VISION BASED ROBUST VEHICLE DETECTION AND TRACKING VIA ACTIVE LEARNING

By

VISHNU KARAKKAT NARAYANAN

A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2013
To my parents, P.V. Narayanan and Sudha Narayanan
ACKNOWLEDGMENTS

I would like to express my gratitude to my adviser Dr. Carl Crane for his contribution and guidance during the project phase and throughout my Masters study. I would also like to thank my committee members Dr. Prabir Barooah and Dr. Antonio Arroyo for their help and suggestions.

Furthermore, I am extremely grateful to my lab members Ryan Chilton, Maninder Singh Panda and Darshan Patel for their assistance. I would like to extend a big thank you to Clint P. George for his help in writing this thesis. I offer my regards to all my friends who directly or indirectly contributed towards building this system especially Paul Thotakkara, Rahul Subramany, Gokul Bhat and Jacob James.

Finally, I thank my parents Sudha Narayanan and P.V. Narayanan and my brother Varun Narayanan for all their encouragement, everlasting love and care which was the guiding light throughout my studies and my life and without whom I would never be in this position.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACKNOWLEDGMENTS</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>INTRODUCTION</td>
<td>10</td>
</tr>
<tr>
<td>1.1</td>
<td>Organization</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>RELATED RESEARCH</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>Vision Based Vehicle Detection</td>
<td>13</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Machine Learning Based Approaches</td>
<td>15</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Active Learning Based Object Classification</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Vehicle Tracking And Distance Estimation</td>
<td>19</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Vehicle Tracking</td>
<td>19</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Distance Estimation From a Monocular Camera</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>ACTIVELY TRAINED VIOLA-JONES CLASSIFIER</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Viola-Jones Object Detection Framework</td>
<td>23</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Feature Selection and Image Representation</td>
<td>23</td>
</tr>
<tr>
<td>3.1.1.1</td>
<td>Rectangular Haar-like features</td>
<td>23</td>
</tr>
<tr>
<td>3.1.1.2</td>
<td>Integral image representation</td>
<td>24</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Adaboost Based Classifier</td>
<td>25</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Classifier Cascade</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Passively Trained Classifier</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Active Learning Principles</td>
<td>30</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Query By Confidence</td>
<td>31</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Query By Misclassification</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Active Learning Based Classifier</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>Summary</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>VEHICLE TRACKING AND DISTANCE ESTIMATION</td>
<td>35</td>
</tr>
<tr>
<td>4.1</td>
<td>Lucas-Kanade Optical Flow Based Tracking</td>
<td>35</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Method</td>
<td>36</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Pyramidal Implementation</td>
<td>37</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Implementation</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>Distance Estimation</td>
<td>39</td>
</tr>
</tbody>
</table>
4.3 Summary ... 41

5 EVALUATION AND DISCUSSION ... 43

5.1 Datasets ... 43
 5.1.1 Caltech 2001/1999 Static Image Database ... 43
 5.1.2 mvBlueFOX Test Data ... 43

5.2 Evaluation Parameters ... 45

5.3 Static Dataset ... 46

5.4 Real Time Dataset ... 49

5.5 Implementation in a Real Time Scenario .. 53

5.6 Summary ... 53

6 CONCLUSIONS AND FUTURE WORK .. 55

REFERENCES .. 57

BIOGRAPHICAL SKETCH ... 62
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Passive Training Parameters</td>
<td>30</td>
</tr>
<tr>
<td>3-2</td>
<td>Active Training Parameters</td>
<td>34</td>
</tr>
<tr>
<td>5-1</td>
<td>Results on Static Dataset - Active-Passive Comparison</td>
<td>47</td>
</tr>
<tr>
<td>5-2</td>
<td>Results on Real Time Dataset - Active-Passive Comparison</td>
<td>52</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>3-1</td>
<td>Rectangular Haar-like Features</td>
<td>24</td>
</tr>
<tr>
<td>3-2</td>
<td>Integral Image Representation</td>
<td>26</td>
</tr>
<tr>
<td>3-3</td>
<td>Schematic of a Classifier Cascade</td>
<td>27</td>
</tr>
<tr>
<td>3-4</td>
<td>Example of a positive image</td>
<td>29</td>
</tr>
<tr>
<td>3-5</td>
<td>Example of a negative image</td>
<td>30</td>
</tr>
<tr>
<td>3-6</td>
<td>Schematic of the Active Learning Framework</td>
<td>33</td>
</tr>
<tr>
<td>3-7</td>
<td>Examples queried for re-training</td>
<td>33</td>
</tr>
<tr>
<td>4-1</td>
<td>Pyramidal Implementation of LK Optical Flow</td>
<td>38</td>
</tr>
<tr>
<td>4-2</td>
<td>Schematic showing the algorithmic flow of the Tracking Process</td>
<td>39</td>
</tr>
<tr>
<td>4-3</td>
<td>Algorithmic flow of the complete Detection and Tracking Process</td>
<td>42</td>
</tr>
<tr>
<td>5-1</td>
<td>Caltech 2001/1999 Static Image Data Example</td>
<td>44</td>
</tr>
<tr>
<td>5-2</td>
<td>Real Time test data captured using the test rig</td>
<td>44</td>
</tr>
<tr>
<td>5-3</td>
<td>Examples of True Positive Detections in Static Datset</td>
<td>47</td>
</tr>
<tr>
<td>5-4</td>
<td>Examples of false positives and missed detections</td>
<td>47</td>
</tr>
<tr>
<td>5-5</td>
<td>The ROC curves for Actively and Passively Trained Classifiers</td>
<td>48</td>
</tr>
<tr>
<td>5-6</td>
<td>Examples of True Positive Detections in Real Time Test set</td>
<td>49</td>
</tr>
<tr>
<td>5-7</td>
<td>Examples of false positives and missed detections</td>
<td>50</td>
</tr>
<tr>
<td>5-8</td>
<td>Test data Detection Track</td>
<td>50</td>
</tr>
<tr>
<td>5-9</td>
<td>The ROC curves for Actively and Passively Trained Classifiers</td>
<td>52</td>
</tr>
<tr>
<td>5-10</td>
<td>Screenshot of Full System 1</td>
<td>53</td>
</tr>
<tr>
<td>5-11</td>
<td>Screenshot of Full System 2</td>
<td>54</td>
</tr>
</tbody>
</table>
VISION BASED ROBUST VEHICLE DETECTION AND TRACKING VIA ACTIVE LEARNING

By

Vishnu Karakkat Narayanan

May 2013

Chair: Carl D. Crane, III
Major: Mechanical Engineering

This thesis aims to introduce a novel robust real time system capable of rapidly detecting and tracking vehicles in a video stream using a monocular vision system. The framework used for this purpose is an actively learned implementation of the Haar-like feature based Viola-Jones classifier integrated with a Lucas-Kanade Optical Flow Tracker and a distance estimation algorithm.

A passively trained supervised system is initially built by using Rectangular Haar-like features. Several increasingly complex weak classifiers, (which are essentially a degenerative set of Decision Tree classifiers) are trained at the start. These weakly trained classifiers are then conjunctively cascaded based on Adaboost to form a strong classifier which results in the elimination of much of the background and works on regions of the image which are more likely to be the candidate. This leads to an increase in speed and reduction in false alarm rates.

An actively learned model is then generated from the initial passive classifier by querying misclassified instances when the model is evaluated on an independent dataset. This actively trained system is then integrated with a Lucas-Kanade optical flow tracker and distance estimator algorithm to build a complete multi-vehicle detection and tracking system capable of performing in real time. The built model is then evaluated extensively on static as well as real world data and results are presented.
CHAPTER 1
INTRODUCTION

More people are affected by automotive accident injuries than any other accident related injuries. It has been estimated that every year, about 20 - 50 million people are injured due to automotive accidents. Around 1.2 million people lose their lives as a result. There are reports suggesting that 1 to 3% of the world’s domestic gross product is spent on health care and other costs which are attributed to auto accidents. Consequently, over the last decade, there has been a lot of research purely devoted to the study and development of intelligent automotive safety systems and safe autonomous vehicles among the Intelligent Transportation and Robotics community.

