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Recent years have seen tremendous Internet growth. This growth is accompanied by 

increasing power consumption of the Internet as a whole, due in part to the rapid increase in the 

number of connected edge devices such as desktop PCs. Despite being left idle a considerable 

amount of time, most of these PCs have their power management features disabled. 

Consequently, much recent research has focused on reducing power consumption of Internet 

edge devices. One such method for reducing PC power consumption is by augmenting the 

Network Interface Card (NIC) with enhanced processing capabilities. These capabilities pave the 

way for green computing by allowing the PC to transition to a low-power sleep state while the 

NIC responds to network traffic on behalf of the PC–a technique known as power proxying. 

However, such a Smart-NIC (SNIC) requires specialized low-power, resource-constrained 

processing, and architectural features in order to realize such capabilities. 

Challenges in realizing a power proxying capable SNIC are analyzed in this work. Packet 

header and content inspection have been identified as primary requirements in a SNIC to support 

power proxying. This thesis presents an energy efficient header and content inspection technique 

suitable for power proxying. The requirements of a header classifier are analyzed and a low-

power hardware-based packet classification technique is designed, which, compared to a 
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software-based packet classification technique, consumes 59% less energy with a 9x speedup. A 

novel partitioned Ternary CAM (TCAM) based content inspection system is then presented. The 

proposed technique results in 87% energy savings and a 62% lower energy-delay product than 

existing non-partitioned router-based techniques, thus making it highly suitable for SNIC-based 

deployment. 
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CHAPTER 1  
INTRODUCTION 

With the rapid increase in the number of edge devices connected to the Internet, the 

aggregate power consumption of these devices will likely become a major concern in the near 

future [9]. The most prevalent of these edge devices are consumer desktop computer systems, 

consuming on average 60 to 95 watts of power and as much as 195 watts in high-end systems 

[44].  

Research estimates that these systems are on average left idle for 75% of the time when 

powered on [35]. During these idle periods, systems could be powered down to a standby mode 

to reduce power consumption by up to 80% [9]. However, standby mode currently disrupts the 

system’s network connectivity. Popular Internet applications such as peer to peer (P2P) clients 

and instant messengers demand continuous network connectivity in order to respond to incoming 

file queries and to announce a user’s presence. In order to ensure this connectivity, users 

typically disable the power management features, inhibiting transition to standby mode, and 

thereby increasing the energy consumption of otherwise idle systems. However, given existing 

system architectures, disabling standby mode is the only option to maintain two-way network 

connectivity for user applications. 

Network Interface Cards (NICs), an important element in any computer design, can be 

augmented to act as a proxy (or liaison) for the system during standby mode, and still maintain 

network connectivity by handling a subset of certain application network protocol semantics [22, 

35]. This subset has the unique characteristic that responses do not require a complex decision 

process, thus the NIC can proxy automated responses, allowing the system to remain in standby 

mode – a technique known as power proxying. Network protocols that are amenable to proxying 

are called proxiable protocols. 
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Research indicates that future NICs will have increased network responsibility in order to 

reduce the processing burden of the CPUs [6, 24, 40, 31]. Complex next generation NICs, also 

called smart NICs (SNICs), provide an essential platform to support various network related 

services including power proxying. For a SNIC to provide the capability of power proxying, 

power proxying rules are required to identify packets that may be appropriately responded to 

using proxiable protocols. The host system provides these rules to the SNIC immediately prior to 

entering standby mode. Such a SNIC, upon receiving a packet, uses these rules to identify the 

packet and either responds appropriately or wakes up the host system. 

Packet inspection is a key step in power proxying implementation. Packet inspection is a 

two stage process. The first stage, known as header inspection, involves inspecting the header of 

the packet against the power proxying rules. The second stage is known as content inspection 

and involves the inspection of the contents of the packet for the occurrence of predefined 

signatures (patterns). 

Our study presents a low power packet header classification scheme for reduced power 

consumption in NICs.  An energy efficient content inspection system for SNICs using Ternary 

CAMs (TCAMs) is also developed and presented. In addition, the suitability and application of 

this content inspection system to NIC-based intrusion detection systems is explored. 
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CHAPTER 2  
BACKGROUND 

This chapter presents the background and research necessary for developing a SNIC 

capable of power proxying. The trends in the next generation network interfaces are first 

reviewed. The suitability of network protocols supporting power proxying is then discussed and 

relevant research is presented. Available SNIC computation and memory resource are then 

analyzed. Finally, related work with respect to header and content inspection, which form the 

central theme of this thesis, is reviewed. 

2.1 Next Generation SNICs 

Next generation SNICs will be delegated more network responsibility in order to reduce 

CPU processing burdens. Much research has focused on techniques such as offloading TCP 

protocol processing (TOEs) [19], power proxying [9, 35], and NIC-based data caching [24]. 

Such reduced CPU processing burden will enable extended CPU sleep opportunities, reduced 

operating system overhead, increased network throughput and speed, and thus lower overall 

system power consumption. 

Additionally, next generation SNICs offer attractive solutions for distributed network 

intrusion detection systems (DNIDS), providing potentially greater network security than router-

based network intrusion detection systems (NIDS) [1, 40, 31]. Router-based NIDS are rendered 

ineffective when nodes inside their local network are compromised, such as the case of internal 

attacks. However, SNIC-based DNIDS can scan both inbound and outbound packets, thereby 

effectively isolating malicious nodes. Furthermore, SNIC-based DNIDS can exploit node 

characteristics such as operating system specifics, resulting in more effective, highly optimized 

malicious packet detection rules. Due to these large potential benefits, NIC-based DNIDS have 

been the focus of recent research. 
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According to [35], the system is partitioned into two components responsible for 

responding to network traffic at particular times: the operating system (OS) and the SNIC. When 

the system is in full power mode, the OS responds to network traffic, while the SNIC responds 

when the system is in standby mode. 

Before the system transitions to the standby state due to system idleness, the PC offloads 

power proxying rules to the SNIC for all active networking applications and delegates network 

control to the SNIC. Thus, the PC enters a low-power standby state without disrupting network 

connectivity. When a packet arrives, the SNIC applies the power proxying rules to the packet. 

Each power proxying rule consists of two components, i.e, the header and the payload 

component. Each rule has an action associated with it. When an inbound packet matches any of 

the rules, the corresponding action is taken and a response is sent accordingly. Rules can be 

specifically formulated to drop packets, send a predefined response packet, or wake up the 

system [39].  

Two situations exist where the SNIC is unable to proxy a response to an incoming packet, 

requiring the PC to be woken up out of standby mode using a Wake on LAN (WOL) [17] 

interrupt. The first is when the SNIC receives a packet that does not match any power proxying 

rule and is not network chatter. The second is when certain proxied applications such as Internet 

telephony, on reception of certain types of packets, demand the PC to be woken up. 

2.2 Protocol Semantics and Applications 

Popular networking applications such as P2P file sharing programs, instant messengers, 

Internet telephony, and diagnostic applications such as “ping” have proxiable features, making 

them the most promising candidates for power proxying. These applications are grouped under 

one of four protocol classes: Address Resolution Protocol (ARP), Internet Control Message 

Protocol (ICMP), Transmission Control Protocol (TCP), and User Datagram Protocol (UDP). 
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ARP request packets do not require the PC to be powered on and can be easily delegated to 

the SNIC. For example, IP conflicts can be avoided when the PC is in a standby mode by 

allowing the SNIC to respond to gratuitous ARP packets. 

