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 The angle of the seat back is an important factor in head acceleration and pain felt during 

a low velocity rear-end collision.  Ten male volunteers with a mean age of 22.40 ± 2.37 years, 

mean height of 1.79 ± 0.035 m, and mean mass of 81.92 ± 11.51 kg were exposed to impacts 

designed to replicate this type of collision in a lab setting.  The change in velocity for each 

impact was approximately 8 kph (5 mph).  The variable during the study was the angle of the 

seat back.  Three seat back angles consisting of 100°, 115°, and 130° from horizontal were 

tested.  In general, as the angle of the seat back increased, the peak horizontal, vertical, and 

resultant accelerations decreased.  More specifically, significant differences were detected for the 

horizontal accelerations with increased values for 100° when compared to 115° and 130°.  There 

was no significance difference observed when comparing the vertical accelerations across the 

three seat angles.  The resultant acceleration showed significant differences when comparing 

130° to 100° and 115°, with the lower acceleration occurring in the 130° seat position in both 

cases.  Conversely, pain increased significantly as the angle increased.  The 130° seat position 

had significantly higher pain ratings when compared to the 100° and 115° seat positions.  
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Therefore, it can be inferred that there is an inverse relationship between seat back angle and 

acceleration while there is a direct relationship between seat back angle and pain.  Based on 

further analysis of the data collected during this study, it may be possible that the increase in pain 

is due to the larger contribution of the muscles and the decreased contribution of the headrest to 

stop the head during the trials at 130°.  To minimize risk, it is recommended to maintain a 100° 

seat back angle when in the front row of an automobile.   

  

 



 

12 

CHAPTER 1 
INTRODUCTION 

 Low velocity rear-end collisions are considered to be minor in severity, however they are 

very common and they represent a financial burden to society.1  The injuries caused by these 

collisions can be classified under one common disorder known as whiplash associated disorder 

(WAD).  These injuries include vertebral and spinal injuries and muscle strains.2  Although the 

injuries related to rear-end collisions are known, the causes are still under investigation.  

“Whiplash” is characterized by a sudden and forceful extension of the neck followed by a less 

severe flexion of the neck.  The motion associated with whiplash injuries has been broken into 

five separate phases.  Included are the initial response, principal forward acceleration, torso 

recovery, head deceleration, and restitution phases.3  Phases that involve extension of the neck 

typically cause injuries to the anterior musculature of the neck, intervertebral discs, posterior 

vertebral structures, and the anterior longitudinal ligament.  Extension occurs during the first two 

phases.  Flexion of the neck causes less severe injuries including posterior muscle strains and 

herniated discs and occurs during the third and fourth phases of the whiplash motion.2     

 Previous research in this area has focused on factors such as change in velocity, headrest 

position, occupant awareness, and gender.  However, research in the area of seat orientation has 

been limited.  Based on the geometry of an automobile seat and the natural seated position of the 

occupant, changing the angle of the seat back could create a change in body position and 

occupant kinematics, specifically the acceleration that the head undergoes.  It is also possible that 

a change in acceleration could create a variation in the risk of injury during a low velocity rear-

end collision.  The purpose of the current study is to determine whether the angle of the seat back 

will contribute to the peak acceleration experienced by the head during a low velocity rear-end 

collision.  In addition, pain felt by the participant after the collision will be assessed and 
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compared across seat angles.  The findings of this study could provide valuable information to 

automotive safety engineers and could assist in the design of a safer automobile seat.                           
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CHAPTER 2 
REVIEW OF LITERATURE 

Whiplash 

Whiplash Stages  

Generally, whiplash injuries occur much more frequently in rear-end collisions than in any 

other crash configuration,4 with rear-end collisions accounting for 85% of all crashes reporting 

whiplash injuries.5  More specifically, during a low speed, rear-end collision there are five 

phases of the motion associated with whiplash injuries.  These five phases begin shortly after the 

collision between the two automobiles.  During the first 100 ms of the collision there is no 

movement of the body (Figure 2-1A). Therefore, this initial period is not included in the 

sequence of events that causes the injuries associated with whiplash.2   

 The first phase involving movement of the body is called the initial response.  This phase 

can last anywhere from 50 to 100 ms.3,6,7  During this phase the seat of the vehicle moves 

forward relative to the body due to the rear impact (Figure 2-1B).  This applies pressure to the 

pelvis and the lower back and also causes the seat back to begin deflecting backwards due to the 

forces the body applies to the chair.3  This deflection can be simply explained by Newton’s third 

law of motion.  As the inertial forces of the body accelerate the seat backwards, the seat back 

applies an equal force that acts to decelerate the body.  The head does not undergo any motion 

during this phase nor do the muscles of the neck exhibit any response.  However, towards the 

end of the first phase, the thoracic vertebrae begin to move forward and slightly upward.6  

Finally, the body undergoes the beginning stages of ramping up.  Ramping up is defined as the 

body sliding up the seat due to the forces encountered during impact.  The degree of severity of 

this phenomenon changes with the severity of the crash and the inclination of the seat back.7  

During low speed collisions (Five mph or less) this motion is typically not severe enough to 
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cause the occupant’s head to rise above the headrest, assuming that the headrest is present and 

raised to the appropriate height for the occupant.3   

 The second phase of the motion is called the principal forward acceleration.3  This phase 

lasts approximately 100 ms.3,6,7  At the beginning of this phase, the seat back has reached 

maximum deflection3,6 and the head and neck undergo an extension motion.3,6,7  The head moves 

backward relative to the torso due to its inertia while accelerating and rotating in the rearward 

direction.7  This rotation can be stopped by the head restraint or by the anatomical structures of 

the spine and the neck, if the head restraint is ineffective.  In addition, the body continues the 

ramping up motion and there is an arching of the torso due to the extension of the spine.  The 

spine reaches maximum extension during this phase (Figure 2-1C).6  Compression injuries to the 

posterior structures of the cervical spine, if present, are a result of this phase.2  The next 

significant occurrence in this phase is the activation of the anterior musculature of the neck. This 

musculature, specifically the SCM, is actively resisting the abrupt backward motion of the 

head.6,7  Due to the time it takes for the nerve impulse to reach the muscle, this peak muscle 

activation occurs approximately 70-100 ms after the rearward motion of the head begins.  It is 

also worth noting that the muscles may not reach peak activity before this phase ends.  If the 

muscles never reach peak activity, the risk for injury to the muscles goes down.7  Factors 

including crash severity and horizontal distance between the headrest and the back of the head 

can significantly alter the amount of time and the risk of injury during this phase.  The angle of 

the seat back is directly related to the horizontal distance between the back of the head and the 

headrest.  More specifically, as the angle of inclination increases so does the horizontal distance.  

