above each leaf with a 4º field-

of-view optical lens in the spectral range of 350 to 2500 nm. 

Image Acquisition 

Two different types of cameras were used in order to evaluate and select the best camera to 

classify healthy from stressed plants. A Hi-lift machine was used in this study to collect images 

from different altitude levels (Figure 1). Altitude was 25 ft for Canon, and 32 ft for tetra Cam. 
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Camera filters were chosen from a previous study. More than six bands were selected as high 

weight value (Abdulridha et al., 2016, data not published yet). 

Data Field  

The images were taken in sunny conditions from 11:00 a.m. to 2:00 p.m. Trees were in 

pots, so we could move them (Figure 2). Avocado trees were in different stress stages to study 

the ability to detect Lw disease in more than one stage: in the asymptomatic stage (Asy stage), 

70% of the leaves looks green; however, we could see some leaves turning yellow in spots. 

Second stages were late, and in intermediate or symptomatic stage (Sym stage), some leaves 

dehydrated and turned from yellow to curly brown. The trees died in short time, and about one 

month later, all trees were dried and brittle. In the Asy stage, each tree position was considered 

as a region of interest and calculated individually. Data were saved in an Excel file. 

Types of Cameras 

There were two types of cameras chosen in order to capture images to the canopy region 

after selecting the discriminate wavebands: 

Tetra cam mini: (Tetra cam, Inc., CA, USA) multispectral camera with six individual digital 

sensors MCA- 6 arranged in a 3 × 2 array, independent optics and user customizable band pass 

filters (Andover Corporation, NH, USA). Each unit holds a 1.3 megapixel CMOS sensor (1,280 

× 1,024 pixels), FOV of 43.7º × 35.6º, central length of 9.6 mm. Images are saved in independent 

solid flash cards integral in the camera with 8-bit radiometric purpose. Multispectral images were 

taken in this camera (Green, G: 580-10 nm; Red, R650: 650-10 nm, Red-edge, Redge740: 740-

10 nm, Red-edge, Redge750: 750-10 nm, NIR, NIR760: 760-10 nm, NIR, NIR850: 850-40 nm) 

images were captured from a Hi-lift on April 10 and 24, 2015. 

Modified Canon (CanonSX260 NDVI, Canon U.S.A., Inc. Melville, NY, USA) 37 mm 

filter ring was added above the front lanes of the camera. This was done by manufactory-made  
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Figure 5-1. Images were taken by canon camera. A) RGB Image captured on regular camera. B) 

Canon image captured. Photos courtesy of author, Jaafar Abdulridha 

(LDP-LLC, Carlstadt, NJ 07072 USA); all images were kept on a digital memory card. The 

purpose of adding this filter was to capture data in the visible range (green and blue) and red 

edge (R mod GB: blue, B:390-520 nm; green, G: 470-570 nm; red-edge, Rmod:670-750 nm) (de 

Castro et al., 2015). Calibrations were accrued in the field with a white and black panel. This 

typically is able of obtaining 12.1 mega pixel spatial resolution images with 8-bit radiometric 

resolution and is fitted out with a 5.7-18.8 mm zoom lens. 

Image Pre-Processing 

Multiband images need to apply an alignment process to reduce the interaction between 

bands and make identical lines for six images. Canon images do not need alignment. Pixel 

Wrench (PW2) software (Tetracam Inc., Chatsworth, CA, USA) was utilized for this purpose. 

Bands were built up in individual band channel in each shoot. Viola and Wells (1997) 

recommended applying alignment to multispectral images in order to obtain high resolution by 

making each band image identical for each other’s images in one shoot. This is referred to as 

image rectification (Cheng et al., 2000). Images had been taken in real coordinates (Vanwie and 

Stein, 1977). Field-of-view (FOV) optical vignette parameters were considered and adjusted in 

B A 
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ideal methods. Radiometric rectification was accrued by using two calibration sheets, black and 

white (1.2×1.2m; Group 8 Technology, Inc., UT, USA). The average for black and white were 

calculated and each reflectance pixel was computed based on these averages (Chang and Reid, 

1996, Schott et al., 1988). ENVI software (ENVI, Research Systems Inc., Boulder, CO, USA) 

was utilized to integrate six images. ROI also was selected in polygon and overall ROI (Figure 

5-2), then exported ROI from text file to an Excel file to process reflectance data to be in SPSS 

format. Pixel-based retrieved reflectance data were mixed together for each class to reduce the 

illumination variability and light incident. In PROI, data were selected from the leaf center to 

avoid any interaction between classes as well (Figure 5-2 B). Data were calibrated and run in two 

classification methods: neural network multilayer perceptron (MLP) and K-nearest neighbor 

(KNN). 