Ping, a popular network diagnostic application, uses ICMP to request and respond to 

messages to detect the presence of a particular system and is amenable for proxying. Many 

popular applications such as P2P file sharing programs and session initiations of Internet 

telephony applications such as SIP [36] use TCP for network communications. Additionally, 

several instant messaging implementations using the TCP class constantly send out user status 

packets (or presence packets) and are amenable to power proxying. While in standby mode, the 

SNIC can send out these packets at a constant time interval.  

The fourth protocol class is UDP. A fitting application example for this category is a new 

e-mail notification sent as a UDP packet to the corresponding e-mail client [37]. Upon receiving 

this packet, the PC can be awoken by the SNIC to download the new message. 

2.3 Computational Resources in Network Interfaces  

Implementing a power proxying module can be a resource intensive task. In this section, 

the computational resource limitations of SNICs are explored. Modern NICs contain embedded 

processors that are largely underutilized, and much current research focuses on exploiting these 

resources. Friedman et al. [14] conceived and implemented a NIC-based distributed firewall 

system called iNIC for Ethernet platforms using a 100 MHz Intel i960 RISC processor with 128 

MB of RAM. Otey et al. [32] proposed and empirically evaluated a novel architecture for NIDS 

using NICs for commercial Myrinet platforms featuring a 66 MHz LANai with 4 processors and 

1 MB of memory. In [38], a gigabit Ethernet adapter built on a dual RISC processor architecture 

supported TCP offload implementation. Broadcom’s family of Convergent-NICs (C-NIC) is 

another example of intelligent NICs. Killer NIC [23] is a gaming NIC that utilized a 400 MHz 
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Freescale RISC processor for accelerating game data. All of these implementations function only 

during the powered-on mode of a system and none propose offloading processing to the NIC so 

that the system can be placed in a standby mode. 

2.4 Packet Classification 

Packet classification is one of the key steps in realizing the functionality of power 

proxying. According to [20, 21], packet classification is defined as the process of comparing 

packet components against a known rule set. The two major packet components are the header 

and payload. Thus, packet classification comprises of header and content inspection. Any rule 

can involve inspecting several header fields or packet contents or both. In this section relevant 

research in the fields of packet classification is presented. 

2.4.1 Packet Classification through Header inspection 

Gupta et al. [20, 21] published the first known research that comprehensively dealt with 

header-based packet classification in routers. According to them, a rule consisted of several 

dimensions, where each dimension represented a separate header field. Thus, a header rule was 

an n-dimensional (n-tuple) rule. After examining the nature of the router based rules [20, 21], 

they discuss different packet classification algorithms. Packet classification algorithms are 

broadly classified into four classes. The four classes are data structure-, geometry-, heuristic-, 

and hardware-based algorithms. Each class has distinct advantages and disadvantages and the 

reader is directed to [20, 21] for further details. 

Packet classification complexity is further compounded by matching ranges of numbers in 

each dimension (TCP source port <1024 and > 256), resulting in header classification being a 

longest-prefix matching problem. Thus, hardware classification algorithms are preferred over 

software classification algorithms for speed and throughput reasons. TCAMs are widely used in 

header classification due to their effectiveness in representing the “don’t care” (*) state and 
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obtaining very high throughput [25, 43, 52]. However, TCAMs do not scale well with increasing 

number of rules. Several algorithmic [3, 4] and hardware alternatives, such as bloom filters [12] 

have been proposed. Relevant background and necessary references are also provided in Chapter 

3 as the design and implementation of header classification for power proxying is discussed. 

2.4.2 Packet Classification through Content Inspection 

Content inspection is a pattern matching technique wherein a packet’s payload is matched 

against a set of pre-defined signatures (signature set) to identify malicious packets (for NIDS) or 

packets of interest (for power proxying). Whereas popular signature sets include the SNORT 

[42] and ClamAV [10] virus databases for NIDS, to the best of our knowledge there exists no 

power proxying signature set, and is thus an ongoing research topic.  

A content inspection system that can efficiently process packets fast enough to keep up 

with high link speeds is essential to enable NIDS and power proxying in next generation SNICs. 

Content inspection is a well researched topic in the context of routers [13, 15, 53] Router-based 

content inspection can be implemented using either software- or hardware-based techniques. 

Software techniques employ string matching algorithms such as Boyer-Moore, Aho Corasick, 

Wu Manber [45], etc. However, due to inherent software inefficiencies when processing large 

signature sets, software techniques cannot support high link speeds [12].  

To increase data processing throughput, specialized hardware-based techniques exploit 

parallelism using FPGAs [2], TCAMs [15, 53], and specialized data structures such as Bloom 

Filters [12]. Whereas these techniques are highly suitable for high-end routers with sufficient 

processing resources, they are not practical enough in terms of price, power consumption, or area 

for wide-scale deployment in SNICs [53]. However, key processing techniques may be gleaned 

from router-based content inspection and adapted for SNIC-based techniques. 
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TCAMs are one of the critical hardware structures that enable fast content inspection, as 

recognized by Lakshman et al. [53]. Due to the fully associative search ability, TCAMs are 

populated with signature sets and are capable of performing pattern matching on the order of 

constant time O(1). For details on TCAM-based pattern matching, the reader is referred to [53].  

Whereas this router-based content inspection technique is attractive in terms of high 

throughput and complete independence from further payload inspection (bloom filter based 

methods suffer from false positives [12]), this technique suffers from several drawbacks for 

SNIC-based content inspection. First, TCAMs have large resource requirements, such as power 

(approximately 10x as compared to a similar speed SRAM [33]) and cost (4x that of SRAM 

[33]). Secondly, due to necessary signature partitioning, large auxiliary SRAM data structures, 

on the order of O(N2), where N is the number of TCAM entries, are necessary for final signature 

matching. Whereas larger TCAM widths reduce the auxiliary data structure storage 

requirements, larger widths result in increased “don’t care” bit padding, and thus reduced TCAM 

resource use and increased TCAM area and power consumption. 

Several techniques have been developed to optimize final signature matching. In order to 

reduce auxiliary data structure storage requirements without reducing TCAM resource use, Gao 

et al. [15] proposed an alternative architecture, which reduced the auxiliary data structure space 

complexity to O(N log N). The auxiliary data structure consisted of a secondary TCAM (in 

addition to the primary TCAM storing the signature set) populated with valid signature address 

permutations. Valid signature address permutations are the concatenation of the TCAM 

addresses for each signature in the primary TCAM. Thus, as a payload is searched in the primary 

TCAM, the hit addresses are concatenated together to form a candidate signature address 

permutation. Final signature matching extracts candidate signature address permutations from 
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the aggregated TCAM hit addresses and compares those with the valid signature address 

permutations in the secondary TCAM.  

Even though this optimization reduces the area requirement of the auxiliary data structure, 

the secondary TCAM structure is still very power hungry. An alternative technique [29] 

implemented a variable width TCAM to improve resource use over a fixed width TCAM. 

However, this approach suffered from reduced scalability and could only be implemented using 

FPGAs, which may not provide throughput to sustain high link rates or enough storage capacity 

for large signature sets. 

Dharmapurikar et al. [12] proposed a low power bloom filter-based technique as an 

alternative to the TCAM-based final signature matching. This method used a separate bloom 

filter for each unique signature length. While being very energy efficient, this method was able 

to achieve a throughput of 2.4 Gbps. However, this technique suffered from limited parallelism 

in the presence of fixed length patterns. Furthermore, inherent false positives placed an 

additional burden on the already limited processing resources available on NICs. 