Therefore, as the angle of the seat increases, the time before contact with the headrest also 

increases.    
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 The third phase of the whiplash motion, or the torso recovery and forward head 

acceleration phase also lasts approximately 100 ms.3,6,7  During this phase, the head and neck 

undergo flexion and the torso and the seat back begin to return to their pre-impact positions.  The 

torso achieves a velocity that exceeds the velocity of the vehicle, thus creating the forward 

motion of the torso (Figure 2-1D).3,6  However, the velocity of the head is significantly higher 

than the velocity of the vehicle and the acceleration is usually two to three times that of the     

vehicle.3,7-12  This relative increase of velocity and acceleration creates a flexion motion of the 

neck. During this phase, the muscle activity of the neck continues, however the posterior neck 

muscles are placed under more stress due to their resistance of the forward flexion motion.  The 

most involved muscle is the trapezius.3,6,7 

 The fourth phase also lasts approximately 100 ms,3,6,7 and is called the head deceleration 

phase.3  In this phase, the head finishes the forward flexion motion while the musculature 

decelerates the head, and the head begins to return to the pre-impact position.3,6  During this 

phase, the upper cervical vertebrae are in extension while the lower cervical vertebrae are in 

flexion (Figure 2-1E).6  If the impact is severe enough, the head will be stopped by the chest 

through contact with the anterior portion of the mandible, or chin.  Otherwise, the posterior 

musculature of the neck will be primarily responsible for the end of the forward movement.  If 

injuries are present in the posterior musculature of the neck, it is due to phases three and four.  

Finally, the torso continues its return to its pre-impact position.3,6 

 The fifth and final phase, or the restitution phase,3 consists of the body and head finishing 

their progression to the pre-impact position and is characterized by the ceasing of muscle activity 

in the neck (Figure 2-1F).  This phase is generally the longest phase lasting 150 to 200 ms.3,6,13   
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 This five phase motion is representative of all whiplash injuries, however the severity of 

these injuries can change due to the characteristics and circumstances related to the individual 

crash.  Some of these factors include change in velocity and occupant orientation.  The most 

significant factor concerning occupant orientation is the angle of the head relative to the torso.7  

In the current study, this angle will change based on the angle of the seatback.  As the angle of 

the seatback increases, the angle of flexion between the neck and the head must increase in order 

to maintain a head position that is perpendicular to the surface of the road.  

Injury Mechanism 

 The motion previously described is capable of causing a variety of injuries.  However, 

separate injuries occur during the different phases of motion of the head and neck.  During 

extension, compressive forces are applied to the posterior structures and tensile forces are 

applied to the anterior structures.  The most common anterior structures involved during 

extension are the esophagus, anterior longitudinal ligament, anterior cervical muscles, the 

odontoid process of the second cervical vertebrae, and the intervertebral discs.  The posterior 

structures at risk during extension are the facet joints and the spinous processes of the vertebrae.2  

During normal extension, the structures of the vertebrae and the muscles of the anterior neck are 

within their physiological and anatomical limits.  In this case, no injury will occur.  However, 

during low velocity rear-end collisions, these structures may be subjected to forces which exceed 

healthy limits.  In this scenario, the facet joints between the superior articular process of the 

lower vertebra and the inferior articular process of the higher vertebra are the first anatomical 

structures to be stressed, thus they become the point about which the vertebrae rotate.  If the 

forces of rotation become too great for the facet joints to withstand, one of three things is 

possible.  First, the facet joints could experience a crush fracture.  Second, the spinous processes 

of the vertebrae could come in contact due to the forced extension and fracture as a result.  
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Finally, the anterior structures of the vertebrae and neck could stretch beyond their elastic limit 

or the vertebral body could fracture.  These anterior structures include muscles, the anterior 

longitudinal ligament of the cervical vertebrae, and the intervertebral discs.2            

 During the flexion phase the opposite occurs.  Compressive forces are now applied to the 

anterior anatomy and tensile forces are applied to the posterior anatomy of the cervical spine.  

The main structures involved in this phase are the intervertebral discs and vertebral bodies in the 

anterior portion and the facet joint capsules along with the posterior neck muscles in the 

posterior portion.  The most common injuries during the flexion phase are ruptured discs, 

vertebral body fractures, and muscle and ligament strains.2 

 The final and least likely source of injury during low velocity rear-end collisions are 

shear forces resulting from the horizontal motion of the body during the crash.  Assuming a near-

vertical position of the spine before the collision, horizontal forces will be transmitted parallel to 

the intervertebral discs.  These forces can cause injury to the facet joint capsules and the anterior 

portion of the intervertebral discs.  Based on the anatomy of the cervical vertebrae, the facet joint 

capsules experience compression from shear forces and the anterior portion of the intervertebral 

discs experiences a tensile force due to the backward motion of the superior vertebra.2  

Specific Injuries Caused by Whiplash and Associated Symptoms 

 As previously mentioned, the body parts most affected by whiplash injuries are the 

musculature of the neck and cervical vertebrae and surrounding structures.  Injuries involving 

these structures can either be short lived or chronic, and are generally classified as WAD.14  

However, because these injuries are non-fatal, no formal pathological studies can be done to 

determine exact causes or locations of injury.  As medical technology becomes more advanced, 

accuracy of diagnosis is becoming better, but these injuries will probably never be as well 

understood as more serious, fatal injuries.  To date, many types of studies have been performed 
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to better understand these injuries; however each method has its own limitations.  These methods 

include cadaver experiments, animal experiments, and radiographic studies.  Cadaver 

experiments utilize the same anatomy, but do not demonstrate the same muscular response as a 

live human being.  Animal experiments provide a live subject, but differences in anatomy and 

body size provide limiting factors.  Finally, radiographic studies show injuries in live human 

beings, but they do not allow for first-hand examination of the affected structures.  Even if the 

patient requires surgery for the injury sustained, it is generally much later and the anatomy 

during surgery may be different than it was directly after the crash.2   

 Generally, injuries to the musculature of the neck are short lived, while injuries to 

intervertebral discs, facet joints, and cervical ligaments usually cause chronic neck pain. Injuries 

to the facet joints, including fractures and tears of the joint capsules, are fairly common and can 

cause chronic pain.  Many times, this pain is due to a missed diagnosis resulting from an inability 

or difficulty to see the injury on a typical X-ray or MRI.  Disc injuries are also common, but are 

easier to diagnose, as they are generally more common in the medical community and are easier 

to detect from an MRI.  The two most common varieties of disc injuries are a separation of the 

disc from the vertebra and an anterior rupture due to compression of the posterior spine during 

extension.2  Muscle injuries, specifically tears and strains, are the most common injuries suffered 

by individuals with whiplash.  This is due to the sequence of events of a whiplash injury.  The 

muscles act as a protective mechanism to the other structures that could potentially be involved.  