A majority of such research conducted by academicians and vehicle manufacturers in this field is related to the development of systems which are capable of detecting and tracking other vehicles in real time traffic by using a variety of sensors like cameras, LiDaRs (Laser Detection and Ranging Sensor) and infrared sensors. One of the main challenges associated with developing such systems is that they should be reliable, robust and simple to implement [28]. Currently, the majority of such systems employ LiDaR based sensing which provide highly accurate information but does not posses a mechanism which can be exploited for enhanced and intuitive decision making. Vision based vehicle detection systems have been widely credited and researched as the one that is low cost, efficient, and has the potential to deliver accurate information to the driver regarding traffic, pedestrians, lane following and lane departures.

The purpose of this thesis is to shed some light on the application of machine learning techniques in the area of robust, real time vehicle detection based on vision. It is a well-known fact that vision based vehicle detection is a challenging problem, as the environment is ever changing, dynamic, and cluttered. The vehicles are constantly in motion, there exists a diverse array of vehicle sizes and shapes, and illumination is not constant. So, a general pattern recognition based model for designing such a system
would be of little value. Therefore, this thesis makes the use of an "actively trained" cascade of boosted classifiers which are trained on a real time dataset to efficiently detect vehicles in motion. The underlying framework, initially developed for face detection by Viola and Jones [14], is particularly useful for the application at hand because it eliminates the effects of occlusion, scale invariance and shape constraints which are inherent in cluttered scenes like the traffic stream.

Active Learning is an upcoming field of research in Machine Learning circles. The principle of active learning is the notion that a classifier (or learning function) has the ability to have some degree of control over the data which it learns. This theory has been successfully implemented in areas like document modeling, text categorization, and natural language processing with significant improvements in classification accuracy and computational load. This study aims to use active learning to tweak the classifier built using the Viola-Jones framework mainly to reduce the occurrence of false positives in on-road detection along with improvement in accuracy.

The actively trained system is then integrated with a tracking algorithm based on Lucas-Kanade Optical Flow and a vehicle range estimation algorithm to build a complete multi-vehicle detection and tracking system based on monocular vision which is reliable, robust and capable of performing in real time using standard hardware. An exhaustive performance analysis is also presented by evaluating the designed system in static as well as real world datasets. A comparison between the passively trained and the actively trained classifier is also explained and some avenues for future work are explored.

The major contribution of the thesis is a preliminary investigation into active learning based real time vehicle detection in traffic using a monocular vision system. Evaluations on real time and static image datasets sheds light on the systems recall, localization and robustness.
1.1 Organization

The thesis is organized as follows:

Chapter 2 provides a comprehensive study on the research pertaining to the current study explaining the evolution of vision based vehicle detection, the development of machine learning based vision processing and active learning based on road vehicle detection. Background regarding vision based tracking and 3-D range estimation is also given. Chapter 3 initially discusses the Viola-Jones framework along with design of a passive classifier trained on real world data. The chapter then moves to discuss Active Learning principles and explains the construction of an Actively trained classifier by improving upon the passive classifier. Chapter 4 delineates the Lucas-Kanade Feature tracking employed in this work in conjunction with the active classifier. A distance estimation method based on a pin-hole camera model is also explained. Further, Chapter 5 contains evaluations and discussions regarding the implementation of the multi-vehicle detection and tracking system on real world and static datasets. An exhaustive performance analysis is presented along with scope for improvement. Finally, Chapter 6 summarizes the whole idea of the thesis and discusses the direction of future work.
CHAPTER 2
RELATED RESEARCH

An exhaustive overview of the research in the field of vision based vehicle detection and tracking is presented in this chapter. The literature pertaining to this work can be broadly divided into two categories. The first part deals with papers concerning vehicle detection based on vision. Starting from the algorithmic approach to the machine learning approach, the beautiful hierarchy of the evolution and improvements in this area is presented. The second part explains and critiques papers concerned with vehicle tracking along with works relative to distance estimation from a single camera. Finally, a summary of all the techniques is presented, along with the brief introduction of the novel improvements that this present work aims to introduce.

2.1 Vision Based Vehicle Detection

Vehicle detection based on vision has had tremendous research exposure in the past two decades, both from the Artificial Intelligence and Robotics community and the Intelligent Transportation Systems community (wherein, the majority of research is on vision based systems for vehicle detection). Therefore, a plethora of work relevant to this area can be found which are evaluated both on real-time and static images.

The transition from stereo vision to monocular vision in the case of vehicle detection can be best explained from the work of Bensrhair et al. [2]. The work presents a co-operative approach to vehicle detection, where monocular vision based and stereo vision based systems are evaluated individually and in an integrated system. The monocular system used a simple model based template matching for the detection purpose. The study found out that stereo systems were 10 times slower than monocular systems when evaluated on static images but had higher accuracy in detecting and estimating the actual distance. A similar system was developed recently by Sivaraman [27]. This system used an actively trained monocular system (based on Haar-like...
features) along with a stereo rig to calculate the depth map. The system had very high accuracy but took 50ms to process a single frame.

Betke et al. [3], utilized the combination of edge, color, and motion information to detect possible vehicles and lane markings. This was one of the earliest and possibly one of the most defining attempts at performing real-time vision based vehicle detection and tracking. The algorithm used a combination of template matching and a temporal differencing method performed on online cropped images to detect cars. Lane markings and track boundaries were tracked using a recursive least squares filter. The final system was capable of performing at around 15 frames/sec in real-time but had moderate accuracy. The amount of time required for pre-processing and algorithm development does not justify the use of this method in the present scenario.

A different approach was introduced by Yamaguchi et al. [34] where the ego-motion of the vehicle (the motion of the vehicle camera) was estimated to initially construct a 3-D representation of the scene and then detect a vehicle. The ego-motion is estimated by the correspondence of some feature points between two different images in which the objects are not moving. After the 3-D reconstruction process, vehicles are detected by triangulation. This system was capable of performing at 10 frames/sec but again suffered from a high false positive rate.

Vehicle detection at nighttime is also an open avenue for research. The above mentioned techniques cannot be used successfully in a nighttime scenario. Chen et al. [7] proposed a pattern analysis based on a tail light clustering approach for vehicle classification. This system (which can be only employed at night) was able to detect cars as well as motorbikes with an accuracy of 97.5%.

Detecting vehicles in traffic from an overhead camera mounted inside a tunnel was explored by Wu et al [33]. The proposed algorithm constructed an automatic lane detection system by background subtraction and detected vehicles using a block matching technique. This method is suitable for overhead traffic detection but it cannot
be scaled to rear end systems where the camera is moving constantly and the scene changes at every frame. Thus, methods based on static block matching or template matching are not suitable for the present scenario.

Although Image Processing techniques provide a sound theoretical framework for on-road vehicle detection, the moderate accuracy and high implementation time has deviated this research towards machine learning techniques to solve this problem.

2.1.1 Machine Learning Based Approaches

One of the more important aspects of Machine Learning is the selection of suitable features for classification [22]. Selecting features in cluttered scenes like traffic streams for object detection is not a trivial issue. The majority of work reported in this area uses either Histogram of Gradient (HOG) features or Haar-like features coupled with a suitable learning algorithm for object classification.

Balcones et al. [1] proposed a rear end collision warning system which used an extensively pre-processed image sequence trained on HOG features and classified using a Support Vector Machine (SVM). The detected Region of Interest (ROI) was tracked using a Kalman filter. This system achieved very high detection rates but suffered from a very high false positive rate also.

A similar system was derived by Sun et al. [21] where the features were selected based on Haar wavelet transforms instead of HOG features. An SVM based classifier was used to verify the hypotheses generated by the feature detection algorithm. This system gave a frame rate of 10 Hz when implemented in real time. But the accuracy was found to be moderate with high false positive rates.

A pioneering work in the area of Machine Learning based object detection was reported by Papageorgiou [24] in the year 2000. The paper proposed a binary Support Vector Machine (SVM) based classifier trained on Haar wavelet transforms, which are essentially the intensity differences between different regions of an image. This method
was tailor made for object detection in cluttered scenes. Results were presented on static images for pedestrian detection, face detection, and car detection.

In 2001, Micheal Jones and Paul Viola [14] presented their work on Robust object detection through training Haar-like features via Adaboost. This was in effect a major improvement from the algorithm proposed by Papageorgiou as the system allowed very rapid detection which facilitated the use of the algorithm in real time systems. This theory was validated by employing the algorithm for the purpose of face detection with highly satisfactory results. An implementation of this very framework is used in this thesis and is explained in detail in the following chapter. Much of the later work in the area of vision based vehicle detection uses a derivative of this framework.