From the above discussion, there is a clear indication that a more energy efficient content 

inspection methodology is needed. The contents presented in this section will be expanded 

further in subsequent chapters as the header and content inspection techniques are developed. 



 

19 

CHAPTER 3  
PACKET HEADER INSPECTION UNIT 

Inspecting an inbound packet is an important aspect of SNICs. This chapter describes the 

header inspection process. After providing an architectural overview of a SNIC’s header 

inspection, the chapter then focuses on the nature of the power proxying rules. The software and 

hardware header inspection techniques are then analyzed.  

3.1 Packet Inspection Process 

The packet inspection process is defined as a sequence of stages a packet undergoes in 

order to provide the SNIC with information to determine an appropriate action. A SNIC can send 

an appropriate response, drop the packet, or wake up the PC depending on the nature of the 

inbound packet. Figure 3-1 shows the sequence of steps involved to make one of these decisions. 

When a packet arrives in the SNIC, the packet header is first segregated and serves as input to 

the header inspection unit. The header inspection unit is primarily responsible for determining if 

the packet matches with one of the power proxying rules. If there is a successful match with one 

or more rules, the packet is then forwarded to the next stage. Depending on the nature of the 

matched rule, the packet is then reassembled and subjected to payload inspection. The content 

inspection unit is primarily responsible for this payload inspection. If there is no match in the 

header inspection unit, then the PC is awoken. If there is a header match, the content inspection 

unit is the next major unit which checks for the occurrence of certain predefined patterns, 

signatures, inside the packet. 

3.2 Packet Header Classifier 

For a header inspection unit to function successfully, power proxying rule characteristics 

must first be identified and operating requirements must be imposed. 
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3.2.1 Characteristics of Power Proxying Rules 

Power proxying rules can uniquely identify application network traffic based on header 

fields such as port and/or source address. This means header classification for power proxying is 

a 6-dimensional problem, the dimensions being the link-layer protocol, network-layer source and 

destination addresses, network-layer protocol, and the transport-layer source and destination port 

numbers.  For example, all TCP application traffic flows can be uniquely recognized using the 

source and destination address and port header fields. For UDP applications, only the destination 

address and port fields identify the traffic flow. In addition to the header fields, link-layer 

protocol and network-layer protocol fields are required to distinguish between the four classes. 

Conventional header classification rules are specified as address/mask and 

operator/number(s) pairs [21]. However, power proxying header classifier rules are specified 

only as operator/number(s) format because the end points of a connection in the network are 

clearly defined. Therefore, the use of the address/mask representation is avoided. Since the 

design primarily targets applications running on specific ports, the scope of the operator is 

limited to equality. If the header classifier were to be extended for firewall and security 

applications, range operators (such as greater than and less than) could easily be implemented. 

Upon matching a packet with a rule, the packet is forwarded accordingly to the next stage 

for reassembly and content inspection. Given certain situations, the SNIC may choose not to 

respond, electing to wake up the PC. 

3.2.2  Packet Header Classifier Characteristics and Requirements 

The SNIC packet header classifier is similar to a router-based classifier, but the operating 

environments and goals differ. For example, the SNIC packet classifier operates only during 

periods of system inactivity and will only deal with packets addressed to the particular 

destination PC, unlike a router, which must deal with packets addressed to many destinations. 
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Additionally, the SNIC packet classifier operates under limited processing resources. A 

typical NIC processor’s clock frequency ranges from 66 MHz to 400 MHz. In contrast, routers 

operate with dedicated network processors at GHz clock frequencies. However, even with 

limited resources, the header classifier should be able to sustain link rates of 10/100/1000/10000 

Mbps and the latency of the header classification should avoid packet loss. 

Fundamentally, SNIC header classification is similar to routing for delay sensitive 

applications. The primary difference is the nature and number of rules for both cases. Typically, 

router rules are more complex and are large in terms of quantity and size of rules. The number of 

rules a SNIC header classifier searches is directly proportional to the number of running 

applications suitable for proxying, thus, there are significantly fewer rules. Additionally, SNIC 

rules are disjoint so that a packet obeys only one rule, in contrast to traditional router-based 

header classifiers that have forward or backward redundancy [20]. 

3.3 Header Inspection Methods 

A software-based header classification methodology was designed to quantify the header 

classification capabilities available on existing unaugmented NICs, and to serve as a comparison 

for the hardware-based header classification methodology. The simplest software classification 

algorithm utilizes a binary search algorithm, while the simplest hardware classification 

implementation utilizes Content Addressable Memories (CAMs) [20, 21]. 

3.3.1 Software Packet Classification 

Existing embedded processors available on commercial NICs were used to implement the 

software header classifier. The software header classifier was implemented using a binary search 

algorithm with a complexity of O (log N) to find a matching rule. 

The software header classifier functions as follows. A receiver FIFO buffers incoming 

packets until they are transferred to the NIC’s memory. After the packets are moved, the MAC 
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control unit notifies the embedded processor and header classification begins. The software 

extracts the required header fields from each packet and passes the fields to the header classifier 

implemented in firmware. Finally, the embedded processor performs a binary search on these 

rules and determines an appropriate action. The process of header extraction and basic 

classification functionality is similar to the hardware implementation, which is elaborated on in 

the next section. 

3.3.2 Hardware Packet Classification 

The hardware header classifier is implemented using CAMs. Traditionally, routers use 

TCAMs for packet classification. Since the header classifier does not demand a longest prefix 

match, one can implement the classification using basic CAMs, which require less power than 

TCAMs. 

Figure 3-2 shows the architecture of the hardware header classifier. The header processing 

unit acts as the primary control module and is responsible for extracting the necessary data from 

the packet headers, supplying the CAMs with the source IP, source port, and destination port. 

Additionally, the header processing unit maintains classifier state. The header classifier receives 

the input packets from the MAC core. 

The placement of the header classifier with respect to the MAC core is shown in Figure 3-

3. The MAC core is attached to two FIFOs, one for transmitting (Tx FIFO) and the other for 

receiving (Rx FIFO). When a new packet arrives, the MAC core buffers the packet in the Rx 

FIFO at the rate of one byte per clock cycle [46]. The packet descriptor FIFO is a data structure 

where the header classifier writes all the information regarding packet classification, including 

the packet’s class and matching signature address, if any. The firmware running on the SNIC 

processor, also know as power proxy handler, uses this information to determine if the packet 

has to be conditionally forwarded to the content inspection stage. 
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The Physical interface (PHY), MAC core and the receiver FIFO constitute the packet’s 

critical path. Because the header classifier lies outside this path, the header classifier does not 

increase the packet’s critical path latency. 

The header processing unit is implemented as a finite state machine, which is triggered 

when a packet arrives from the MAC core. The Ethernet protocol field specifies if a packet is an 

ARP or an IP packet. An ARP packet has the quickest classification time, as it requires only a 

single comparison of the Ethernet protocol field. In the case of an IP packet, the header 

processing unit checks whether it is an ICMP, TCP, or a UDP packet. For each packet, the layer 

three destination address field is checked to see if it matches the PC’s address, as packets 

destined for the host are of primary interest. 