They are the first structure that resists the motion of the head, thus they undergo the greatest 

stress.  Muscles will undergo mild injury in order to keep the spine aligned and free of injury.  It 

is only when the muscles can no longer withstand the acceleration and resultant forces of the 

head that the other structures become susceptible to injury.6  Muscle injuries, while being the 
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most common, are also the shortest lasting, with a maximum healing time of two to three weeks, 

while many times resolving in just a few days.2  The final major structures contributing to 

whiplash injuries are the ligaments, specifically the anterior longitudinal ligament.  Anatomical 

studies have shown that the anterior longitudinal ligament and the annulus fibrosis of the anterior 

intervertebral discs in the cervical vertebrae merge together, thus anterior longitudinal ligament 

injuries and disc injuries are often associated together.  Injuries to this ligament occur only 

during the extension phase of the whiplash motion, and are characterized by a partial tear or 

complete rupture of the ligament.2  In summary, although there are other sources of injury during 

whiplash, the vast majority of whiplash injuries are directly related to the facet joints, 

intervertebral discs, and anterior ligaments of the cervical vertebrae.                

 With these very specific injuries come various symptoms.  Symptoms of WAD include 

pain in the neck or shoulder region, dizziness, headaches, blurred vision, concentration and 

memory disturbances, and paraesthesia, or tingling and numbness in the hands.2,14-16  Neck pain 

is the most reported complaint among individuals who report whiplash injuries.  This pain is 

reported in the anterior and posterior portion of the neck, although posterior pain is the dominant 

complaint. This pain can come in several forms.  The two most common forms are dull and 

aching and sharp pain.  Both forms are exacerbated with movement and many times movement is 

restricted due to stiffness.2  Previous studies using similar speeds to the current study have shown 

that neck pain, if any is present, has resolved within four days.6,7,12,13,17-19  Due to the complexity 

and multitude of possible causes of injury, the exact correlation between types of neck pain and 

type of crash is not completely understood.  The second most frequently reported symptom 

reported is headaches.  The most likely causes of these headaches are the upper three cervical 

nerves originating from the first, second, and third cervical vertebrae.  Afferents from these three 
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nerves terminate in the cervical portion of the trigeminal nucleus, located in the caudal region.  

Because the ophthalmic portion of the trigeminal nucleus is also in the caudal region, pain from 

C1-C3 is usually referred to the orbital and temporal regions.  This referred pain is the most 

likely cause for headaches related to the whiplash motion.2  Previous studies at or near the speed 

used in the current study show that headaches, if present, resolved within two days.4,19  Other 

headaches that could originate would result from concussion or intracranial hemorrhage, 

however during a low velocity collision these types of injuries are extremely unlikely.  

Paraesthesia, another symptom reported by whiplash patients, is caused by compression of the 

nerves of the brachial plexus by the surrounding anatomical structures including muscles.  The 

other symptoms relating to whiplash, including dizziness, blurred vision, and concentration and 

memory disturbances, have not been sufficiently explained in the current research.2 

Prevalence of Whiplash Injuries in Society 

 Whiplash injuries, although minor in severity, are a major health problem around the 

world and they create a huge economic burden to insurance companies, hospitals, and the 

patients affected by these injuries. In general, whiplash injuries are most likely to occur when the 

vehicle is involved in a rear-end impact with speeds less than 12.5 mph.4,16,20  The injuries are 

usually classified as minor on the abbreviated injury scale, otherwise known as AIS 1 injuries.  

However, the frequency of permanent disability is about 10%.  This is extremely high when 

compared to other AIS 1 classified injuries, which have a permanent disability rate of only 

0.1%.1  Thus, injuries related to whiplash are 100 times more likely to produce permanent 

disability than other injuries of similar severity.   

 In addition to having a relatively high rate of disability, these injuries are also very 

common, as neck strains and sprains associated with whiplash are the most serious injuries 

reported by 40 % of automobile accident claimants in the United States.11  This percentage 
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coincides well with statistics from two studies in Japan during the years 1996 and 1997.  

Watanabe et al. state that 44.0 % of 547,654 injuries suffered during a car accident in 1996 were 

neck injuries resulting from a rear-end impact and 44.7% of 563,121 injuries from 1997 were 

neck injuries resulting from a rear-end impact.21  In Western countries, about 25% of all people 

reporting an injury related to whiplash develop a chronic condition and 20% of those people 

suffer serious pain.5  Finally, in 2002 Croft et al. estimated that the cost associated with whiplash 

injuries exceeds $19 billion every year, which is sure to be much higher currently.22  All of these 

statistics show that there is a great need to better comprehend the causes of these injuries and to 

reduce the risk of whiplash injuries throughout the world.  

Automobile Characteristics Contributing to Injury 

Seat Angle 

 The angle of the seatback is an important controllable factor related to the motion of the 

neck and the forces felt by the muscles of the posterior and anterior portions of the neck; 

however it has received little attention when discussing whiplash research.  Ergonomics of 

products such as office chairs have been studied extensively, and there have been several studies 

on the ergonomics of automobile seats, yet an optimal position to reduce the risk of whiplash 

injury for a driver in an automobile has been more or less ignored, thus there is extremely limited 

research in this area.17  The previous studies in automobile seat ergonomics have shown a 

minimal myoelectric activity of the anterior and posterior muscles of the neck at a seat back 

inclination of 120°.17,23  However, these studies had no relation to whiplash injuries.   

 The inclination of the seat back in an automobile affects the loads applied to the 

ligaments and the intervertebral discs of the cervical spine.7  When the seatback angle is altered, 

the angle between the neck and the torso must change, assuming that the driver’s head is always 

perpendicular with the surface of the road.  The change in the angle between the neck and the 
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torso may be an important factor contributing to the differences in force felt by the anatomical 

structures of the neck.  When the seat is reclined past 90°, the neck is forced into flexion, 

subsequently creating a larger angle through which the head must move, and possibly creating a 

larger end velocity of the third phase of the whiplash motion.  Therefore, when the muscles 

activate to decelerate the head during this motion, it is also possible that the inertial forces 

exerted by the muscles of the neck are greater from a flexed position when compared to an 

upright position.  If this increase in force exceeds the injury threshold, the increase in seat back 

angle would create injury where there would be no injury from a more upright-seated position.  

In addition, if the seat is more upright, the distance between the back of the head and the headrest 

reduces.  Therefore, the time between backward cervical rotation and contact between the head 

and headrest will be reduced.  This topic will be discussed further in a later section.    