The Viola-Jones algorithm thus has become a very popular framework for monocular vision based object detection. Han et al. [12] derived a simplistic approach to the implementation of this framework to vehicle detection systems. This algorithm searches the image for objects with shadow and eliminates the rest of the image region as noise removal. Then the Haar-like feature detector is run on the image to classify the ROI as a vehicle or non-vehicle. This study used static images of cars for training purposes, thus the accuracy of the classifier was limited to around 82% average.

A real time system based on Haar-like features combined with Pairwise Geometrical Histograms (PGH) was proposed by Yong et al [35]. PGH is a powerful shape descriptor which is invariant to rotation. The study compared the accuracy of classifiers built with Haar-like features and the combination of Haar-like features and PGH. The results showed that the combination classifier performed at 95.2% accuracy when compared to 92.4% for the single type feature classifier. The false positive rate was relatively the same.

A different method was proposed by Khalid et al [16] wherein a hypothesis was initially generated by a corner detector algorithm and this hypothesis was verified by running the generated ROI through an Adaboost based classifier. The classifier was
trained on static images, but the system gave good accuracy as a lot of false positive candidates were eliminated during the corner and edge detection process. But the lack of a good tracking algorithm hinders the implementation of this system in real world applications.

Choi [8] integrated an oncoming traffic detector based on ‘optical flow’ along with the traditional rear traffic detector to construct a comprehensive vehicle detection algorithm. The optical flow was based on correspondence of features detected by the Shi-Tomasi corner detector. The rear end vehicle detection system was also based on Adaboost working with Haar-like features. Again, the classifier was trained using generic static images of cars and were validated on static images with an accuracy of 89%. A Kalman filter was integrated with the system for tracking previously detected vehicles.

An exhaustive study was conducted by Tsai et al. [32] in which a fully real time compatible system was developed for vehicle detection. The framework initially generates a hypothesis based on a corner detector with SURF based descriptors and validates the hypothesis based on the Viola-Jones algorithm. A Kalman filter based tracker was integrated to the system. The study also compared the classification accuracy with respect to the actual distance of the vehicle from the ego-vehicle. The minimum accuracy achieved was 91.2% with a threshold maximum distance of 140m.

2.1.2 Active Learning Based Object Classification

Active Learning (AL), in brief, is a system which is able to ask a user (or some other information source) interactively about the output of some data point. It is fully explained in the next chapter with conclusive examples and theory. This chapter just focuses on the background of work done in this area. AL is being increasingly used in conjunction with object detection among the Robotics research circle. Among the many advantages are improvement of classifier performance, reduction of false alarm rates and generation of new data for training. These are the major factors that validates active learning as a valuable tool for machine learning based object detection. One of the major drawbacks
of the Viola-Jones algorithm is the issue of high false alarm rates. Thus, the use of active learning together with the Viola-Jones algorithm could lead to a robust classifier.

An entropy based approach for object detection based on Active Learning was proposed by Holub [13]. The study focused on reduction in the amount of training samples required by interactively selecting the images which had higher and better feature density. This was achieved by querying some sort of maximized information about each image. The study achieved up to 10x reductions in the number of training samples among the 170 categories of images analyzed.

The backbone of Active Learning is the selection of samples for interactive labeling of an evaluated dataset. Kapoor et al [15] devised a system based on Gaussian Processes with co-variance functions based on Pyramid Matching Kernels for autonomously and optimally selecting data for interactive labeling. This reduces the time consumed by the vision researcher in labeling the dataset. The major advantage of this system is that it can be employed in very large datasets with a small tradeoff in the classification accuracy.

Much of the literature in the field of using Active Learning for specifically vehicle detection owes to the work of Sivaraman [30] [29]. In two different papers, the author compared two different methods of generating training samples, i.e. Query by sampling and Query by misclassification. The results showed that even though Query by misclassification was subject to higher human capital, it lead to better accuracy. The accuracy achieved was 95% with a false positive rate of 6.4%. This proved a significant reduction in false positives when compared to the passive learning methods mentioned above. The study also integrated a Condensation filer to construct a fully automatic real time vehicle detection and tracking system.

An exhaustive comparative study was conducted by Sivaraman [28] in 2011, where the author compared various techniques explored in monocular vehicle detection with a particular emphasis on Boosted classifier based methods. Also, a cost sensitive based
analysis was conducted on the three popular methods of active learning and the results suggested that Query by Misclassification gave better results in terms of better precision and recall even though the cost of human capital was higher.

Based on the available literature, an Active Learning based system using Query by Misclassification would be a perfect avenue for improving the Viola-Jones algorithm.

2.2 Vehicle Tracking And Distance Estimation

2.2.1 Vehicle Tracking

Tracking relevant points from one image frame to another in a video stream can be performed broadly in two different ways; Feature based and Model based. Feature based tracking is done by matching correspondence between extracted features between the two different frames. Model based tracking assumes some sort of prior information about the object initially and updates the information and tracks it as the frames are processed. There is extensive literature available on the application of these two methods in real time vehicle tracking systems.

Model based tracking has been extensively studied by the vision research community, namely Kalman filtering and Particle filtering. Several improvements have been suggested for optimizing the performance of these filters for vehicle detection [18]. Kobilarov et al [18] proposed a Probabilistic Data Association Filter (PDAF) instead of a single measurement Kalman filter for the purpose of people tracking. But the visual method suffered from very low accuracy in tracking and could only be improved by using the camera along with a laser sensor.

Particle filters (Condensation filters) have been used extensively in the field of object tracking [30] [10]. Recently, Bouttefroy [5] developed a projective particle filter which projects the real world trajectory of the object into the camera space. This provides a better estimate of the object position. Thus, the variance of observed trajectory is reduced which results in more robust tracking.
Furthermore, Rezaee et al. [26] introduced a system which integrated particle filtering with multiple cues such as color, edge, texture, and motion. This fused method has proved to be much more robust than using a conventional particle filter. But even though model based tracking methods provide a reliable and robust option for tracking relevant pixels, it is very computationally intensive which hinders its application in real time systems.

Thus, looking into feature based tracking methods became a necessary option for researchers. With a variety of algorithms being designed for correspondence between the features (for example, Lucas-Kanade, Horn-Schunck, Farneback's method etc), vision researchers increasingly deviated towards feature based tracking for mainly robotic applications. The most important criteria to build a successful system is the optimal selection of features and the use of a suitable matching algorithm. Cao et al. [6] used the Kanade-Lucas-Tomasi (KLT) feature tracker working with the corners of the detected vehicles as features to track vehicles from the air in a UAV. This standard implementation of the KLT feature tracker is very useful for scenes without occlusion.

Dallalzadeh et al. [9] proposed a novel approach to determine the correspondence between vehicle corners for robust tracking. This algorithm works on the extracted "ghost" or cast shadow of the vehicle and was able to achieve an accuracy of 99.8% on average. The only limitation of this algorithm is the extensive processing power consumed in pre-processing at every frame step.

Optical Flow based tracking is a form of feature based tracking in which the algorithm calculates the apparent velocities of movement of brightness patterns in an image. This gives a really good estimate of the image motion. Garcia [11] used a heavily downsampled image from a video stream to track vehicles on highways using the Lucas-Kanade(LK) method. The major drawback of this study was the use of the full image region as the feature to track which hindered the use of this system in real time.
However this study validated the robustness of the LK algorithm for image motion estimation as it produced an accuracy of 98%.

Liu et al. [19] introduced a multi-resolution optical flow based tracking with an improvement to the standard Lucas-Kanade (LK) optical flow to track vehicles from the air. The features used in conjunction with the LK module was the corners of vehicles detected by the Harris corner detector algorithm. The tracking algorithm could match features with high real time performance.

Thus, owing to the real time application and the high level of robustness required the Lucas-Kanade (LK) optical flow tracker was deemed to be the best solution for the current scenario.

2.2.2 Distance Estimation From a Monocular Camera

Conventional stereo based approaches are not suitable for most real time applications. Also, estimation of object distance accurately using a single camera which is moving is a challenging task. There has been various methods proposed to solve this problem. A moving aperture based solution which assumes the aperture of the lens in motion would allow for an optical flow based algorithm to track and measure distance [31]. Another approach estimated the inter-vehicular distance by co-relating the extracted widths of the cars [17]. Another study suggested a genetic algorithm based optimization technique to estimate distances fairly accurately [25]. But all these methods suffer from slow execution times or require the use of additional information such as an image of a scene taken from a different perspective.