Next, the header classifier compares TCP and UDP packets against the power proxying 

rules stored in the CAMs. The source address, source port, and destination port, are partitioned 

and stored in separate CAMs. For a TCP packet, the header classifier extracts the layer three 

source address information from the incoming packet data and searches the source address CAM. 

Only upon a match will the header classifier continue with packet classification. If the header 

classifier finds no match in the source address CAM, the header classifier interrupts the 

processing element on the NIC to wake up the PC. Alternatively, if a match in the source address 

CAM occurs, the header classifier extracts the source port from the header and searches the 

source port CAM. If a match occurs in the source port CAM, the header classifier checks the 

destination port CAM. Since the CAMs are sequentially searched, unnecessary switching 

activities are avoided if the header processing unit detects a mismatch in the earlier phases, 

saving power when compared to a single CAM implementation. 
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A rule for TCP matches if and only if all three CAMs return the same matching address. In 

the case of UDP packets, only the destination port CAM needs to match and, since the 

destination address is a single value, the address can be stored in a register and the header 

classifier performs an equality comparison. 

For TCP traffic, cases arise where multiple TCP flows will map to a single TCP 

application, giving rise to multiple matches. The match address unit addresses this issue using 

the multiple match flags and representing the CAM addresses in bit vector format [47]. In such a 

case, the unencoded CAM address forms a bit vector where each bit indicates a matching 

address. A match occurs for a TCP application by intersecting the bit vectors of all three CAMs. 

Results of experiments on packet header classifier are discussed in Chapter 5. 
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Figure 3-1.  Sequence of packet processing steps in a SNIC. 

 

 
Figure 3-2.  Architecture of the CAM-based hardware header classifier. 
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Figure 3-3.  Architectural placement of the header classifier. New components are shaded. 
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CHAPTER 4  
CONTENT INSPECTION SYSTEM 

We designed and implemented a resource efficient content inspection system for SNICs. 

The content inspection system searches a packet’s payload for the occurrence of known 

signatures (patterns). Deployment of current content inspection systems discussed in Chapter 2 is 

impractical due to high resource and energy requirements. This chapter presents a resource 

efficient content inspection system using TCAMs, which addresses issues specific to deployment 

in SNICs. Additionally, the content inspection unit is extended to perform DNIDS. 

4.1 Traditional TCAM Based Content Inspection Techniques 

TCAMs are a popular choice for content inspection [15, 53] due to increased throughput 

and improved efficiency over other techniques. TCAMs are populated with signature sets and are 

capable of performing pattern matching on the order of constant time O(1). However, when 

using TCAMs for content inspection, careful system design considerations must be made. Since 

signatures are of variable length l (in bytes), the TCAM width w (in bytes) must be equal to the 

largest signature length L. Thus, all signatures l w must be padded with (w-l)*8 “don’t care” 

bits in order to fill the entire TCAM entry. This method leads to extremely inefficient resource 

use since signature lengths tend to be highly variable [53]. 

To improve resource use, TCAM widths are chosen such that w  L, and all signatures l > 

w are partitioned across multiple TCAM entries (signature partitioning). Choosing an 

appropriate TCAM width w is very important, as it affects not only the resource use, but the total 

number of TCAM entries (depth d) as well. Short patterns are signatures of length l  w bytes and 

these patterns must be padded with (w-l)*8 “don’t care” bits. Thus, the effective TCAM resource 

use is reduced for short patterns. Long patterns are signatures of length l  w bytes and these 
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patterns must be partitioned into l w short patterns. The first l w 1 patterns provide full resource 

use, as only the final partition requires   8* mod wlw   “don’t care” bits. 

Since every TCAM entry is unique, choosing a smaller width TCAM provides area 

reduction opportunity in the form of natural compression of repetitive patterns. Smaller TCAMs 

provide more opportunity for pattern repetition in that the probability of repeated patterns 

increases. However, smaller TCAM widths increases complexity of pattern matching, as 

additional data structures are required to decode shared entries. 

When partitioning long patterns, the first partition is denoted as the prefix pattern and the 

remaining partitions are denoted as suffix patterns. Figure 4-1 shows the prefix and suffix 

patterns for a sample long pattern signature given a TCAM width of 4 bytes (each character 

represents an arbitrary byte). 

The long and short patterns are stored as entries in a single TCAM and the TCAM entries 

are compared to incoming payloads. Payload examination occurs by streaming the payload 

contents through a w-byte inspection window. Initially this inspection window contains the first 

w bytes of the payload. For each subsequent clock cycle, the payload contents are left-shifted by 

one byte in order to inspect the next w-byte inspection window. Thus a payload of X-bytes 

contains X inspection windows, and the TCAM is searched for each of these windows. 

Furthermore, since a signature is scattered across l
w  TCAM locations, a TCAM match implies 

that the payload only matches with a portion of a signature. A final signature matching step is 

required to ensure that a payload matches with a complete signature. To assist in final signature 

matching, an auxiliary SRAM data structure aggregates TCAM hit address information during 

payload examination [53]. 
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As noted previously, this traditional router-based TCAM technique suffers from problems 

such as high power, cost, and large auxiliary data structure requirements. A content inspection 

technique that is more amenable to limited resource SNICs is architected in this chapter by 

extending TCAM-based techniques [15, 53], reducing both energy consumption and the energy 

delay product (EDP). A method by which the single TCAM is partitioned into a prefix TCAM 

and a suffix TCAM is developed. This partitioned technique reduces TCAM switching activity, 

with little to no area increase, and thereby reduces system energy consumption. A caching 

technique to further reduce energy consumption is introduced, motivated by a signature caching 

technique that exploits network traffic locality [24]. This technique assumes the NIC architecture 

proposed in [40], which includes low resource mechanisms for packet reassembly and check 

summing. 

4.2 SNIC-Based Content Inspection System 

4.2.1 Definitions 

The distinguishing features of the proposed architecture include: (1) the segregation of the 

prefix and suffix patterns into two separate TCAMs, the Prefix TCAM (P_TCAM) and the 

Suffix TCAM (S_TCAM), respectively; (2) the introduction of a suffix cache, which stores a 

subset of the S_TCAM entries; and (3) the usage of bloom filters for the auxiliary data structure. 

Previous methods used one large TCAM to store both prefix and suffix patterns. Storing all 

patterns in a single TCAM has the disadvantage of triggering unnecessary TCAM switching 

activity. For long patterns (w<l), suffixes are of interest only after a prefix match. Thus prefix 

and suffix segregation isolates prefix pattern matching to a smaller P_TCAM, and the larger 

S_TCAM is selectively enabled after an associated P_TCAM match. Additionally, identical 

prefix and suffix patterns are defined as alias addresses.  
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Every signature is expressed as a valid signature address permutation representing the 

addresses at which each signature’s partitions are stored. This permutation may be the 

concatenation of a P_TCAM address and several S_TCAM addresses (in the case of a long 

pattern with no alias addresses), an arbitrary number of P_TCAM and S_TCAM addresses (in 

the case of a long pattern with alias addresses, wherein the first address will always be a 

P_TCAM address), or just a single P_TCAM address (in the case of a short pattern).  

Given a signature partitioned in  w
l patterns, a concluding pattern is defined as the final 

partition  w
l  (which may be a prefix pattern for a short pattern or an alias address or a suffix 

pattern for a long pattern). This pattern marks the final address of a valid signature address 

permutation. Accordingly, all partitions  w
lp 1  are defined as intermediate patterns. 