 The final factor that is affected by the position of the seatback is an aforementioned 

motion referred to as ramping up.  This motion is characterized by an upward movement of the 

body along the seatback during a rear-end collision.  If the motion is significant enough, the head 

will move above the headrest, thus eliminating the effectiveness of the headrest and increasing 

the risk of injury due to hyperextension.  However, having a more upright seat position decreases 

this motion and should also decrease the risk of pain or injury.  The variable manipulated in the 

present study was the angle of the seat back and how it contributed to the acceleration of the 

head during the whiplash motion and the pain felt in the musculature of the neck.  

Headrest Function and Position 

 The headrest of a car seat has been proven to be effective in the reduction of injuries 

during a low velocity rear-end collision when used in the correct manner.1,24-26  The primary 

function of the head restraint is to limit the amount of rearward motion, or extension, that the 

neck undergoes during a rear-end collision.  If used properly, the head restraint is designed to 
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terminate the head motion before hyperextension of the neck occurs.  During hyperextension the 

more serious injuries such as intervertebral disc rupture, anterior longitudinal ligament rupture, 

and vertebral fractures occur.  Although the headrest should eliminate these types of injuries, it is 

still very possible to have less severe soft tissue injuries such as muscle strains, even if the 

headrest is used properly.  Hyperextension is one of the leading causes of injury to the neck, thus 

if the head restraint is not used properly the likelihood of injury increases.27,28   

 Head restraint height is the only adjustable variable in the majority of modern head 

restraints.  It has been reported that a minimum of 27.5 inches from the seat to the top of the 

headrest should be present to reduce injury, and the top of the headrest should be at least as high 

as the vertical midpoint of the head.24,26  In addition,  Nygren et al. have shown that complaints 

of whiplash injuries nearly doubled when occupants reported a low headrest position instead of a 

high headrest position.29 Additionally, 83% of drivers and passengers do not adjust their headrest 

to the proper height.9  In order to help prevent injuries during this study, the headrest will be 

placed in the highest position allowed by the structure of the car seat. 

 The final factor related to the headrest that contributes to the forces felt by the head and 

neck is the horizontal headrest distance, defined as the distance from the occipital protuberance 

of the head to the front of the headrest.  While the headrest height stays constant, the change in 

seat back angle will also create a change in horizontal headrest distance, which in turn will cause 

a larger degree of neck flexion and a greater angular displacement of the head during the 

whiplash motion.  Ideally, the gap between the occipital protuberance and the headrest should be 

no greater than half of the anteroposterior diameter of the head.26  Many studies have shown that 

the greater this distance is, the greater the demands are on the muscles of the neck.1,14,19,22,24,26,27    

However, none of these studies have related this phenomenon to the angle of the seatback.  
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Seat Belt 

 Previous studies have shown that an anthropomorphic dummy was adequately retained 

by the seat in rear-end impacts up to 14.3 mph.30,31  In order for a seat belt to be required and 

effective, the forward excursion of the torso must be large enough to lock the seatbelt.  In the 

current study, the movement of the torso would not have caused this to happen.  Therefore, it 

was determined that a seat belt would have little to no effect on the kinematics of the head or the 

torso during the collision. 

Crash Factors Affecting Injury 

Comparison of Body Kinematics during Rear-End Collisions and Frontal Impacts 

 The motion of the body during rear end and frontal impacts has similarities, however the 

motion during rear end impacts is responsible for the vast majority of recorded whiplash 

injuries.16,20,21  Frontal impacts are defined as having a direction of force between eleven o’clock 

and one o’clock with direct contact to the front of the car.  During frontal impacts, the accepted 

motion of whiplash is not present, thus the injuries are generally less severe and less frequent.  

The first motion of the neck during a frontal impact is flexion, which is followed by a less severe 

extension motion.  Furthermore, at a velocity of five mph, the likelihood of a hyperextension 

injury becomes very small.  This is due to the dissipation of force from the posterior musculature 

of the neck and possible contact between the sternum and chin. As the first motion is the most 

severe in terms of acceleration, extension injuries during frontal impacts occur with much less 

regularity and generally occur in higher velocity crashes.32  This is opposite to the motion that 

takes place during a rear end collision.  In this type of collision, extension of the neck is the first 

motion and it is followed by flexion.3,6,7  Because the first motion is more severe than the second, 

the anatomical structures involved with hyperextension injuries become much more susceptible, 

and because hyperextension injuries such as ligament ruptures, herniated discs, and vertebral 
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fractures are more serious than flexion injuries, it is fair to conclude that low velocity rear end 

collisions create a much higher probability for whiplash injuries than low velocity frontal 

impacts.   

Relationship Between Selected Velocity and Injury Tolerance 

 Most WAD injuries occur when there is a change in velocity between 6.2 mph and 12.5 

mph.27  In previous studies testing human subjects at a velocity of five mph, no subject 

experienced WAD symptoms lasting more than three days, and there was no recurrence of pain 

at any point in the future.  Primary complaints consisted of muscle pain, headache, and other 

cervical symptoms.4,12,13,16  In addition, the Insurance Institute for Highway Safety, the primary 

government crash test agency, uses a velocity of five mph to test vehicles for resistance to low 

speed crash damage.  Therefore, in order to protect the participants as much as possible, five 

mph was chosen as the test velocity.  The second reason for selecting five mph as the velocity 

was to ensure that the defined motion of whiplash occurred.  If the change in velocity of the 

vehicle were too low, the forces required for the head to undergo the five phases of motion 

previously described would not be sufficient.  Previously, West et al. tested at three mph or less 

and reported that the rearward displacement of the head following impact was not large enough 

to classify the motion as a typical whiplash movement.12 

Influence of Occupant Awareness during a Crash 

 Occupant awareness, or the anticipation of an impending impact, not only changes the 

motion of the head and neck during a rear-end collision, but it can also change the likelihood of a 

whiplash injury.  The main factors that create awareness during a rear-end collision are the 

screeching of the tires from the vehicle behind and seeing the car behind in the mirrors of the 

vehicle.  The most common reaction of drivers when they anticipate a collision is to contract the 

muscles in the neck.  Participants in studies who were instructed to anticipate the impending 
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crash and tense their neck muscles prior to impact have reported less severe pain and injuries and 

state that the crash seemed less severe when comparing it to a crash with the same change in 

velocity and an unaware state.15,33,38  Contraction of the muscles prior to impact creates an ability 

to resist extension beyond normal physiological and anatomical limits and consequently reduces 

the incidence of hyperextension injuries and symptoms.7,10,15,33-38  However, muscle tension 

before impact could also contribute to muscle strain injuries if the muscles involved eccentrically 

contract to resist head motion that has already begun.6,39-41  The kinematics of the whiplash 

motion are also changed when the occupant is aware.  Kumar et al. state that the initial 

acceleration of the head in aware conditions was delayed by 25-40 ms.33  This delay is due to the 

resistance of the backward rotation created by the anterior musculature of the neck.  This will 

create a decrease in the extension of the neck by approximately 30-40% when compared to a 

relaxed state.7  

 Conversely, if the subject is in a relaxed state prior to impact, the muscles of the neck do 

not affect the head-neck-torso kinematics during a rear-end impact and the motion is as described 

previously.7  Because of the muscle activity onset delay, much or all of the movement in the 

extension phase of the whiplash motion is already completed before the anterior muscles, 

specifically the SCM, are maximally activated.  