The task of distance estimation from a single camera becomes fairly simple when the dimensions of the object under consideration are known. Using the fully calibrated camera parameters and the size of the Region of Interest (ROI), the distance of the object from the camera in 3-D world co-ordinates can be estimated easily if the width and height of the vehicle is known [3]. Thus, assuming a standard value for the vehicle
dimension seems a reasonable attempt to measure distance so that the algorithm could be deployed in a real time scenario.

2.3 Summary

This chapter gave an overview of the related research in the field of vision based vehicle detection from machine learning based approaches to active learning. It also discussed recent advancements in the area of vehicle tracking and object distance estimation using a monocular vision system. It was found out that an actively trained Haar-like feature detector (based on the Viola-Jones algorithm) is a viable solution for robust rapid object detection in cluttered scenes (like traffic streams). An implementation of this algorithm working in conjunction with a Lucas-Kanade (LK) based optical flow tracking system integrated with a distance measurement system would be an effective solution for a robust lightweight module capable of detecting and tracking vehicles in front of the ego-vehicle. This system could be deployed in an autonomous vehicle or in standard vehicles as a driver assistance system.
CHAPTER 3
ACTIVELY TRAINED VIOLA-JONES CLASSIFIER

A detailed explanation of the framework developed by Micheal Jones and Paul Viola [14] is provided in this chapter in conjunction with the principle of Active Learning. The modified actively trained implementation of this algorithm is then presented with respect to the use of this vehicle detection framework.

The approach proposed by Viola and Jones was initially developed as a rapid object detection tool to be employed in face detection systems. Since the underlying features it uses to evaluate the Regions of Interest (ROIs) is a form of rectangular Haar-like features (explained below), it is particularly suitable for the vehicle detection scenario [28] (as the shape of a vehicle in a video stream is defined by rectangular derivatives). The fact that this framework gives very high accuracy along with rapid detection and the property of scale and rotation invariance proves its usefulness in an improved implementation of this algorithm on a vehicle detection framework.

3.1 Viola-Jones Object Detection Framework

3.1.1 Feature Selection and Image Representation

3.1.1.1 Rectangular Haar-like features

The main idea of working with features is that it is much faster than a pixel based classification system which is integral to the idea of rapid detection in real time. The weak classifiers (explained later in detail) works with values of very simple features. These features are derivatives of Haar basis functions used by Papageorgiou et. al [24] in his trainable object detection framework. The three kinds of features used in this study are:

- Two Rectangle Feature: As shown in Figure 3-1, the value of a two rectangle feature is the difference between the sum of pixel values within two rectangular regions in a Region of Interest (ROI). The Region should have the same size and should be horizontally or vertically adjacent.
- Three Rectangle Feature: Similarly, a three rectangle feature is the sum of the pixels of the two outside rectangles subtracted from the sum of pixels of the center triangle.

- Four Rectangle Feature: A four rectangle feature is the difference in the sum of pixels of two pairs of diagonally opposite rectangles.

![Image](image_url)

Figure 3-1. The Rectangular features displayed with respect to the detection window. A and B represents Two Rectangle Features, C represents a Three Rectangle Feature and D is the Four Rectangle Feature.

The minimum size of the detection window was chosen to be 20x20 based on trial runs and given this information, the set of rectangular features is much higher than the number of pixels in the window (to the order of 150,000). Thus this representation of features is overcomplete and a suitable feature selection procedure has to be integrated into the algorithm to speed up the classification process.

3.1.1.2 Integral image representation

One of the three major contributions of the original algorithm is the representation of the images in the form of an Integral image. The rectangular features can be calculated very rapidly (and in constant time) using this intermediate representation of the image.
The pixel value of an Integral image at a point \((x,y)\) is the sum of the pixel values of the whole region above and the to left of the point \((x,y)\) and can be written as:

\[
l(x, y) = \sum_{a \leq x, b \leq y} i(a, b) \quad (3-1)
\]

where \(l(x,y)\) is the Integral image representation and \(i(a,b)\) is the original image representation. The above state can be reached from the two operations below in one pass over the original image:

\[
s(x, y) = s(x, y - 1) + i(x, y) \quad (3-2)
\]

\[
l(x, y) = l(x - 1, y) + s(x, y) \quad (3-3)
\]

where \(s(x,y)\) is the cumulative row sum and \(s(x,-1) = 0\) and \(l(-1,y) = 0\).

Thereby, using the integral image representation, any rectangular sum can be calculated in four array operations. The Figure 3-2 shows the process of calculating the rectangular sum of a region using the integral image representation.

Thus, using the integral image representation one can compute the Rectangular features rapidly and in constant time.

3.1.2 Adaboost Based Classifier

Once the set of features is created and a training set of positive and negative images is obtained, any type or number of machine learning approaches could be used to obtain the requisite classifier. The Viola-Jones algorithm uses a variant of ‘Adaboost’ for feature selection (selection of a small number of optimal features) and to learn the classification function to train the classifier. ‘Adaboost’ is a learning algorithm primarily used to boost the performance of a weak classifier (or a simple learning algorithm).
Figure 3-2. From the above Figure, the pixel value at 1 is A. The value at location 2 is A+B, location 3 is A+C and location 4 is A+B+C+D. The sum within D is 4+1 - (2+3)

Since there are over 150,000 features available in a specific detection window, it can be hypothesized that a very small number of these features can be selected to form an efficient classifier. Thus, initially the weak learning algorithm is designated to select one feature which separates the positive and negative training samples. For each feature, the algorithm computes a specific threshold function which minimizes the number of misclassified samples. Therefore, this classification function can be represented as:

\[
h_j(x) = \begin{cases}
1 & \text{if } p_j f_j(x) < p_j \theta_j \\
0 & \text{otherwise}
\end{cases}
\] (3–4)

where \(h_x(x) \) represents the weak classifier and \(f_j \) is the selected feature and \(\theta_j \) is the calculated threshold function. The \(p_j \) term represents the polarity which gives the direction of the inequality sign.

In reality, no single feature can perform classification with very high accuracy without producing high false positive rates. In some cases, the error in classification
accuracy may be more than 0.2 which is unacceptable in a real time system. Thus, an algorithm for cascading a set of increasingly complex classifiers was devised to increase accuracy and reduce computational time.

3.1.3 Classifier Cascade

The idea behind the cascade creation is the fact that smaller (and therefore more efficient) boosted classifiers can be constructed to reject most of the negative sub-windows in an image (because the threshold function of the weak classifier can be adjusted so that the false negative rate is close to zero), so that almost all positive occurrences are detected. Then more complex classifiers can be instantiated to process the sub-windows again to reduce the false positive rates.

Figure 3-3 shows the layout of a generic cascade. One can observe that the overall detection process is in the form of a degenerate Decision Tree. A positive result from the initial function would call the second classifier and a positive result from the second would trigger the third and so on. A negative result on any of the stages would mean the rejection of the sub-window under process.

![Figure 3-3. Schematic of a detection cascade. These cascade layers work in a similar way to an AND gate. A sub-window will be selected only if all the weak classifiers in the cascade return True. Further processing may be additional cascades or another detection algorithm](image)

The cascade is devised so that the initial classifiers are simple 'Adaboost' based classifiers which provide very high positive detection rates (along with very high false positives). As the sub-window moves along the cascade, it is processed on by increasingly complex classifiers which eliminate the false positive rate (and also
compromises some of the positives). The number of cascades is a trade off between the desired accuracy, allowable false positives, and the computational time (since the processing of complex classifiers are slower).

Thus, training the cascade requires optimally minimizing the number of stages and the false positive rate and maximizing the positive detection rate. Achieving this autonomously for a specific training set is a very difficult problem. Thus a target false positive rate is selected and a maximum decrease in detection rate should be selected to halt the creation of more cascades.

In the following parts, the implementation of this algorithm in the case of vehicle detection is explained. The process of obtaining a ‘passively’ trained classifier using the above approach is delineated and the modification of this classifier by retraining the classifier to generate an actively trained classifier is explained.

3.2 Passively Trained Classifier

Passive Learning is a term given to the process of developing standard supervised learning algorithms by supplying the classifier with random labeled data. In the case of passively training a classifier based on the Viola-Jones algorithm, the learning function has to be supplied with random "positive" samples (images which contains vehicles) and random "negative" samples (images which does not contain the vehicle). The major drawback of this process is that the learning function does not have any control over data it tries to learn. This leads to a classifier which may or may not perform well in desired conditions. In the case of vehicle detection, since the number and type of vehicles are vast, the amount of training data required is very high. Thus, a much improved classifier can be constructed by actively training the learning function which gives some degree of control over the data set it tries to learn and also automatically generates data for training.