4.2.2 Architecture 

Figure 4-2 shows the proposed content inspection architecture, consisting of three 

signature storage units: the P_TCAM, suffix cache, and the S_TCAM. The inspection window 

size of 4 bytes is assumed and the signature storage units are populated using the sample 

signature from Figure 4-1. The suffix cache is a small TCAM that stores the most recently used 

subset of the S_TCAM entries. Since valid signature address permutations only contain 

P_TCAM and S_TCAM addresses, each suffix cache entry also stores the corresponding 

S_TCAM address. From Figure 4-1 one can see that a match of EFG* implies a match of EFGH 

but the converse does not hold true. This property is defined as mutual inclusion [15] and must 

be considered during caching. To avoid inconsistencies due to mutual inclusion, only S_TCAM 

entries that are exactly w bytes are cached (entries without any “don’t care” padding bits). 
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The presence of a payload reconstruction unit is assumed (not shown in Figure 4-2) and 

this unit aggregates incoming network packets to reconstruct complete payloads. The complete 

payload is provided to the content inspection architecture. On each clock cycle, the payload is 

byte-wise left-shifted through a w-byte inspection window. The current w-byte inspection 

window contents are provided as input to the signature storage units. However, whereas the 

P_TCAM is searched each cycle by default, the suffix cache and the S_TCAM are selectively 

searched. The suffix cache is enabled after an intermediate P_TCAM hit and the S_TCAM is 

enabled after a suffix cache miss. 

Since the payload is byte-shifted, but the addresses in the valid signature address 

permutations represent w-byte windows, the suffix cache and S_TCAM only need to be activated 

w clock cycles after a prefix or intermediate pattern hit (in any signature storage unit). The 

activator monitors all signature storage units and upon a prefix or intermediate pattern hit, sets 

the 0th bit of the enable buffer to ‘1’, otherwise ‘0’. The enable buffer is a w-bit wide structure 

and is right-shifted each clock cycle. The shifted out bit serves as input to the enabler, thus 

signaling a suffix search w clock cycles after an intermediate pattern hit.  

When the enabler receives a ‘1’ bit input from the enable buffer, the suffix cache is 

enabled. Upon a suffix cache hit, the payload stream is left-shifted, and the next w-byte 

inspection window is processed. However, on a suffix cache miss, the S_TCAM must be 

searched on the next clock cycle for the same w-byte window. In order to reprocess the current 

inspection window, the enabler asserts a pause signal which effectively halts payload window 

and enable buffer shifting so that the same window can be reexamined. During this time, the 

cache controller ($ Ctr) orchestrates the suffix cache replacement policy. Since the least recently 

used (LRU) replacement policy overhead can be prohibitive for large associativities, a random 
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replacement policy is used, which is shown to have similar performance as LRU for large 

associativities [16]. It should be noted that the introduction of caching stalls the system by one 

cycle during the cache miss and thus leads to reduced throughput. However, results shown in 

Chapter 5 indicate the overhead is negligible. 

The retirement buffer stores candidate signature address permutations, and serves as input 

to the final signature matching step (the technique proposed by [15] is extended to address 

partitioning specifics). Each of the entries record information about TCAM hit status for each 

clock cycle, in the form of a TCAM hit address and associated descriptor bits. The descriptor bit 

designates if the entry is a P_TCAM (“11”) address, an S_TCAM (“01”) address, or if there was 

no hit (“00”).  

On each clock cycle, the retirement buffer is left-shifted and the contention resolution 

module pushes a new entry onto the right side of the buffer. If there is no hit in any TCAM, the 

new entrie’s hit address is set to NULL (Ø) and the descriptor bits to “00”. If there is a 

concluding P_TCAM hit (and a suffix miss), the prefix represents a short pattern, and thus this 

single hit indicates a complete signature match and there is no final signature match checking 

required, thus Ø is pushed onto the retirement buffer. In the case of an intermediate prefix or 

suffix hit, the associated hit address is pushed onto the retirement buffer, and the descriptor bits 

are set to “11” or “01”, respectively. If there is both a prefix and a suffix hit (in the case of alias 

addresses) and both hits are intermediate patterns, the contention resolution module ensures that 

the P_TCAM address is pushed on to the retirement buffer, and the descriptor bits are set to 

“11”. This alias address resolution technique is necessary since the intermediate pattern may 

indicate the beginning of a signature match.  
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Since the retirement buffer space is bounded, retirement logic (not shown in Figure 4-2) 

monitors the left most retirement buffer entry, the sentry position. When the sentry position’s 

descriptor bits are ‘11’ (indicating the start of a potential signature match), the retirement logic 

extracts all candidate signature match permutations (all the entries that are separated w bytes (w 

buffer entries) from each other), terminating on a Ø position. The candidate signature match 

permutations are dispatched to the final signature matching unit. The final signature matching 

unit uses hashing structures such as parallel bloom filters [7] to compare candidate and valid 

signature match permutations. Software methods can also be used as a substitute for final 

signature matching. Elaborations of such techniques are beyond the scope of this thesis, and 

optimization of this step is the left as future work. 

4.3 Mathematical Model 

In this section, the resource requirements for the proposed architecture are analyzed and a 

model for energy expenditure is developed. To describe the total TCAM (both prefix and suffix) 

and retirement buffer resource requirements, w is defined as the width of the TCAM in bytes, P 

as the depth of the P_TCAM, S as the depth of the S_TCAM, and L as the maximum signature 

length. Both P and S are highly dependent on the natural compression present in a signature set, 

but in the worst case (no natural compression): 

;  
1

lT iP T S
wi

 
    

  
  (4-1) 

where T is the signature set size. The total TCAM resource requirements is w*N bytes where 

N=P+S. Additionally, two bits are required to identify each TCAM entry as either a concluding 

or intermediate pattern or both, requiring additional 2*N bits. The retirement buffer resource 

requirements are similar to [15]: 
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 log2 Max(P,S)  2  bits (4-2) 

The assumption is that the size of the cache C contributes very little to the total resource 

requirements as C<<N. Since a random replacement policy is used, there is no additional area 

overhead other than a small cache controller. All TCAM expenditures can be aggregated into the 

total energy expended: 

Total_Energy = Num_P_TCAM_Accesses * P_TCAM_EPA 
+Num_Intermediate_Accesses * Cache_EPA 
 + Num_Cache_Misses * S_TCAM_EPA 
+ Num_Cache_Misses * Cache_Write_EPA 
+ Num_S_TCAM_Accesses * S_TCAM_EPA (4-3) 

 
Thus, average energy per access (EPA) is defined as the energy expended for a single w-byte 

window search: 

EPA = Total_Energy / Total_Accesses (4-4) 

1
_

X

i
i

Total Accesses P


  (4-5) 

where X is the total number of packets processed and Pi is the payload length of packet i. 
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CHAPTER 5  
RESULTS AND EVALUATION 

Header and content inspection techniques for deployment in SNICs have been proposed in 

this thesis. This chapter evaluates the suitability of these techniques for wide scale deployment in 

the SNICs. Experiments on the proposed techniques are discussed and their results analyzed. 

5.1 Header Inspection System Evaluation 

In Chapter 2, hardware and software based techniques for header inspection were 

proposed. This subsection details several experiments performed to compare the hardware and 

software classification techniques in terms of classification speed and dynamic power 

dissipation. 