 

Figure 5-2. Overall and polygon region of interest were taken by tetra camera. A) Overall region 

of interest. B) Image of polygon region of interest Photo courtesy of author, Jaafar 

Abdulridha 

B A 
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Data Analysis 

SPSS software (SPSS 13.0, Inc., Chicago; Microsoft Corp., Redmond, WA) was utilized in 

this study for spectral analysis. Two different feature extraction methods, (MLP) (neural 

network), and (KNN) were used to select best bands and classify in same time. From a previous 

study (Abdulridha et al., 2015a), it was found that MLP has high accuracy; therefore, KNN was 

used to confirm the results. 

Multilayer perceptron 

Multilayer perceptron is the most common classification method, also known as a 

supervised network, because it needs output to get results in the desired purpose. The target of 

this form of the network: to create maps for the input and output in correct ways, using historical 

data background. Therefore, it is possible to create the data yield when the chosen yield data is 

unidentified. There is an algorithm called backpropagation that works on all the input data in the 

system to present input data frequently in neural network. With each performance, the yield of 

the neural network is related to the preferred yield and a miscalculation is computed. This 

inaccuracy is the feedback to the neural network and used to correct the weight; therefore, the 

error reduces with each repetition and the neural typical gets very close to creating preferred 

yield. Neural network has been applied in remote sensing classification (Serpico et al., 1996, 

Atkinson and Tatnall, 1997, Benediktsson et al., 1990, Foody et al., 1995, Tzeng et al., 1994). 

Nearest neighbor 

An un-dimensional method, the distance between correlation coefficient and sum of 

squared variance are given good indicators to the strength recognition or weakness recognition of 

two spectral vectors. The best way to examine the relationship between two pixel points is to 

find out the correlation coefficient estimated from equation (1) in which the distance vector mean 

considered as the interior item of two vectors divided by N. This leads to use a much simpler 
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portion, symbolized by s, which is just the inner item of the two vectors, considering that the 

“vectors must be whitened” (Pydipati et al., 2006, Foody et al., 1995). Clearly, it is relative to the 

other distance quantity as defined in equation (2). The calculated distances are then used to find 

the k training models that are nearby to the unknown model based on these nearest neighbors. 

The purpose of classification is recognition between different categories. A more advance tactic 

used in this study was to give a diverse weight to the contribution of each of the K-nearest 

neighbors in the estimation. 

                                   (1) 

                                                                          (2) 

: Distance vector 

, : mean of  

Image Classification Methods 

The classification was between healthy plant-control (H), laurel wilt disease (Lw), 

Phytophthora root rot disease (Prr), and N and Fe deficiency. The images were taken for two Lw 

stages in the Asy stage and in the Sym stage, and in two different regions of interest: polygon 

region of interest (PROI) and overall region of interest (OVROI). For polygon ROI, only eight 

leaves were selected randomly from all over the plant, including tree branches. The classification 

was done between H vs. Lw, H vs. all factors (Lw, Prr, N, Fe) and Lw vs. (H, Prr, N, Fe). Table 

5-1 shows pixel numbers for the polygon and the overall region of interest. Obviously, the 
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polygon regions of interest (PROI) had pixel numbers less than the overall region of interest the 

pixel number in last one reached many thousands. 

The other classification was between three categories: H vs. Lw vs. Prr, H vs. Lw vs. N, H vs. 

Lw vs. Fe and all categories together H vs. Lw vs. Prr vs. N vs. Fe. 