The initial passive classifier was constructed from 3500 "positive" images and 4660 "negative" images. The training data was acquired by continuous grabbing frames from
a standard off the shelf industrial camera (Matrix Vision mvBlueFOX 120a) which was mounted on the dashboard of a car while driving down busy and empty roads in daytime. The camera was connected to a laptop which processed the frames at a resolution of 640x480 and saved it for training. Figures 3-4 and 3-5 show positive and negative image examples. The test rig is explained in Chapter 5.

![Positive Image Example](image)

Figure 3-4. Example of a positive image - Note that there are two positive "samples" in the image

The positive training samples were created by hand labeling the positive images for each positive instance. Thus a total of 6417 positive samples were created. The sample detection size was selected as 20x20. This is the smallest ROI the detector works on. This size was chosen to maximize the distance of detection and also minimize the total computational time. The cascade was trained by including 23 stages and the training process was stopped (further addition of cascades was halted) when the positive detection rate had reached the lowest limit of 0.92 and the false detection rate had reached the lowest limit of 5 x 10e-4.

Although, this performance is almost impossible to achieve in independent real world evaluations, this trade-off was selected to ensure a very robust performance when the actively trained classifier had to be constructed. Table 3-1 lists out the important training parameters selected for passive training.
Figure 3-5. Example of a negative image

Table 3-1. Passive Training Parameters

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Samples</td>
<td>6417</td>
</tr>
<tr>
<td>Negative Samples</td>
<td>4660</td>
</tr>
<tr>
<td>Sample Size</td>
<td>20x20</td>
</tr>
<tr>
<td>Number of tree splits</td>
<td>1</td>
</tr>
<tr>
<td>Min Hit rate</td>
<td>0.92</td>
</tr>
<tr>
<td>Max false rate</td>
<td>5 x 10e-4</td>
</tr>
<tr>
<td>Number of Stages</td>
<td>23</td>
</tr>
</tbody>
</table>

3.3 Active Learning Principles

Active Learning is the a theoretical concept where the learner or the learning function has some degree of influence over the data it is trying to learn [23]. When applied to the world of machine learning, this very concept has tremendous implications in areas where a large amount of training data is required (for effective and robust learning) and the human capital to generate it is limited. The degree of control is used by the learning function to ask a higher authority (like a human who has exhaustive knowledge about the task at hand) about providing labels for data and retrain itself to generate a much more improved classifier along with some newly labeled data.

Active learning has been extensively applied in the field of Natural language understanding, web information retrieval and text categorization [23]. The case of vehicle detection poses a problem similar to random information understanding. The ego vehicle and other vehicles are in constant motion and the amount of variability in class,
size, and color in vehicles is very high. There might also be vibrations which result in changes in yaw and pitch angle and cast shadows which might trigger false positives. Thus, a classifier requires a very large and diverse dataset to learn a robust function and this is where the Active Learning concept becomes useful. Some approaches for Active Learning are discussed below.

3.3.1 Query By Confidence

Query by confidence works on the principle that the most useful and informative but uncertain samples lie near the decision boundary (the function which differentiates the positive and negative instances) [28]. These examples could be queried using an uncertainty or confidence measure (thus, this approach can also be called Query by Uncertainty).

This selective sampling method could be performed in two ways. Query of Unlabeled data is the process in which a human annotator selectively labels data evaluated on an independent dataset which in the human oracle’s discretion falls near the boundary. This method assumes no knowledge of structure and the classifier quality is entirely based on the human capability to judge the dataset nearest to the boundary. Query of labeled data is the process of autonomously generating a Confidence function which calculates the confidence of each sample by retaining the classifier from a set of already labeled examples. This confidence function could be used in creating a new dataset from an independent unlabeled data.

3.3.2 Query By Misclassification

This method of generating the dataset for retraining is mainly used in areas where the application of the classifier is vastly different from the training scenario and also in cases where the variability in positive samples is very high. The method consists of a human oracle manually marking detected instances as "real" positives or false positives when the initial learning function is evaluated on an independent highly variable dataset. The main objective of this method is the elimination of the false positive rate by including
the detected false positives in the negatives sample. The detected real positives can be accommodated in the retraining positive sample vector to maintain a superset and avoid overfitting.

Although selective sampling based query methods are faster in terms of human capital, a comparative study by Sivaraman [28] on the approaches of Active Learning found out that Query by Misclassification outperformed the above approach in terms of precision and recall even though this performance came at a price of human capital. Also, it was found that both the approaches far outperformed the initial passive learning function. The next section deals with the construction of the Actively Learned classifier after the passive classifier was evaluated on an independent dataset using Query by Misclassification.

3.4 Active Learning Based Classifier

The process of Active Learning consists of two main stages, an initialization stage and a sample query with retraining stage. The initialization stage is the same process as creating a passive learning function. The Query and retraining stage consists of initially obtaining new data by running the classifier on an unlabeled, independent dataset and a ground truth mechanism (a human) is assigned to label the newly obtained data. This data is then used to retrain the classifier to generate a new learning function (Query by Misclassification). A broad schematic of the Active Learning process is provided in Figure 3-6:

The passively trained classifier obtained initially was evaluated on an independent dataset by using the test rig on a busy highway during a low lighting period. This run produced very high classification accuracy but missed some true positives and produced false positives. These instances were queried and labeled by a human oracle and included for retraining.

Thus, the retraining process consisted of 7367 positive samples which included initial training samples along with missed "true” detection instances from the
Figure 3-6. Schematic of the Active Learning Framework; An initial detector is built and is then retrained from queried samples evaluated on an independent dataset. The 4898 negative samples consisted entirely of false positives from the query process. A cascade of 25 stages was created for the retrained classifier with similar parameters as the initial passive classifier. Figure 3-7 shows the queried samples used for retraining.

Figure 3-7. Figure showing examples queried for retraining. Row A shows the missed true positives and Row B correspond to false positives.

The classifier was trained with a minimum hit rate of 0.96 and a false hit rate of 5 x 10e-5. Table 3-2 shows the parameters selected for Active Learning is explained below.
Table 3-2: Active Training Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Samples</td>
<td>7367</td>
</tr>
<tr>
<td>Negative Samples</td>
<td>4898</td>
</tr>
<tr>
<td>Sample Size</td>
<td>20x20</td>
</tr>
<tr>
<td>Number of tree splits</td>
<td>1</td>
</tr>
<tr>
<td>Min Hit rate</td>
<td>0.96</td>
</tr>
<tr>
<td>Max false rate</td>
<td>5 x 10e-5</td>
</tr>
<tr>
<td>Number of Stages</td>
<td>25</td>
</tr>
</tbody>
</table>

3.5 Summary

This chapter provided an exhaustive explanation of the algorithm developed by Jones and Viola for robust rapid object detection. The applicability of this framework to the real time vehicle detection scenario is presented even though the initial algorithm was developed in the context of face detection. The process of generating a passive learning function using this algorithm is explained with training data collected by grabbing samples from a real time driving scenario. After evaluating the passive classifier on an independent unlabeled dataset (in real time conditions), the method of actively retraining the classifier through Query by Misclassification is also explained. The training parameters and schematics are also given.
CHAPTER 4
VEHICLE TRACKING AND DISTANCE ESTIMATION

The actively trained system capable of classifying a single frame into vehicle region and non-vehicle region is not entirely feasible to be deployed in real time systems like autonomous vehicles. The framework should be able to effectively decode relevant information from it like the number of cars, the distance of each car from the ego vehicle and should have the capability of storing a trajectory of the detected vehicles for enhanced decision making. Thus, an Optical Flow based Feature tracker with a distance estimation algorithm is integrated with the classifier. This system is then transformed to a robust multi-vehicle detection and tracking module capable of performing in real time with very low computational power.

4.1 Lucas-Kanade Optical Flow Based Tracking

The main drawback of a machine learning based approach to vehicle detection is the fact that each frame is evaluated individually. There is no co-relation between successive frames. Although, the classifier is able to achieve very high accuracy, there might be instances where a vehicle detected in a previous frame may be missed in the current frame. Therefore, it is necessary to integrate a tracking feature into the algorithm which works in conjunction with the classifier.