5.1.1 Experimental Setup 

A software header classifier using binary search is implemented in the firmware of 

anembedded PowerPC 405 processor on the RiceNIC platform [41]. The RiceNIC is a 

programmable NIC that incorporates an FPGA and two embedded PowerPCs. The RiceNIC 

implementation clocks the PowerPC at 300 MHz and the processor bus at 100 MHz. In addition, 

the PowerPC implementation is modified to operate at 100 MHz in order to observe the 

performance of the packet classifier at lower clock frequencies, representing low-end NICs. 

The experimental setup for the software header classifier consists of two PCs, one 

emulating a network switch and the other equipped with the RiceNIC board. Using the packet 

generation tool NPG [28], the PC emulating the switch injects minimum sized packets to the 

RiceNIC equipped PC. The RiceNIC is instrumented to record header classification time 

statistics. 

The hardware header classifier is prototyped on the Xilinx Virtex-II Pro FPGA XC2VP20 

and used Verilog HDL and Xilinx IP cores to generate the CAMs with block memory. The 
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system is developed and simulated, implementing the Xilinx TEMAC core [46], using Xilinx 

ISE 9.1 [48] and ModelSim XE [27]. The system is designed to support the three link rates of 

10/100/1000 Mbps, with corresponding clock frequencies of 1.25, 12.5, and 125 MHz, 

respectively. Next, the hardware system is synthesized and time-constraint based placement and 

routing with Xilinx XST is performed. The system is subjected to heavy timing simulations 

(post-place and route timing simulation) using both the ISE simulator and Modelsim XE. Xilinx 

XPower [51] is used for power estimation [5].  

Worst case power dissipation occurs when the hardware prototype continuously receives 

minimum sized Ethernet packets, so the test benches are generated using minimum sized 

Ethernet packets (64 bytes). Four types of test benches are created, each corresponding to one of 

the four protocol classes. 

5.1.2 Header Classifier Speed 

The primary goal of the header classifier is to meet the standard minimum-sized Ethernet 

packet throughput of 1.48 millions of packets per second (MPPS) at a 1 Gbps link rate. For the 

software header classifier, worst-case header classification time occurs when the matching rule is 

the last rule checked. For the hardware header classifier, worst-case header classification time 

occurs when all dimensions (CAMs) match. For a successful match, the worst-case classification 

time for the software classifier is O (log n) and O (1) for the hardware classifier. Figure 5-1 

shows the worst-case header classification time for successful matches for both classifiers using 

a power proxy rule set containing 100 rules. In the hardware design, TCP packets take slightly 

more processing time than the UDP packets due to three sequential CAM lookups for TCP 

compared to a single lookup for UDP. As expected the hardware-based classification is much 

faster than software-based classification for both 100 MHz and 300 MHz processors 



 

38 

The variation of the worst-case header classification time for the TCP/UDP packets with 

varying rule set sizes is shown in Figure 5-2. The hardware header classification time is constant 

for any number of rules while the software packet classification time increases logarithmically. 

The throughput of hardware and software header classifiers are defined in terms of number 

of MPPS that the system is able to process. This metric reveals the maximum link rate 

sustainable by each technique. Figure 5-3 shows the obtainable worst-case throughput for both 

header classification techniques for TCP packets. The software implementation operating at 300 

MHz can only process at most 1 MPPS and fails to meet the gigabit Ethernet throughput 

requirement which may lead to unnecessary dropped packets. The embedded processing 

element’s clock rate is estimated to be at least 500 MHz to meet the gigabit Ethernet throughput 

requirement. The hardware implementation comfortably meets the throughput requirement and 

supports up to 2.5 MPPS operating at 125 MHz. At this header classification speed, the classifier 

can support one link of 1 Gbps and up to 7 links of 100 Mbps speed giving a total link rate of 1.7 

Gbps.  

During idle times, the system may not be subjected to a huge influx of packets, thus the 

software implementation may be fast enough to support classification. However, 1 Gpbs link 

rates are becoming commonplace and 10 Gpbs link rates will soon follow. Significantly more 

powerful embedded processors are required to speedup software header classification to meet 

future link speeds, and these embedded processors are likely too power hungry to be included on 

a desktop NIC. Not only is the hardware classification technique much closer to meeting 10 

Gpbs link rates (and in some rule cases, does meet the requirements), it is projected that one can 

optimize the hardware to maintain a link rate of 10 Gpbs with minimal added power overhead.  
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The speedup obtained with hardware classification versus software classification is shown 

in Figure 5-4. The hardware and software are continuously supplied with packets to classify. 

This figure denotes the lower bound on the achievable speed up. Speedup times range from 2.5x 

to 9x depending on traffic type and available NIC processing speeds. 

5.1.3 Power Consumption 

The power consumption of the hardware design is estimated using Xilinx XPower. The 

embedded PowerPC core in the Virtex-II Pro consumes 0.9mW/MHz at an ambient temperature 

of 25oC [50]. The online power estimation tool [49] is used to obtain the power consumption of 

the PowerPC system operating at 100 MHz and 300 MHz with the bus interface clocked at 100 

MHz and is found to be 100 mW and 280 mW respectively. However, [34] reveals a more 

realistic power estimation that also accounts for the bus power dissipation. Thus, the PowerPC 

consumes 259.5 mW and 441 mW when clocked at 100 MHz and 300 MHz respectively. These 

numbers are in close agreement with [30], which also estimates the idle power of the PowerPC to 

be 50 mW. All power estimations are obtained at an ambient temperature of 25oC.  

The highest measured power consumption of the hardware header classifier is 180 mW 

when it processes a TCP packet with 100 rules. The software header classifier consumes between 

2.4x and 2.9x more power than the hardware header classifier. In order for the software classifier 

to meet the 1 Gbps throughput requirements, the processor must operate at 500 MHz requiring an 

additional 294 mW over the 300 MHz processor – 4x more power than the hardware header 

classifier.  

Figure 5-5 shows the variation of the average hardware power consumption for various 

packet classes across different link rates for 100 rules. An exponential increase in power 

consumption can be traced with increasing link rate speed due to the system clock frequency, 

which is a function of the exponentially increasing link rate. As seen in the figure, processing a 
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TCP packet involves slightly more power than processing other packets.  This increase results 

from switching activity in the source address and source port CAMs, which only occurs in TCP 

packets. 

5.1.4 Hardware Operating Frequency and Scalability 

A maximum frequency of 177.17 MHz is obtained for an implementation with 20 rules and 

a minimum frequency of 138.9 MHz for an implementation with 100 rules. The standard 

frequency requirement for a 10 Gbps link rate is 156.25 MHz, which transmits data in units of 64 

bits. The prototype meets this requirement for 20 rules and with larger FPGAs the hardware can 

easily meet the 10 Gbps frequency requirement for an implementation with 100 rules. 

5.2 Content Inspection System Evaluation 

Having evaluated the header inspection system, this section focuses on the analysis of the 

TCAM-based content inspection system. The TCAMs first need to be populated with signature 

sets. The signature length distribution of two popular signature sets, i.e SNORT [42] and 

ClamAV [10], are analyzed. The impact of partitioning the TCAM (without suffix caching) is 

then analyzed with respect to area, energy consumption, and the energy-delay product (EDP) 

[18]. Next, popular NIDS trace benchmarks are simulated to determine average energy savings 

and are compared with the unpartitioned TCAM approach modeled using the same environment. 

A suffix cache is finally introduced and its effects are analyzed. 