Results and Discussion 

Pixel cell numbers show how much area is captured from the tree canopy (Pohl and van 

Genderen, 1998). For each class, from Table 5-1 it is obvious that OVROI has larger pixel 

numbers than PROI. To determine pixel numbers for each plant, canopy size matters from upper 

view. Thus, choosing pixel position is critical to get high resolution and reduce background 

subtraction for the image (Zivkovic and van der Heijden, 2006, Yamaguchi et al., 2001). 

However canopy density with other factors such as sunlight, camera angle, water evaporation, 

could affect image resolution (Holben, 1986). Pixel number parameters are considered when 

capturing remote images. These parameters have a significant effect in spatial resolution, 

coverage zone area, time and cost effectiveness, and spectral resolution (Kingsbury, 1999). 

Table 5-1. Number of pixels for two types of camera: Canon cam (3 bands), Tetra cam (6 bands) 

and include all classes (healthy, Lw, Prr, N, Fe, and white-black panel) for both 

region of interest polygon and overall ROI 

Classes  Canon Cam (3 bands)  Tetra cam (6 bands) 

Polygon ROI  Overall ROI  Polygon ROI  Overall ROI 

White panel  1,399 46,515  1,824 31,380 

Black panel  1,317 48,954  1,740 14,832 

H 1,458 25,674  1,569 5,020 

Lw 3,450 70,305  2,372 14,494 

Prr 3,100 33,002  2,086 9,203 

N  1,758 18,355  1,702 4,419 

Fe 2,830 42,639  2,372 10,382 
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Table 5-2. The comparison of two types of camera Canon (3 bands), and tetra cam (6 bands) by 

using two classification methods: multilayer perceptron neural network MLP and K-

nearest neighbor with PROI in Sym and Asym stages. 
Classes in asymptomatic  

stage polygon ROI 

Canon camera  

MLP (%)      KNN (%) 

Tetra camera  

MLP (%)      KNN (%) 

 

H&Lw 

H&Fe 

H&N 

H&Prr  

 

73                     63 

71                     66 

84                     77    

72                     66 

80                     73 

95                     82 

99                     88 

83                     76 

H& other factors  86                     53 82                     68 

Lw& other factors  73                     70 78                     76 

Classes in symptomatic stage    

H&Lw 76                       63 83                      73 

H& other factors 87                       68 92                      79 

Lw& other factors 75                       68 82                      70 

 

Table 5-3. The comparison of a classification accuracy two types of camera Canon (3 bands), 

and tetra cam (6 bands) by using two classifications: multilayer perceptron neural 

network and K-nearest neighbor OVROI in Sym and Asym stage. 

Classes in asymptomatic stage over 

all plant  ROI 

Canon cam 

MLP (%)      KNN (%) 

Tetra cam  

MLP (%)      KNN (%) 

H&Lw 

H&Fe 

H&N 

H&Prr 

76                       63 

69                       58 

74                       68 

62                       58 

85                    82 

91                    82 

98                    89 

86                    75 

H& other factors 87                       80  83                    67 

Lw& other factors 77                      73 79                    74 

Classes in symptomatic stage   

H&Lw 78                       68 86                    72 

H& other factors 88                       67 93                    77 

Lw& other factors 77                       70 83                    68 
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Table 5-4. The classification accuracy between healthy, laurel wilt, Fe, N, and Phytophthora root 

rot by using two classification methods (MLP and KNN) for two stages, and two 

cameras Canon (3 bands) and Tetra cam (6 bands). 

Classes in  

Asymptomatic stage    

     Canon camera        

MLP (%)   KNN (%) 

        Tetra cam  

MLP (%)   KNN (%) 

H-Lw-Fe  57                    52  77                     73 

H-Lw-N  65                    51  75                     72 

H-Lw-Prr                       55                     55  74                     61 

H-Lw-Fe-N-Prr  43                     40  53                     48 

Classes in 

Symptomatic stage 

    

H-Lw-Fe   67                      58  83                      50 

H-Lw-N   70                      60  86                      52 

H-Lw-Prr   67                       62  81                      51 

H-Lw-Fe-N-Prr  60                       56  65                      58 

 

 

PROI-Asy Stage: From Table 5-2 the result of PROI Tetra cam (6 bands) shows high 

classification value to discriminate H vs. Lw in MLP classification method, while Canon 3 bands 

were higher than other camera to distinguish Lw from other factors (H, Fe, N, and Prr). When 

the leaves of avocado were infected with ambrosia beetle and caused Lw, this beetle produced 

fungal distract water flow to leaves (Ploetz et al., 2012a). Eventually, leaves turned a different 

color, so spectral reflectance was affected in near infrared region. Any change in leaf color and 

leaf structure is an indicator that there is stress on leaves and will effect spectral reflectance. 