Optical Flow is the method of estimating the apparent motion of objects between successive frames. The assumption that points on the object (which is being tracked) have the same brightness over time is the basis of the method. This assumption is valid in the vehicle detection context [20]. Bruce Lucas, in 1981 developed a method for estimating the optical flow by introducing another assumption that the pixels under consideration have almost constant flow rate. The algorithm solves the optical flow equation for all pixels in the local neighborhood using the least squares criterion.
4.1.1 Method

The method associates a velocity/movement vector \((u, v)\) to each pixel under consideration and is obtained by comparing two consecutive images based on the assumptions that:

- The movement of a pixel within the two consecutive frames is not very significant.
- The image depicts a natural scene where the objects are in some grey shade which changes smoothly. (i.e. the method works properly for only grayscale images)

Let \(l(q_i)\) be the image intensity of a general pixel \(q_i\) in the image. The Lucas-Kanade method asserts that the following equation must be satisfied by the velocity vector \((u, v)\).

\[
l_x(q_i)u + l_y(q_i)v = l_t(q_i) \tag{4-1}
\]

Where, \(l_x(q_i), l_y(q_i),\) and \(l_t(q_i)\) represents the partial derivatives of the intensity of the pixel under consideration with respect to \(x, y\) and \(t\). But, the equation has two unknowns which make the system under determined. So, the algorithm computes the intensity of some neighborhood pixels to obtain more equations.

These equations can be written in the form of a system of equations (matrix) for each of the pixels under consideration as \(AV = B\), where

\[
A = \begin{bmatrix}
l_x(q_1) & l_y(q_1) \\
l_x(q_2) & l_y(q_2) \\
\vdots & \vdots \\
l_x(q_n) & l_y(q_n)
\end{bmatrix}, \quad V = \begin{bmatrix} u \\ v \end{bmatrix}, \quad \text{and} \quad B = \begin{bmatrix} -l_t(q_1) \\ -l_t(q_2) \\ \vdots \\ -l_t(q_n) \end{bmatrix} \tag{4-2}
\]
This system has many more equations than unknowns (namely u and v) and therefore it is always over determined. A least squares approach is used to obtain a compromise solution. The system of equations is thus reduced to:

$$V = (A^T A)^{-1} A^T B$$

(4–3)

Therefore, the velocity vector of the specific pixel (and of its neighborhood) can be explicitly written as:

$$
\begin{bmatrix}
V_x \\
V_y
\end{bmatrix} =
\begin{bmatrix}
\sum_i l_x(q_i)^2 & \sum_i l_x(q_i) l_y(q_i) \\
\sum_i l_x(q_i) l_y(q_i) & \sum_i l_y(q_i)^2
\end{bmatrix}^{-1}
\begin{bmatrix}
- \sum_i l_x(q_i) l_x(q_i) \\
- \sum_i l_y(q_i) l_x(q_i)
\end{bmatrix}
$$

(4–4)

The result of the algorithm is a set of vectors (optical flow) which are distributed all over the region of interest which gives an idea of apparent motion of an object in the image. This vector can be used to track the detected vehicle from one frame to another.

The above explained method has been implemented and improved upon in many ways. One of the most successful improvements was done by Bouguet in 2001 [4] in which a pyramidal implementation of the tracker was proposed.

4.1.2 Pyramidal Implementation

An image pyramid is a multi-scale representation of an image where the image is subjected to smoothing and sub-sampling (usually by a factor of two) repeatedly to generate smaller and smaller images which can be co-related to the original image. The graphical representation of this structure looks like a pyramid (from where the name originated) and is used to multi-resolution analysis and for scale-space representations.

The algorithm developed by Bouguet (an implementation of which the current study uses) runs an iterative version of the Lucas-Kanade algorithm which proceeds as follows:
Figure 4-1. Multi-Resolution coarse to fine Optical Flow Estimation using a pyramidal representation of the image

- Estimate the movement vector for each of the pixels under consideration.
- Interpolate $l(t)$ to $l(t+1)$ using the estimated flow field
- Repeat 1 and 2 until convergence

The iterative Lucas-Kanade algorithm is initially applied to the deepest level in the pyramid (topmost layer) and the result is then propagated through the next layer as an initial guess for the pixel displacement and then finally the pixel displacement at the original image is reached. This method (shown graphically in Figure 4-1) increases the accuracy of estimation [4] and does so in a very computationally efficient way. An implementation of this algorithm is used in this study.

4.1.3 Implementation

Since this algorithm works only on grayscale images, the whole setup is converted to a greyscale system. Initial tests on running the classifier on grayscale images produced very positive results.

Initially, the classifier evaluated the video frame. If vehicles are detected, the ROI is saved to be produced as output. If no vehicles are detected, the algorithm moves to the tracking phase where the Lucas-Kanade algorithm estimates the position of the vehicle...
based on the detections in the previous frame. The Lucas-Kanade algorithm requires an initial estimate of the object position (i.e. initial pixels of interest) for estimating the movement of the object. This initial estimate is obtained by setting the corner points of the rectangle which bounds the vehicle region. A schematic of the process is shown in Figure 4-2:

![Figure 4-2. Schematic showing the algorithmic flow of the Tracking Process](image)

4.2 Distance Estimation

Usually, the process of determining the distance of an object using a single (monocular) vision system is purely an estimation process. In order to ascertain accurate measurements of range information pertaining to a particular scene a stereo rig (a system of two cameras viewing the scene from different points of view) is required. But a major drawback of using stereo based methods is that they are computationally taxing and therefore not suitable for a real time system.

Thus, methods for effectively estimating range information from a single camera have been researched widely. Most of these methods use some sort of assumption, either from a scene point of view (i.e. the camera is stationary) or from the object point of view (i.e. assuming some known information about the object). Another major
assumption is that the transformation equations use a so called pin-hole camera model. This model is represented by the following equation.

\[
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix} = \begin{bmatrix}
 f_x \ast s; 0; c_x \\
 0; f_y \ast s; c_y \\
 0; 0; 1
\end{bmatrix} \begin{bmatrix}
 r_{11}; r_{12}; r_{13}; t_1 \\
 r_{21}; r_{22}; r_{23}; t_2 \\
 r_{31}; r_{32}; r_{33}; t_3
\end{bmatrix} \begin{bmatrix}
 X \\
 Y \\
 Z \\
 1
\end{bmatrix}
\]

(4–5)

where \(u \) and \(v \) represent a point in 2-D camera space. \(f_x \) and \(f_y \) are the focal lengths (expressed in pixel related units). \((c_x, c_y) \) represent a principal point, generally the image center. The second 4x4 matrix is the rotation matrix which indicates the rotation of the camera center with respect to the object center. The fourth column of the matrix represent the translational element which represent the relative motion between the camera and the object. The conversion factor \(s \) is the factor that transforms pixel related units to millimeters (real world units).

The matrix containing the focal lengths and the principal point is called the intrinsic matrix. This matrix is constant for every camera (which works on normal zoom) and does not vary with the type of scene viewed. The second 4x4 matrix is called the extrinsic matrix. This matrix gives information about the camera center with respect to the world coordinate system and the heading of the camera (i.e the translation). Errors resulting from distortion and misaligned lenses are not considered in this study.

The perspective pin-hole camera model described above is used to estimate the distance of a vehicle detected in the video frame. Since the video is processed frame by frame, the distance is estimated at every timestep. The following assumptions are made in context of the current scenario for distance estimation.

- The world coordinate center is fixed at the camera center. This means that the extrinsic parameters will not have an effect on the transformation from 3-D points to 2-D pixels.
The Z axis of the camera is along the line of the road. There is no yaw or roll angle between the road and the camera.

Highway lanes have negligible slopes. Therefore, the pitch angle is also zero.

Estimates for the width and height of a typical car are known and all vehicles have comparable sizes.

Thus, given the typical width and height of a standard car W and H, and the width and height of the detected Region of interest (ROI) in pixel related coordinates w and h, one can estimate the distance of the car by the following two equations.

$$Z_1 = \frac{s \cdot f \cdot W}{w} \quad Z_2 = \frac{s \cdot f \cdot H}{h}$$

where f is the average of f_x and f_y.

Thus, the distance estimate of a detected vehicle, updated at every timestep for every detected vehicle is the average of Z_1 and Z_2. Therefore, a complete multi-vehicle detection and tracking system with range estimation using a monocular vision system can be implemented as shown in Figure 4-3.