5.2.1 Experimental Setup 

A custom C-based simulator is used to model the content inspection system. For a given 

TCAM width w, the SNORT [42] and ClamAV [10] signature sets are populated in the TCAM 

structures accordingly. For the simulation, popular NIDS benchmark traces from the MIT 

Lincoln Laboratory (MIT-LL) [26] and the “capture-the-flag” contest for the DEFCON festival 

[8] are used.  
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During a trace pre-analysis step, incoming fragmented packets are reassembled and the 

payload of the reassembled packets are extracted and passed to the simulator. The simulator 

behaviorally simulates the proposed architecture (excepting the auxiliary structures), recording 

several statistics such as total number of accesses to each TCAM and total number of 

intermediate and concluding prefix and suffix hits for postmortem analysis. To analyze the 

effects of the suffix cache, the S_TCAM access trace is saved to a trace file for future analysis by 

a cache simulator.  

TCAM energy consumption is obtained using the TCAM modeling tool developed by 

Agarwal et al. [1]. This tool provides search time and energy per access verses width, number of 

entries, and the fabrication technology, which is assumed to be 130 nm. These measurements are 

combined with the mathematical models (Chapter 4) to obtain the resource usage and energy 

consumption. 

5.2.2 Signature Length Distribution Analysis 

To assist in appropriate TCAM width w determination and avoid reduced resource use due 

to excessive “don’t care” bit padding, signature length distribution is first analyzed. Figure 5-6 

shows the cumulative signature length distribution for SNORT v2.4 and v2.8, and the ClamAV 

signature sets. Primarily, SNORT signatures are short patterns, with 70% of the signatures less 

than 4 bytes long, and 99.8% of the signatures less than 100 bytes long. ClamAV shows a 

different distribution, with 72% of the signatures between 30 bytes and 100 bytes long. This 

suggests that smaller TCAM widths are more suitable for SNORT signature patterns compared 

to ClamAV patterns. The graphs conform to the findings in [53] showing that future SNORT 

pattern lengths are becoming increasingly smaller and are more complex as these smaller 

patterns are distributed across the packet. 
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Since SNORT v2.4 and v2.8 show similar trends (and these same trends are observed for 

all experimental results), only SNORT v2.8 experimental results are presented. 

5.2.3 Effects of TCAM Partitioning on Size, Energy, and EDP 

Partitioning circumvents natural compression and results in an increase in the cumulative 

TCAM space. For example, given w=4 the signature “ABCDEFGHABCD” can be represented 

in a single TCAM using only two entries: ABCD and EFGH. However, partitioning the signature 

across a P_TCAM and an S_TCAM requires three total entries: ABCD in the P_TCAM and 

EFGH and ABCD in the S_TCAM. Thus, the impact on total area due to TCAM partitioning is 

first analyzed. 

Partitioning effects on TCAM size in KBytes for the SNORT v2.8 and ClamAV signature 

sets verses varying TCAM widths are shown in Figure 5-7 (A) and Figure 5-7 (B), respectively. 

These figures show P_TCAM and S_TCAM sizes, as well as the total combined size of these 

two TCAMs (combined TCAMs) compared to the non-partitioned TCAM system. The results 

show negligible natural compression loss, with the largest area overhead increase due to 

partitioning being only 4% for the smallest width. 

Energy per access normalized to the non-partitioned TCAM system for the P_TCAM and 

S_TCAM individually and both TCAMs combined (combined TCAMs) for the SNORT v2.8 and 

ClamAV signature sets are shown in Figure 5-8 (A) and Figure 5-8 (B), respectively. For 

SNORT, Figure 5-8 (A) shows that for the best case scenario (all P_TCAM accesses miss), 

energy consumption can be reduced by 74% to 40% compared to a non-partitioned TCAM 

system for TCAM widths ranging from 4 to 16 bytes, respectively. For ClamAV, Figure 5-8 (B) 

shows that for the best case scenario, energy consumption can be reduced by 93% to 78% 

compared to a non-partitioned TCAM system for TCAM widths ranging from 4 to 16 bytes, 

respectively. In the worst case scenario (full activity in both the P_TCAM and S_TCAM), the 



 

43 

energy consumption per access is nearly identical to the non-partitioned TCAM system, except 

for a TCAM width of 4 bytes, where energy is increased by 5% and 1% for SNORT and 

ClamAV, respectively. However, simulations using popular benchmark traces in next section 

show that the worst case scenario rarely occurs. 

Even though the partitioned TCAM system performs similar to that of a non-partitioned 

TCAM system in terms of total size and worst case energy per access, the largest advantage of 

the partitioned system is the reduction in the EDP. Figure 5-9 shows the percentage reduction in 

the EDP verses TCAM width for the SNORT v2.8 and ClamAV signature sets. The results 

reveal EDP reduction as high as 62% for both signature sets. This reinforces the fact that our 

partitioned TCAM system is both energy and throughput aware compared to a non-partitioned 

TCAM system, which is predominantly throughput aware. 

5.2.4 Energy Savings from Partitioning with Real-Time Network Traces 

Figure 5-10 shows the energy reduction for a partitioned TCAM system compared to a 

non-partitioned TCAM system for two MIT-LL and DEFCON traces for both signature sets. 

Energy savings range from 6% to 69% and 6% to 87% for SNORT and ClamAV, respectively. 

Both signature sets reveal similar energy reduction trends with smaller TCAM widths revealing 

larger energy reductions compared to larger TCAMs widths, as larger widths result in much 

more expensive TCAM accesses and an increase in “don’t care” bits. Furthermore, ClamAV 

patterns exhibit more energy savings for a TCAM width 8 due to a drastic reduction in S_TCAM 

accesses, suggesting that the traces contain predominantly short patterns. 

5.2.5 Network Trace Locality and Caching 

First, network trace locality is analyzed in order to motivate caching benefits. Figure 5-11 

shows matching SNORT signature identification (ID) number verses ordered incoming malicious 
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packets for the MIT-LL traces. As the figure shows, only a few unique signatures match, and 

matched signatures exhibit significant temporal locality. 

Next, the distribution of TCAM accesses between the P_TCAM and the S_TCAM is 

analyzed to reveal further caching potential. Figure 5-12 shows the percentage of S_TCAM 

accesses for the partitioned TCAM system verses varying TCAM widths for SNORT and 

ClamAV signature sets using the MIT-LL and DEFCON traces. The figure shows that smaller 

TCAM widths generate more suffix accesses and hence provide better opportunity for caching. 

This is promising given that Figure 5-10 shows the greatest energy reduction for small TCAM 

widths. For all cases except SNORT v2.8 with the DEFCON input trace, S_TCAM access 

percentage drops below 2% for widths greater than 8 bytes. It should be pointed out that the 

percentage is largely dependent on the nature of traces and the signature sets used. 

Impacts of caching for a TCAM width of 4 bytes is analyzed, as this width provides the 

greatest number of S_TCAM accesses. Figure 5-13 shows the variations in cache hit rate verses 

cache size in number of entries. Hit rates range from 28% to 88% with a cache size of only 40 to 

60 entries, with very little increased benefit for larger cache sizes. A cache containing 40 to 60 

entries represents only 0.002% to 0.004%, respectively, of the S_TCAM entries. 

Figure 5-14 shows energy reduction for a partitioned TCAM system with a suffix cache 

compared to a partitioned TCAM system with no suffix cache. Figure 5-15 analyzes the 

throughput reduction due to cache misses. 