PROI - Sym stage: The filter of tetra camera was included six bands 580-10 nm, 650-10 nm, 

740-10 nm, 750-10 nm, 760-10 nm, and 850-40 323 nm had higher classification than other 

cameras. The classification value of H and other factors has higher value than other camera and 

for both ROI and both stages. The higher classification between healthy and other factors 

included Lw in Asy and Sym stages. KNN has lower classification than MLP in all treatments, 
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so we focused on the MLP method. The situation of non-infected leaves has high chlorophyll 

concentration, the reflectance range of chlorophyll content 520-550 nm and 695-705 nm of all 

species (Gitelson et al., 2003). In the visible range, light was absorbed in blue and red range, 

while it reflects green color in green region 520-550 nm (Penuelas et al., 1995, Chappelle et al., 

1992). Any change in chlorophyll content will lead to change in leaves spectral reflectance in 

visible range (Sims and Gamon, 2002). The disease development stage might affect reflectance 

value in visible and near infrared (NIR) domain (Sims and Gamon, 2002). When the Lw disease 

started to develop in avocado trees, leaves dramatically changed from green to yellow, then 

turned to wilt brown. Finally, the leaves dried and were totally necrotic. The severity of the 

disease dramatically changes leaf structure and water content depends on disease development 

stages (Chappelle et al., 1992). 

OVROI - Sym: From Table 5-3: The Canon cam had lower classification value for both MLP 

and KNN. H vs. N recorded as higher classification value could be distinguished between 

healthy and N deficiency. In general, the good classification belonged to tetra cam 6 bands. The 

higher classification value between two classes H vs. N, H vs. Fe; the classification reached up to 

98% in some cases. As was mentioned above, there were two types of filters and cameras used to 

distinguish H and other stress factors. Obviously, the tetra cam 6 bands was the best filter to 

discriminate different classes in high classification value than other camera and filter. 

In image processing, wavelets might be used for multi-resolution images. Filter selection is 

important to provide good resolution separable between wavelengths (Kingsbury, 1999). 

Splitting infected trees from un-infected in remote sensing is critical in order to distinguish 

various stresses in a plant, so eliminating any interaction between specific wavelengths that will 

reduce or eliminate any image analysis confusion. However, band filter selection affects the 
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result of classification. More band selections will lead to higher resolution and more separation 

between different classes depending on precision of band selection to reduce any interaction 

between narrow wavelengths (Chang et al., 1999). From the result, filter coefficient effect 

classification result (Villasenor et al., 1995), we could prove that wavebands were already 

selected in lab condition. 

Conclusion 

Image processing with optimal band selection is more effective in recognizing infected 

plants from non-infected plants. In this study, two cameras with different filters and different 

bands selection were utilized to evaluate the performance of these cameras (MCA tetra cam-6, 

Tetra cam, and Canon-3 bands). For evaluation, two classification methods (MLP and KNN) 

were implemented. In addition, two regions of interest (PROI and OVROI) were applied to 

figure out which segmentation could work. Categories of avocado trees were classified (H, Lw, 

Prr, Fe, and N) in two Lw stages, early and late stage. MLP method was better than KNN in all 

treatments, and in some cases reached up to 98%. OVROI had higher classification and higher 

resolution and larger pixel numbers than PROI. The Canon cam recorded less classification value 

than MCA tetra cam. In general, tetra cam 6 bands (580-10 nm, 650-10 nm, 740-10 nm, 

750-10 nm, 760-10 nm, and 850-40 323 nm) had the highest classification for most treatments. 