4.3 Summary

This chapter delineated the theory behind the Lucas-Kanade Optical flow based tracking algorithm along with Distance estimation using a pin-hole camera model. The integration of a pyramidal implementation of the Lucas-Kanade algorithm to the actively trained classifier for enhanced real time vehicle tracking is also explained. Furthermore, a fully real time system able to robustly detect and track vehicles and also estimate, fairly accurately, the range information of detected vehicles is outlined using a schematic. This system can be implemented in a standard vehicle for enhanced driver safety or in autonomous vehicles as a resource for classifying vehicles and as a cognitive information tool for sensing and perception.
Figure 4-3. Algorithmic flow of the complete Detection and Tracking Process
CHAPTER 5
EVALUATION AND DISCUSSION

The process of evaluating the designed system involves running the actively trained classifier on specific (Static and Real Time) datasets and judging its performance based on True Positive Detections and False Positive Detections. False Negatives are not of much importance to this study because the True Positives give an empirical measure of False Negative Detections. The results of the evaluation is comprehensively discussed based on specifically defined evaluation parameters which present the system’s robustness, sensitivity, recall, scalability and specificity. A comparison between the actively trained and passively trained classifier is also given. The process of implementing the full multi-vehicle detection and tracking system in a real time scenario is presented. Finally, the results are summarized and the scope for future work is outlined.

5.1 Datasets

5.1.1 Caltech 2001/1999 Static Image Database

This dataset consists of 1155 different images of the rear view of cars and was compiled initially in 1999 and then modified in 2001. Most of the images have viewpoints which are very close to the camera (unlike the case for most of the training examples) and also consists of some models of cars which are old. This dataset has been widely used in conjunction with testing a variety of vision based detection algorithms and serve as a benchmark in static image testing. An example image is shown in Figure 5-1. This dataset can be publicly accessed at the Computational Vision page at www.vision.caltech.edu.

5.1.2 mvBlueFOX Test Data

This dataset consists of 362 frames of video collected using the mvBlueFOX camera (which is used in this specific application) using the test rig. The frames consists of a combination of frames collected at daytime and at low lightning conditions. The first
Figure 5-1. Caltech 2001/1999 Static Image Data Example

350 frames consist of consecutive frames collected at daytime with one vehicle of interest in each frame and the next 12 frames consist of consecutive frames collected during sunset with two vehicles of interest in each frame. All the frames were annotated for true positives and set aside for testing. A screenshot of the Test Data is shown in Figure 5-2:

Figure 5-2. Real Time test data captured using the test rig. This frame belongs to the daytime set

The test rig consisted of an initially calibrated camera (Matrix Vision mvBlueFOX-120a for which the intrinsic parameters are known) rigidly attached to the top of the dashboard of a vehicle above the center console. The axis (z-axis) of the
camera was kept parallel to the road and the lens was adjusted at normal zoom. The camera was attached to a laptop via USB and was operated by a human for specific tasks (Data Collection, Capture and Testing).

5.2 Evaluation Parameters

The desired outcome of testing the classifier is the quantification of the classifier’s robustness, sensitivity, specificity, scalability, and recall in terms of numerical values. Most studies on vehicle detection using vision quantify their results by initially cropping the image and normalizing them to a specific view and running the classifier on these pre-processed images. This method, even though, has higher accuracy and report lower false positives, does not account for robustness and scalability. Although, more recent studies have come up with parameters to evaluate accuracy and recall in real time systems, they do not offer numerical values for quantifying precision, robustness, and specificity. The following parameters have been used in this study to evaluate the classifiers in terms of accuracy, robustness, recall, sensitivity, and scalability.

- True Detection Rate (TDR) is measured by dividing the number of truly detected vehicles by the total number of vehicles. This parameter gives a measure of accuracy and recall.

\[
TDR = \frac{\text{True Positives (No. of detected vehicles)}}{\text{Actual No. of vehicles}}
\]

(5–1)

- False Positive Rate (FPR) is obtained by dividing the number of false detections (false positives) by the total number of detected vehicles (True and False). This parameter is an estimate of the system’s precision and robustness.

\[
FPR = \frac{\text{No. of false detections}}{\text{Actual No. of vehicles + False Detections}}
\]

(5–2)

- Average True Detection per Frame (ATF) is the number of true positives (detected) divided by the total number of frames processed. This is a measure of sensitivity of the system.

\[
ATF = \frac{\text{True Positives}}{\text{Total number of frames}}
\]

(5–3)
• **Average False Detection per Frame (AFF)** is measured by dividing the number of false positives by total number of frames processed. This quantity gives a numerical measure for robustness and specificity.

\[
AFF = \frac{\text{False Positives}}{\text{Total number of frames}}
\]

\[(5-4) \]

• **Average False Detection per Vehicle (AFV)** is the total number of false detections divided by the number of vehicles on the road. It indicates robustness and precision.

\[
AFV = \frac{\text{False Positives}}{\text{Total number of Vehicles}}
\]

\[(5-5) \]

The overall performance of the system in terms of the above mentioned parameters gives us an estimate of the scalability of the system. This is a measure of how the framework can be adapted to be used in more advanced and real time scenarios (like in autonomous vehicles).

5.3 Static Dataset

The actively trained classifier was evaluated on 1155 static images publicly available and the performance characteristics described above are evaluated. A good classifier performance on this dataset would justify its robustness and scalability. The classifier produced an accuracy of 92.98% with a False Detection Rate of 0.124. Some of the detection results are consolidated in Figures 5-3 and 5-4.

In comparison the passively trained classifier returned an accuracy of 93.5% but with a false positive rate of 0.35. This is the major tradeoff which has to be addressed when choosing an Actively trained or Passively Trained classifier. The passively trained classifier, as shown in the case of static datasets, performed marginally well but the price in terms of False Positives is very high. This justifies the use of an Actively Trained classifier in real time scenarios, as it performs much better in terms of precision and robustness as explained below. A comparison of all the evaluation parameters for the two classifiers is presented in Table 5-1.
Figure 5-3. Examples of True Positive Detections in Static Dataset

Figure 5-4. Examples of false positives and missed detections - We can observe that most of the missed samples are due to the fact that the training data contained examples exclusively from a real-time dataset. The training data model did not contain many examples of cars very close to the camera.

Table 5-1. Results on Static Dataset - Active-Passive Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Passive Classifier</th>
<th>Active Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Detection Rate</td>
<td>93.5%</td>
<td>92.8%</td>
</tr>
<tr>
<td>False Positive Rate</td>
<td>0.35</td>
<td>0.124</td>
</tr>
<tr>
<td>Average True per Frame</td>
<td>0.985</td>
<td>0.98</td>
</tr>
<tr>
<td>Average False per Frame</td>
<td>0.48</td>
<td>0.16</td>
</tr>
<tr>
<td>Average False per Vehicle</td>
<td>0.45</td>
<td>0.138</td>
</tr>
</tbody>
</table>
Although, the accuracy of the Passive classifier is higher, the false positive rate is almost three times as much as the Active classifier. Also, average false detections per frame and per vehicle is four times higher when compared to the Active classifier. Thus, one can confidently argue that the Active classifier performs much better in terms of precision in static tests. Further, in Figure 5-5 a Receiver Operating Curve (ROC) is plotted between the True Detections and False Positives Rate. This graph gives an idea of the classifiers sensitivity (accuracy) with respect to specificity (the measure of how true the classifications are).

![ROC Curve - Static Dataset](image)

Figure 5-5. The ROC curves for Actively and Passively Trained Classifiers

In terms of an ROC curve, a better classifier is the one which is more justified towards the left of the line which divides the graph at 45 degrees. From the above curve, we can easily infer that the Actively Trained classifier is much stronger in performance in terms of specificity than the Passive classifier. Therefore, in static tests one can conclude that the Active classifier performs much better in terms of precision and robustness although there is a small tradeoff in terms of accuracy.
5.4 Real Time Dataset

The Actively Trained classifier was evaluated on 362 frames of real time test data. Most of the data was comprised of consecutive frames of video stream taken during good lightning conditions (sunny). Some frames were also obtained at low lighting conditions (half an hour before sunset) to evaluate the performance of the classifier in such conditions. It was found that the classifier returned an accuracy of 98.8% (i.e. 372 hits out of 376 vehicles). The false positive rate was 0.124. An average frame rate of 15.6 frames per second was achieved in testing on an Intel i5 Processor (2.3 Ghz Quad core) with 4GB RAM. The process utilized no multi-threading or GPU optimization. Previous studies support the fact that using GPU optimization of vision based algorithms could speed up processes by more than 10 times. Some examples of detected results are shown in Figures 5-6 and 5-7.