 

45 

0

500

1000

1500

2000

2500

3000

3500

4000

ARP    ICMP     UDP      TCP

C
la

ss
ifi

ca
tio

n 
Ti

m
e 

(n
s)

Hardware at 125MHz (1Gbps) 
PowerPC - 300MHz
PowerPC - 100MHz

 
 
Figure 5-1.  Worst-case header classification time for each protocol class with a power proxy 

rule set of 100 rules. 
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Figure 5-2.  Worst-case header classification time for TCP and UDP traffic vs. number of power 

proxying rules. (Both hardware classification times overlap on the bottom line). 
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Figure 5-3.  Obtainable throughput in MPPS for hardware and software packet classifiers vs. 

number of rules for TCP traffic. 

 

 
 
Figure 5-4.  Speedup obtained by using a hardware classifier compared to a software classifier 

for varying number of rules. 

 

Th
ro

ug
hp

ut
 (M

PP
S)

 

0

0.5

1

1.5

2

2.5

3

20 40 60 80 100
Number of Rules

Hardware - 125MHz PPC - 300MHz
PPC - 100MHz Ethernet Throughput Limit

Sp
ee

du
p 

0

2

4

6

8

10

12

20 40 60 80 100

Number of Rules

300 MHz - UDP 300 MHz - TCP
100 MHz - UDP 100 MHz -TCP



 

47 

0
20
40
60
80

100
120
140
160
180
200

10Mbps 100Mbps 1Gbps

Link Rate

Po
w

er
 (m

W
)

ARP ICMP

UDP TCP

 
 
Figure 5-5.  Hardware power consumption vs. link rate for 100 rules. 
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Figure 5-6.  Cumulative number of rules (distribution) for increasing signature lengths for Snort 

and ClamAV signature sets. 
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Figure 5-7.  Variation of TCAM size verses TCAM width for A) SNORT v2.8 and B) ClamAV 
signature sets for the P_TCAM and S_TCAM individually, the P_TCAM and 
S_TCAM combined (Combined TCAMs), and the non-partitioned TCAM system. 
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Figure 5-8.  Energy per access normalized to a non-partitioned TCAM system verses TCAM 
width for the A) Snort v2.8 and B) ClamAV signature sets for the P_TCAM and 
S_TCAM individually as well as the P_TCAM and S_TCAM combined (Combined 
TCAMs). 
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Figure 5-9.  Percentage reduction in the energy-delay product (EDP) for a partitioned TCAM 
system compared to a non-partitioned TCAM system verses TCAM width. 
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Figure 5-10.  Energy reduction for a partitioned system compared to a non-partitioned system 
verses TCAM width for real-time traffic traces. 
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Figure 5-11.  Signature access locality (SNORT rule ID verses time represented by the malicious 
packet ID) as observed by an edge node under attack. 
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Figure 5-12.  Percentage of S_TCAM accesses for various TCAM widths populated by SNORT 
v2.8 and ClamAV signature sets. 
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Figure 5-13.  Cache hit rates for varying number of cache entries for a TCAM width. 
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Figure 5-14.  Energy savings for a partitioned TCAM system (w=4) with a suffix cache 
compared to a partitioned TCAM system with no suffix cache for varying number of 
cache entries. 
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Figure 5-15.  Percentage reduction in throughput verses number of cache entries for SNORT and 
ClamAV signature sets.  



 

54 

CHAPTER 6  
SUMMARY 

6.1 Conclusion 

Next generation NICs will become increasingly complex with increased network 

responsibilities such as power proxying, network intrusion detection, data caching, etc. Power 

proxying is a key element in realizing energy savings in network devices and allows them to be 

placed in standby mode without losing network connectivity. This thesis focuses on the 

challenges of designing a SNIC capable of supporting power proxying. 

As the architecture of the next generation SNICs continues to evolve [32, 40], it is 

identified that header and content inspection systems would be the key architectural elements 

posing challenges for wide scale deployment. These key architectural elements demand 

increased processing resources, memory resources, and consume more energy than the other 

elements in a SNIC’s architecture. This work presents an energy and resource efficient design of 

these key architectural elements suitable for wide scale deployment in next generation SNICs. 

This thesis first analyzed the nature of the power proxying rules. As a result of this analysis 

it became evident that router-based header inspection units needed to be modified for SNICs 

deployment. Thus, a header inspection system suitable for operation in SNICs to enable power 

proxying was designed. A low power hardware-based header classification technique is 

prototyped and analyzed in terms of classification speed, packet throughput, and power 

consumption compared to a software-based implementation.  

The designed hardware header classifier comfortably meets 1 Gbps link rate requirements, 

with only minor optimizations needed to satisfy 10 Gbps link rates. An equivalent software-

based header classifier consumes 4x more power than the hardware-based header classifier. 

Additionally, the hardware-based header classifier operates up to 9x faster than the software-
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based header classifier. This increased speed not only supports faster link rates but also enables 

the PC to be awoken sooner, thus reducing the possibility of packet loss. 

Next, this work focused on content inspection unit design. Content inspection is even more 

challenging problem than header inspection due to high computational and memory 

requirements. Existing content inspection techniques are carefully evaluated and a TCAM-based 

content inspection technique is chosen due to its simplicity in pattern matching, high throughput, 

and scalability with respect to the number and size of the patterns. However, existing TCAM 

techniques are not suitable for SNICs due to high power consumption and large auxiliary data 

structure memory requirements. This thesis architected an energy efficient partitioned TCAM-

based content inspection system suitable for deployment in next generation SNICs. The proposed 

system is energy, resource, and throughput aware, with energy delay product improvements of 

up to 62% compared to previous non-partitioned TCAM systems. Discussion and evaluation of 

the auxiliary data structure is beyond the scope of this work. Evaluation of the partitioned TCAM 

system using popular NIDS benchmarks reveals up to 87% energy savings on average compared 

to a non-partitioned TCAM system. As a further enhancement to the system, a small suffix cache 

is added to leverage the signature access locality present in network traces. A simple cache with 

a random replacement policy provides hit rates ranging from 28% to 88%, further reducing the 

energy consumption of the partitioned TCAM system by 64% compared to a partitioned TCAM 

system with no cache, with at most a 5.5% throughput reduction. 

6.2 Future Work 

The work presented in this thesis opens up larger avenues for future work in several 

directions. Works studying power proxying applications and their behavior are needed to 

architect a complete SNIC architecture capable of power proxying. The proposed content 

inspection system was evaluated completely using NIDS signatures sets. Power proxying 
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signature sets need to be developed to enable analysis of signature distributions and architectural 

optimizations. 

This work studied the locality in network traces and proved that caching can improve the 

energy efficiency of the content inspection system. However, studying and analyzing different 

caching techniques to further improve energy efficiency is suggested as a future work. 

Developing a pipelined architecture to circumvent the impact of cache misses on throughput can 

also extend the proposed work.  

In addition, new techniques are needed to address the attack robustness of the content 

inspection system by developing a methodology to overcome maliciously engineered packets to 

purposefully defeat energy savings by exploiting system behavior. Also, substantial work exists 

in evaluating the proposed improvements in auxiliary data structures and final signature 

matching techniques. Currently, the proposed options use hashing, bloom filters, or software 

methods in order to further enhance content inspection for wide scale SNIC deployment. 

However, the suitability of these options needs to be evaluated experimentally to complement the 

proposed work. 
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