Demographics of Selected Participants 

Human Subjects Compared to Anthropomorphic Dummies and Cadavers 

 In many studies involving automobile crashes, anthropomorphic dummies, or crash test 

dummies, are used for safety reasons.  However, these tests are generally at much higher speeds 

than five mph.  In addition, anthropomorphic dummies are designed to replicate the motions 

observed in a human during high-speed crashes and they do not exhibit the correct response 

when subjected to a low velocity rear-end collision.4,11,16,18  More specifically, the complicated 
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intersegmental dynamics of the neck, including vertebral interaction and muscle responses, 

cannot be reproduced in anthropomorphic dummies.11  The final reason these dummies cannot be 

used for this type of research is the lack of a pain response.  When studying whiplash, analysis of 

pain is an extremely vital part in analyzing what has happened to the anatomical structures 

affected.4  Because the dummies are unable to give verbal feedback about pain, injuries 

associated with whiplash are very difficult to study when using dummies as subjects. 

 Another substitute for in vivo human testing has been the use of human cadavers.  This 

method also has very serious drawbacks when applied to low velocity impacts.  As opposed to 

high-speed research where cause of death is usually the desired information, low speed impacts 

present much more subtle and complicated questions such as the role of muscle activity in the 

neck in preventing injury.4,11  Obviously, a cadaver has no muscle response and therefore cannot 

produce accurate results.              

Likelihood of Injury in Males and Females 

 Although whiplash injuries affect both males and females, it has been widely reported 

that women are more susceptible to whiplash injuries, and the associated WAD symptoms last 

for a longer period of time when compared to men.7,11,14,24,26,42-55  In fact, women have a 40% 

higher risk than men of sustaining these injuries.26  This increased risk can be attributed to 

several factors.  The first factor is a greater ratio of head mass to neck circumference.  This ratio, 

represented by the cube of the head circumference divided by the square of the neck 

circumference, places a greater demand on the muscles of the neck for female occupants.4  The 

increased muscular demand causes the incidence of whiplash injuries to increase.  The next 

factor contributing to the higher incidence of injury in females is the difference in the alignment 

of the cervical spine between male and female occupants.  The female spine is more prone to 

kyphosis, or a curvature of the upper spine.7  Because the spine is not aligned in a straight 
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position, the muscles of the neck are already under more strain than they would be in men.  

When placed in a situation such as a rear-end collision, the muscles could be fatigued and less 

able to perform the demands necessary to prevent hyperextension.  The final factor contributing 

to the higher risk in females is muscle strength.  On average, females have weaker muscles in the 

neck region than men.25  When combining this with the higher relative head mass, injuries are 

much more likely to happen.  Because the muscles cannot resist the rearward rotation as well as 

men, the horizontal acceleration of the head is also higher in women.11,55  

Effect of Age on Injury Susceptibility 

 The effect of the whiplash motion on the body changes as an individual ages.  Not only 

are elderly people less physically prepared to withstand the forces created by the whiplash 

motion, but the injuries suffered are generally more severe, last longer, and have increased 

symptoms.2,14,51  As people age, more effort is required to maintain muscle mass.  If muscle mass 

is not maintained, the likelihood of severe injury increases because the muscles can no longer 

protect the ligaments and vertebrae.  In addition, weakening of the bones, or osteoporosis, can 

occur as one ages. If the cervical vertebrae are weakened, when they are placed under the 

stresses caused by whiplash, they are more likely to fracture.   
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          A    B    C    

 

 D         E    F 
 
Figure 2-1.  Stages of whiplash motion.  Arrows indicate the direction of motion of the head and 

seat back.  A) Pre-impact position.  B) End of phase one.  C) End of phase two.  D) 
End of phase three.  E) End of phase four.  F) End of phase five.   

 

 



 

31 

CHAPTER 3 
METHODS 

Participants 

Ten participants were tested.  All participants were males between the ages of 18 and 35.  

Participants were recruited from the student population of the University of Florida.  Each 

participant was required to read and sign an informed consent agreement approved by the 

Institutional Review Board of the University of Florida prior to participation.  In addition, each 

participant was required to fill out a medical health questionnaire (Appendix A).  Each 

participant was involved in three testing sessions, spaced at least two weeks apart in order to rule 

out any potential discomfort from the previous session.  During each testing session, each 

participant was subjected to three trials that involved one rear-end impact per trial at a velocity of 

five mph.  The only difference between testing sessions was the angle of the seat back.  

Exclusion criteria included female gender, previous spinal injury, history of severe headaches or 

migraines, current injuries to the neck or back, previous whiplash injuries, previous diagnosis of 

a herniated disc or any other disc injury, and history of dizziness.     

Experimental Apparatus 

Ramp 

In order to simulate a low velocity rear end collision each participant sat on a car seat 

mounted to a rolling platform (Figure 3-1) that was released and allowed to roll backwards down 

a wooden ramp until colliding with a fixed wooden barrier (Figure 3-2).  The ramp was inclined 

at 10° from horizontal and was 4.6 m (15 ft) long.  The height of the ramp was 0.8 m (2.6 ft).  In 

addition, there was a flat 2.44 m (8 ft) long segment attached to the bottom of the ramp that 

served as a final runway for the seat (Figure 3-2).  The ramp was constructed from wooden 

beams (2 in x 4 in) to create the framework and 1.9 cm (3/4 in) plywood to create the upper 
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rolling surface.  On the surface of the ramp, there were 1.9 cm (3/4 in) tall rails that served to 

keep the platform for the seat securely in place while it traveled down the ramp.  In addition, 

there were 7.6 cm (3 in) tall guards attached to each rail in order to provide an extra level of 

safety (Figure 3-3).  The ramp was comprised of two segments.  The final 2.44 m (8 ft) section of 

the ramp was held in place with four steel cables attached to the floor in order to prevent 

rearward movement of the ramp during impact.  At the end of the flat segment was an 

immovable stopping apparatus, consisting of a wooden barrier (Figure 3-2).      