Lw Sym stage recorded higher classification than the Asy stage. The classification of H and (Lw, 

Prr, Fe, and N) Fe and N deficiency had higher recognition value in most treatments for all 

cameras and OVROI. The quality of filter bands selection is critical in remote sensing to provide 

accurate spectral reflectance. It will give good results in distinguishing healthy plants from non-

healthy ones. Inexpensive remote sensing could encourage growers to use image application as a 

nondestructive method to detect biological and non-biological factors in groves with low cost 

and accurate method. 
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CHAPTER 6 

SUMMARY AND RECOMMENDATIONS 

The main target of this study was to find out inexpensive remote sensing technique to 

detect Lw infected trees. In this study, spectral reflectance was measured for canopy of healthy 

(control), Lw infected, Prr infected, salinity damage, Fe and N deficiency using SVC HR-1024 

portable spectrodiometer (Spectra Vista Corporation, Poughkeepsie, New York), Tetra cam 6 

bands (Tetra cam, Inc., CA, USA), and Modified Canon (CanonSX260 NDVI, Canon U.S.A., 

Inc. Melville, NY, USA). Five classification algorithm methods such as neural network 

multilayer perceptron (MLP) and radial base function RBF), step wise discriminant analysis 

(STEPDISC), decision tree (DT) and K-nearest neighbor (KNN) were applied. These images 

were processed in ENVI 4.5 (ITT Visual Information Solutions, Boulder, Colorado). 

Chapter One: Review of benefit of remote sensing technique, and overview of principle of 

remote sensor description of disease detection technique improvement through several studies 

had done. Discuss disease detection methods and focusing on non-distractive method and show 

the importance of spectral reflectance method and hyperspectral and multispectral image and 

explain how it is environmental friendly and inexpensive comparing to DNA analysis. 

Chapter Two: Describes the brief overview of all suspected diseases similar to Lw and 

nutrient deficiencies that may be confused with Lw. Mention the most important factors affect 

spectral reflectance and absorbance in leaf area such as chlorophyll concentration, leaf structure, 

and water content. This chapter also describes the mechanism of Lw and effect on commercial 

avocado area in south Florida. It also discusses the diseases in avocado caused by vectors, virus, 

pathogens, and the symptoms of multi-mineral deficiency have the same early symptoms with 

Lw. 
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Chapter Three: Two neural network MLP and RBF and STEPDISC classification methods 

to identify the ability of discrimination of Lw, control, Prr, and salinity damage in early and late 

stage. The result was almost perfect discrimination between all treatments. MLP method was the 

best distinguish for all classification method reach up to 98%. The most important bands were 

between red and NIR domain. The results also show it is possible to detect disease before disease 

symptom appearances. 

Chapter Four: Discuss the effect of Lw and nutrient deficiency, and capability of detecting 

the disease in MLP and decision tree (DT) algorithm classification were used to identify Lw and 

Fe and N deficiency using a Spectra Vista spectrodiometer. The result showed the possibility to 

identify Lw from H, N, and Fe deficiency in early symptomatic. MLP has highest classification 

rate reached up to 98%. Almost all of the important bands were in red edge and near infrared 

domain. Vegetation indices in the range from 400 to 970 nm were higher for MLP with 

92%-98% accuracy for early and late stages compared to the DTs classification of 82%. The 

vegetation indices selected were (SR 850, PRI) and (ND 750/705, WI) for early and late stage, 

respectively. 

Chapter Five: Applied two different cameras: Tetracam 6 bands and Canon red modify to 

detect Lw in a symptom and in advance symptomatic stage with H, Prr, N, and Fe deficiency. 

MLP and KNN algorithm methods were used to classify multiband spectral reflectance for two 

region of interest polygon and overall region of interest included all canopy of tree while (PROI) 

covered just leaves partially (segmentation); however, the good results we obtained Tetra cam 6 

bands - MLP classification method with (OVROI) in some treatment reached up to 99% 

especially for healthy and N. From image analysis, it was clear and possible to recognize trees 
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under stress and non-infected trees with high accuracy, so multiband image with good bands 

selected for sure would give good result in precision agriculture. 

High accuracy of spectral bands selection is essential to use these bands in camera’s filter 

in order to detect stress factors and distinguish it with high accuracy. The application of this 

study used in limited area and samples. Therefore, it is necessary to apply this technique in real 

field with multi stress factors. 
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