![Figure 5-6. Examples of True Positive Detections in Real Time Test set. The first column shows two frames in very low lighting conditions where both the cars were detected accurately. The second and third columns shows two consecutive frames each where the car was detected in both the cases. The real time set performed better than the static data set since the training data was captured using the same test rig.](image)

A graphic illustration of the number of vehicles detected at each frame compared to the actual number of vehicles is presented in Figure 5-8. One can observe that the
Figure 5-7. Examples of false positives and missed detections. We can observe that in the first two pictures, false positive are due to other vehicles and incoming vehicles. In the third case, low lighting prevented detection of one car and in the final case there were two detections on the same car.

Figure 5-8. Graph illustrating the number of vehicles detected at each frame and false positives. This is compared to the actual number of vehicles in the scene.
classifier maintains the track of detected vehicles with considerable efficiency. But, in some frames, the track of the vehicle is completely lost (i.e a missed detection). Thus, integrating a feature based tracker would fully eliminate the problem of missed detections (even though they occur very rarely). We can also observe that the false detection rate is not continuous for every two frames. There is no false positive which was detected over two frames. This gives an incentive to modify the feature based tracker to only track regions which have been detected over two frames. Thus, the whole framework was modified to address this issue.

Another observation made was that, from Figure 5-7, one can infer that some of the false positives are actually detection over the same window but with a larger area. These detections can be checked for and double detections in the same vicinity can be accounted for by tweaking the algorithm to skip over previously detected regions as the detection window is made larger. Finally, the highlight of the test was the fact that the Average False positives per Frame for the recognizer was found out to be 0.12. This means that when the classifier is integrated with a tracker, this value is low enough so that it is not consistent to create wrong tracks. This highlights the scalability of the classifier to more sophisticated frameworks.

The passively trained classifier was also evaluated using the real time data set. In contrast to the static dataset, the classifier in this case produced a lower (almost equal) accuracy of 98.6% when compared to the Actively trained classifier. The rate of false detections was 0.24. This was lower than the static false positive rate but almost twice as much when compared to the Actively Trained classifier. The evaluation parameters are shown in Table 5-2:

One can observe that the Passive classifier returned an almost comparable accuracy to the Active classifier. Also, the average true detections per frame for both the classifiers are the same. This validates the use of the Haar-like feature based Viola-Jones algorithm for vision based vehicle detection. But, the false positive rate
Table 5-2. Results on Real Time Dataset - Active-Passive Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Passive Classifier</th>
<th>Active Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Detection Rate</td>
<td>98.6%</td>
<td>98.8%</td>
</tr>
<tr>
<td>False Positive Rate</td>
<td>0.24</td>
<td>0.11</td>
</tr>
<tr>
<td>Average True per Frame</td>
<td>1.02</td>
<td>1.03</td>
</tr>
<tr>
<td>Average False per Frame</td>
<td>0.32</td>
<td>0.12</td>
</tr>
<tr>
<td>Average False per Vehicle</td>
<td>0.311</td>
<td>0.12</td>
</tr>
<tr>
<td>Frame Rate</td>
<td>15.6</td>
<td>15.4</td>
</tr>
</tbody>
</table>

Figure 5-9. The ROC curves for Actively and Passively Trained Classifiers obtained was around 0.24. This means that the average false detections per frame was around 0.32. This value hinders the use of the Passive classifier in more advanced and sophisticated frameworks. The Active classifier returned almost one third lower values in average false per frame and average false per vehicle. This proves that an Active Learning based algorithm has a much stronger performance in terms of robustness, scalability, and precision. The Receiver Operating Curve (ROC) depicting True Detections with respect to False Positives is plotted in Figure 5-9:

One can note that the Active Classifier performs much better in terms of specificity (False detections) than the Passive classifier, particularly as the sample includes more
examples with higher true detections. Thus, it can be argued that the Active classifier is much more robust and sensitive to noise than the Passive classifier thereby validating its use in real time platforms like in Intelligent Vehicles.

5.5 Implementation in a Real Time Scenario

The complete multi-vehicle detection and tracking system with integrated Lucas-Kanade tracker and Distance estimation, outlined in Figure 4-10, was implemented in a real time scenario using the test rig explained earlier. The testing conditions were sunny with light traffic. The algorithm could only run in grayscale as the Tracking module only worked with grayscale images. Some frames from the run are shown and explained in Figures 5-10 and 5-11:

![Figure 5-10. A frame from the full system implementation showing a detected car with its distance estimate](image)

5.6 Summary

This chapter provided the proof of concept implementation of the Actively trained Viola-Jones classifier for the purpose of real time vehicle detection. The classifier was evaluated on publicly available static image datasets as well as on real time video
stream collected using the test rig. The classifier was then compared to the Passively trained classifier based on some specific evaluation criteria and results were presented. The full implementation of the multi-vehicle detection and tracking system complete with a feature tracker and distance estimation on a real time scenario is also presented.
CHAPTER 6
CONCLUSIONS AND FUTURE WORK

The idea of this thesis was to present a vision based vehicle detection and tracking system which can be implemented in real time systems such as in intelligent vehicles and autonomous cars. The main challenge in addressing this issue was to create a robust, reliable system which was simple to implement. A machine learning based approach was devised to solve this problem where a cascade of classifiers were trained based on Adaboost (working on Rectangular Haar-like features in an image) to rapidly detect Regions of Interest (ROIs) corresponding to cars in a video frame. This classifier was then retrained using Query by Misclassification to produce an Active classifier which was much more sensitive to noise.

This classifier was then integrated with a Feature based (Lucas-Kanade) tracker along with a distance estimation algorithm (monocular vision based) to build a complete multi-vehicle detection and tracking system. This framework was evaluated on static and real time data and the performance was found to be highly satisfactory with 98% detection rates at 16 frames per second. The performance characteristics of this system enables it to be deployed in more sophisticated and advanced frameworks.

Going further, a variety of principles could be improved upon. A significant improvement might arise from using a very large training dataset representing all lighting conditions and vehicle types. The only drawback of using a large dataset is the amount of human capital involved in annotating the ground truth. Therefore, the next step would be to devise a mechanism which could automatically annotate the Region of Interest by using some classical approaches (which are very robust, but do not perform in real time) to initially classify vehicles. This method could also be used to selectively sample the independent dataset used for Active Learning and query it for retraining. Integration of lane detection, trajectory learning and pedestrian detection are some other key
advances which could be integrated into the current system for transforming the system into a complete enhanced Active safety system.
REFERENCES

URL http://www.springerlink.com/index/UU7VU34310825343.pdf

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=948657

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5279471’escapeXml=’false’/>

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6005950’escapeXml=’false’/>

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5346191’&contentType=Conference+Publications

URL http://www.springerlink.com/index/10.1007/s10043-012-0063-1

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1641769

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4522480’escapeXml=’false’/>

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1182177

URL http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:INTRODUCTION+TO+MACHINE+LEARNING+AN+EARLY+DRAFT+OF+A+PROPOSED+TEXTBOOK+Department+of+Computer+Science#0http://books.google.com/books?hl=en&lr=&id=1k0_-WroiqEC&oi=fnd&pg=PR13&dq=INTRODUCTION+TO+MACHINE+LEARNING&ots=p90K-RcLuL&sig=nQgzbYlsUF8gX9djK__MEWk_2jg

URL http://www.springerlink.com/index/WW5UT522540L672R.pdf

URL http://digitalcommons.macalester.edu/cgi/viewcontent.cgi?article=1018\&context=mathcs_honors

URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.9656&rep=rep1&type=pdf

URL http://www.researchgate.net/publication/224222737_An_intelligent_vision-based_vehicle_detection_and_tracking_system_for_automotive_applications

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4677196

URL http://ieeexplore.ieee.org/1pdocs/epic03/wrapper.htm?arnumber=1699915

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5949023
BIOGRAPHICAL SKETCH

Vishnu Karakkat Narayanan was born in Kerala in South India. He received his M.S. in mechanical engineering from the University of Florida, Gainesville in May 2013 with a minor in electrical and computer engineering. He had received his BTech. in mechanical engineering from Amrita University, Coimbatore, India in May 2011. His research is focused on applications of Computer Vision and Machine Learning to real time systems. He developed an interest and passion for Machine Learning and Computer Vision, during his final year of undergraduate study while working on his Bachelors thesis on Machine Learning based Manufacturing Optimization. He plans to pursue a doctorate degree in the same field and move on to academia.