Seat Platform 

The car seat, extracted from a 2001 Toyota Corolla, was securely bolted to a platform that 

measured 0.9144 m (3 ft) wide by 0.9144 m (3 ft) long by 0.305 m (1 ft) deep.  There was also 

an extension on the platform so the participants could rest their feet (Figure 3-1).  The extension 

was the same height relative to the seat as the floor of an automobile.  The platform utilized two 

rows of four Rollerblade 76 mm wheels with SG5 bearings (Nordica, Treviso, Italy), placed on 

the outside of the platform (Figure 3-1).  In addition, there was an interior compartment that 

allowed for an addition of weight to the platform.  This functioned to lower the center of gravity 

of the platform and prevent backward rotation upon impact.  The compartment also allowed the 

testers to normalize the weight of the platform across subjects.   

Instrumentation 

A tri-axial accelerometer (Model CXL10GP3, Crossbow, San Jose, CA) was used to 

capture acceleration measurements of the head.  The accelerometer was connected to EVa Real-

Time software (Motion Analysis Corporation, Santa Rosa, California).  All acceleration data was 

sampled at 1000 Hz.  Data was exported into Microsoft Office Excel 2003 (Microsoft, Redmond, 

WA) for reduction. Statistica version 5 (Statsoft Inc., Tulsa, OK) was used for statistical 

analyses.   
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Procedure 

The experimental procedures were the same for all participants and all trials took place in 

the Biomechanics Lab in the College of Health and Human Performance at the University of 

Florida.  Before the participant arrived, the seat back was set to the appropriate angle.  The three 

angles that were used in this study were 100, 115, and 130° from horizontal, in that order.  The 

participants were not told which angle was being tested.  Only one angle was tested per day.  

After signing the informed consent form and filling out the medical health questionnaire, the 

participant was weighed.  The forms were only filled out prior to the first visit, however the 

participant was weighed during each visit.  Next, the participant was fitted with the 

accelerometer that was securely fastened to a mouthpiece (Figure 3-4).  In order to normalize the 

weight of the platform and the test participant, weight was added to the compartment below the 

seat until the combined weight of the participant, rolling platform, and added weight reached 

113.6 kg (250 lbs).  This constant weight helped to ensure that each trial was as close to five mph 

as possible.  The proper release point that produced the desired speed was determined during 

pilot testing using motion analysis software. 

Each participant was then instructed to sit in the seat at the top of the ramp while looking 

straight ahead keeping his head parallel with the ramp’s surface and his arms relaxed on his lap 

throughout the trial.  The participant was told to remain relaxed throughout the trial, meaning 

that he would not tense his muscles before impact.  The participant was also instructed to keep 

his scapulas against the seat.  This served to normalize the seating position for all participants.  

During all trials, the headrest was in the highest position to decrease the chance of neck 

hyperextension.  Upon verification that the participant is ready, the rolling platform was released 

from the pre-determined point and the seat began to move down the ramp.  After impact with the 

fixed wooden barrier, the platform came to rest.  Throughout the trial, acceleration data was 
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recorded.  Three trials were performed during each testing session.  Finally, a follow-up phone 

call was made at one day, three days, one week, and two weeks post-test.  These calls served to 

monitor the participant’s health and to quantify soreness, if present, on a graded scale.  The pain 

scale appears in Appendix B56.  In the two subsequent sessions, the data collection method was 

the same, however the angle of the seat was changed.  The data was analyzed after each session. 

Data Analysis 

Acceleration of the Head 

Acceleration of the head was calculated in g’s, where one g equals an acceleration of 9.81 

m/s2, the acceleration on gravity.  The peak acceleration in the anterior-posterior and vertical 

directions was recorded and the resultant acceleration was calculated.  The third direction was 

ignored due to the minimal motion in the lateral direction during the whiplash motion.6,19 Initial 

output from eVart 4.3 Motion Analysis Software was measured in millivolts.  This raw data was 

exported to Microsoft Excel 2003 and graphed.  The graph was used to find peak acceleration in 

volts.  A sample graph has been provided (Figure 3-5).  The baseline voltage was then subtracted 

from the peak voltage in order to quantify the true peak acceleration.  After finding this peak 

acceleration in volts, a conversion factor supplied by Crossbow allowed for a conversion from 

volts to g’s.  The conversion factors for horizontal and vertical acceleration were 0.098 and 0.101 

volts per one g, respectively.  Peak horizontal acceleration measured in g’s (a(g)) was calculated 

using Equation 3-1:   

a(g) = (voltagemax(V) – voltagebaseline(V)) / 0.098                    (3-1) 

Peak vertical acceleration was calculated using equation 3-2: 

a(g) = (voltagemax(V) – voltagebaseline(V)) / 0.101                    (3-2) 

This process was repeated for each trial completed.  The peak mean horizontal and vertical 

accelerations for each seat angle were calculated.  In addition, the resultant peak accelerations 
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were calculated and averaged for each seat angle.  Finally, one trial was selected for time-motion 

analysis.  During this process, key moments were picked from the trial and the resultant 

acceleration, magnitude and direction, were plotted on a graph.  This graph shows the severity 

and direction of acceleration throughout the trial.       

Pain Scale 

Participants rated their pain one day, three days, one week, and two weeks post-test.  This 

process was completed for each of the three test sessions.  Data was written into Microsoft Excel.  

Mean pain ratings were calculated for each time interval at each seat angle.   

Statistical Analysis 

Acceleration of the Head 

A repeated measures one-way ANOVA with three levels was used to determine if there 

was any significant difference in the mean peak acceleration of the head across seat angle.  This 

was done for the horizontal, vertical, and resultant acceleration values.  A traditional level of 

significance was used (  = 0.05).  Tukey HSD post hoc analyses were performed when 

necessary.  

Pain Scale 

A repeated measures two-way ANOVA (3:seat angle x 4:time interval) was used to 

determine if there was a significant pain difference among the three seat angles and as time 

passed post testing.  A traditional level of significance was used (  = 0.05).  In addition, Tukey 

HSD post hoc analyses were performed when necessary.   
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Figure 3-1.  Automobile seat mounted on a rolling platform. 

 

 
 

 

Figure 3-2.  Ramp and stopping apparatus.  

 

 

 

Figure 3-3.  Guard rails on ramp. 



 

37 

 

Figure 3-4.  Accelerometer and mouthpiece. 

 

 

 

Figure 3-5.  Sample horizontal acceleration graph- the vertical axis is measured in millivolts and 
the horizontal axis is measured in milliseconds. 
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CHAPTER 4 
RESULTS 

Participants 

 Nine of the ten participants completed testing at all three seat angles.  The horizontal 

acceleration data for the third trial at 130° for participant five were not recorded due to 

equipment errors.  Mass, height, and age were recorded for all ten participants (Table 4-1).         

Horizontal Acceleration 

 Following testing, mean peak acceleration values for all three seat angles were calculated 

(Figure 4-1).   A repeated measures one way ANOVA revealed a significant difference when 

comparing peak horizontal acceleration across the three levels of seat angle (F (2,18) = 27.39, p 

= 0.000003).  Tukey’s HSD post-hoc procedure indicated that horizontal acceleration was 

decreased for the 130° seat position when compared to the 100° position (p = 0.000151).  In 

addition, the horizontal acceleration was also decreased for the 115° seat position when 

compared to the 100° position (p = 0.000552).    

Vertical Acceleration 

 The same statistical methods previously mentioned were used for the vertical acceleration 

data.  Mean peak acceleration values can be found in Figure 4-1.  No differences in vertical 

acceleration across seat position were detected (F (2,18) = 3.48, p = 0.0529).          

Resultant Acceleration 

 Resultant accelerations were calculated using the horizontal and vertical components and 

applying the Pythagorean theorem.  Mean peak resultant acceleration values for each seat angle 

were then calculated (Figure 4-1).  Statistical analyses were the same as described for the 

horizontal and vertical accelerations.  Resultant acceleration varied with seat position (F (2,18) = 

4.51, p = 0.0258).  The mean acceleration values decreased as the seat angle increased  
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(Figure 4-1).  Tukey’s post hoc analysis revealed that the 100° seat position had a higher 

resultant acceleration than the 130° position (p = 0.0425).  The 115° seat position also had a 

significantly higher resultant acceleration than the 130° seat position (p = 0.0488).   

Time Motion Analysis 

A time motion analysis was performed on one selected trial (Participant 3, 100°, trial 1).  

The horizontal and vertical acceleration graphs corresponding to this trial can be found in Figure 

4-2.  To create the time motion analysis, seven significant points of motion were chosen and the 

magnitude and direction of the resultant acceleration were calculated and plotted (Figure 4-3).  

Horizontal and vertical components of the resultant accelerations can be found in Table 4-2.  

There are no data points for the first phase because there is no movement of the head during the 

first phase, as defined by the previously described five phase whiplash motion. The first two 

points selected were 50 and 75 ms after the initial horizontal acceleration of the head, 

respectively, and were during the middle portion of the second phase of motion. Both of these 

points have a forward and downward acceleration.  In addition, the acceleration is increasing in 

both directions across the 25 ms time span.  At 100 ms, peak horizontal acceleration occurs and 

phase two is complete.  During phase three, the horizontal acceleration is beginning to approach 

zero g’s at 125 ms.  153 ms after impact, the horizontal acceleration has changed from forward to 

backward.  Phase three is over 180 ms after impact and the participant is at the peak horizontal 

acceleration for phase three.  This acceleration is directed backwards and down.  Finally, at 269 

ms, the peak horizontal acceleration during phase four was recorded.  The direction of the 

acceleration is forward and up.  At this point in the motion, all relevant accelerations have been 

completed.  Due to this, the fifth phase, or restitution phase, was not included.                               
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Pain Scale 

 The participants subjectively reported pain at four different time intervals that included 

one day, three days, one week, and two weeks post-test (Appendix B).  All ten participants 

completed the pain ratings at all time intervals for all three seat positions.  There were no ratings 

above a one (no pain) for the last two time intervals.  Therefore, only the pain ratings given at 

one day and three days post-test were used in the statistical analysis.  The highest pain rating 

given by any participant was a four (Participant 7, 130°, 1 day post-test) and no subject had any 

long term effects from the impacts.  Generally speaking, the mean pain rating increased as the 

seat angle increased (Figure 4-4).  In addition, when comparing pain ratings from day one to day 

three, pain decreased as time passed for the 115° and 130° seat positions while it stayed the same 

for the 100° seat position (Figure 4-5).  Statistical analysis revealed significance when 

comparing overall pain ratings across time (F (1,9) = 6.43, p = 0.032), with pain decreasing from 

one day post-test to three days post-test.  Pain ratings also varied with seat position (F (2,18) = 

6.55, p = 0.0073). Tukey’s HSD post hoc test revealed that there were significant increases 

among the mean pain ratings when comparing the 130° seat position to the 100° position (p = 

0.0076) and when comparing the 130° position to the 115° position (p = 0.041), with the 130° 

position having the higher pain rating in both cases (Figure 4-4).  A time x seat position 

interaction was also detected (F (2,18) = 6.28, p = 0.0085).  Tukey’s HSD post hoc test 

demonstrated that only the 130° seat position showed significance when comparing the pain 

ratings across both time intervals (Figure 4-5), meaning that pain ratings were significantly 

worse one day post test when compared to three days post test for that seat position  

(p = 0.000094).  
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Table 4-1.  Participant characteristics 

Participant Age  (years) Height (m) Mass (kg) 

1 21 1.85 90.7 
2 21 1.83 70.3 
3 21 1.78 76.2 
4 25 1.83 96.2 
5 23 1.75 85.7 
6 22 1.80 78.0 
7 22 1.78 102.5 
8 19 1.75 69.4 
9 28 1.78 84.4 

10 22 1.75 65.8 

Mean ± SD 22.40 ± 2.37  1.79 ± 0.035 81.92 ± 11.51 

 

 

 

Table 4-2.  Acceleration data for time motion analysis 

Time 
(ms) 

Phase of 
motion 

Horizontal 
acceleration 
(g) 

Vertical 
acceleration 
(g) 

Resultant 
acceleration 
(g) 

Angle (°) 

50 2 -1.1122 -0.3465 1.1649 17.3 below negative x-axis   
75 2 -1.2755 -0.9406 1.5848 36.4 below negative x-axis 

100 End of 2 -2.4490 1.1485 2.7049 25.1 above negative x-axis 
125 3 -0.5306 1.9010 1.9737 74.4 above negative x-axis 
153 3 0.0102 -0.3861 0.3862 88.5 below positive x-axis 
180 End of 3 0.5816 -0.3564 0.6821 31.5 below positive x-axis 
269 4 -0.3980 0.5644 0.6906 54.8 above negative x-axis 

Note: For horizontal data, negative was defined as forward acceleration.  For vertical data, 
negative was defined as downward acceleration. 
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Figure 4-1.  Mean horizontal, vertical, and resultant acceleration for all angles.  * indicates a 

significant difference between peak horizontal acceleration values when comparing 
100° and 115° (p < 0.05).  ^ indicates a significant difference between peak horizontal 

acceleration values when comparing 100° and 130° (p < 0.05).  # indicates a 

significant difference between peak resultant acceleration values when comparing 
100° and 130° (p < 0.05). 
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Figure 4-2.  Horizontal and vertical acceleration for participant three, 100°, trial one.  For 

horizontal acceleration, values above and below the baseline represent anterior and 
posterior acceleration of the head, respectively.  For vertical acceleration, values 
above and below the baseline represent downward and upward acceleration, 
respectively.   
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Figure 4-3.  Time-motion analysis for participant three, 100°, trial one.  The first number    

represents time in milliseconds after impact.  The number in parentheses is the 
resultant acceleration value at that time. 
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Figure 4-4.  Mean pain ratings at each seat position. * indicates a significant difference between 

100° and 130° (p < 0.05) .  # indicates a significant difference between 115° and 130° 

(p < 0.05).   

 

 
Figure 4-5.  Mean pain rating interaction with seat position and time.  * indicates a significant 

difference between 1 day and 3 days post-test at a seat position of 130° (p < 0.05). 
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CHAPTER 5 
DISCUSSION 

Horizontal Acceleration 

In comparison to other studies at similar impact speeds, the peak horizontal accelerations 

during this study were slightly lower.12,19  However, because there are no comparative data 

regarding the kinematics of the head and the contribution of seat back angle to the acceleration of 

the head, this portion of the discussion is intended to explain these novel data. 

The data collected during this study suggest that altering the angle of the seat back can 

create changes in the horizontal acceleration of the head during a low velocity rear-end collision. 

This is shown by the decrease in mean acceleration values as the seat angle was increased 

(Figure 4-1). When studying the kinematics of the head during a selected trial, the horizontal 

portion of Figure 4-2 shows only one peak.  This peak coincides with the larger of the two 

vertical peaks and represents the maximum forward acceleration of the head while it is in contact 

with the headrest.  While the head does accelerate downwards after impact, evidenced by the 

first vertical peak, it does not accelerate horizontally unless the musculature of the neck is 

activated to resist the rearward motion. During this study, the seat was rolling backwards at 

approximately five mph until impact.  Upon impact the body continues to move horizontally at 

that velocity without accelerating until it hits the headrest or until the muscles fire, whichever 

comes first. This can be compared to a true rear-end collision where the car moves forward until 

the seat interacts with a stationary body.  This phenomenon explains why the vertical 

acceleration begins just before the horizontal acceleration. The main difference between the 

vertical and horizontal motions is that the head was already moving horizontally, but had no 

initial velocity in the vertical direction, thus producing the kinematic differences. During the 

analysis of this trial it can be estimated that the muscles fired approximately fifteen ms after 
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impact with the wooden barrier.  Although there was no electromyographic data collected, the 

initiation of the horizontal and vertical acceleration can be approximated from the time motion 

analysis (Figure 4-2).  This indicates that the participant was anticipating the impending impact, 

as this delay is insufficient for a reflex response.7 

When discussing differences in acceleration among seat positions, the horizontal 

acceleration of the head should be determined by the time it takes for the stopping forces of the 

muscles and headrest to arrest all horizontal motion, assuming the same v of five mph 

(acceleration = v / t).  Because the 100° seat back angle creates less horizontal distance from 

the back of the head to the headrest, when compared to a 130° seat back angle, it is fair to 

conclude that the time it takes for the head to make contact with the headrest is shorter.  Because 

of this, the muscles have less time to react and all or most of the forces created by the impact 

must be dissipated by the headrest in a shorter time, thus creating higher peak acceleration 

values.  However, a higher peak acceleration value does not necessarily mean that there will be a 

higher risk of WAD injuries.  A key factor that determines injury is the mechanism used to 

decelerate the head.  The muscles and headrest both act to stop the motion of the head, but the 

contributions of each cannot be calculated from the acceleration data collected during this study.  

However, the contribution of pain in conjunction with the acceleration data may provide some 

insight and will be discussed later.  

Vertical Acceleration 

The vertical acceleration data showed no significance when comparing peak acceleration 

across the three seat positions.  During the trial chosen for analysis, the temporal presentation of 

the vertical acceleration was very different than the horizontal acceleration and was most likely 

representative of the other data collected.  According to Figure 4-2, the vertical acceleration 
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began fifteen ms before the horizontal acceleration.  In addition, the vertical acceleration had two 

peaks while the horizontal acceleration only had one true peak.  The first, smaller peak in the 

vertical acceleration represents the initial downward motion of the head after the seatback has 

pushed the torso forward and the cervical spine is forced into extension.  The anterior neck 

muscles are responsible for attempting to counteract the force of the impact.  This peak is prior to 

contact with the headrest. The net vertical acceleration during this time period is downward for 

one primary reason.  Although the anterior musculature of the neck is attempting to slow the 

head down by producing an upward acceleration, the downward force created by the impact is 

greater in magnitude, thus the overall acceleration is still downward.  The second, larger peak 

represents the net upward acceleration imparted by the combination of the headrest and the 

continuing action of the anterior musculature.  During this portion, the resultant upward force is 

greater than the downward force remaining from the impact, thus the acceleration vector points 

upward.  This peak is larger because the headrest and muscles are providing resistant forces, as 

opposed to just the muscles.  However, although the second peak is larger, I believe the first peak 

is where an injury is more likely to occur, due to the higher initial load on the muscles.  Finally, 

because there has been no significant difference found when comparing peak vertical 

accelerations across the three seat positions, it can be concluded that vertical motion during 

whiplash is not influenced by seat position.  In comparison with other studies, peak vertical 

accelerations in this study were slightly lower, with previous studies showing peak vertical 

accelerations ranging from 2.4 to 3.0 g’s.12,13 

Resultant Acceleration 

As shown by the data in Figure 4-1, the resultant acceleration of the head does change as 

the angle of the seat back is altered.  This difference may be attributed to the following.  During 

a rear-end collision, the head may undergo two sub-phases during the initial rearward rotation, or 
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phase two of the whiplash motion.  The first sub-phase is prior to contact with the headrest and 

the second is initiated with contact between the head and headrest and terminated when rearward 

rotation ceases.  What occurs during the first sub-phase may be crucial to the injury risk 

encountered by the driver and the front row passenger.  During this study, the overall v was the 

same for all trials.  However, the final velocity before impact with the headrest, or the initial 

velocity upon impact with the headrest, was most likely different across the seat positions.  As 

the head was moving backwards and downwards relative to the body, the 130° seat angle could 

have allowed the muscles to reach higher activity levels due to the increased horizontal distance 

and time required, and thus would create a lower final velocity before impact when comparing to 

the 100° seat angle.  The lower final velocity is simply due to the increased deceleration caused 

by the muscle force.  Because the initial velocity on impact with the headrest is lower at the 130° 

seat angle, the deceleration created by the headrest will be reduced while the deceleration created 

by the musculature is increased.  Conversely, if the seat is in the 100° position, the resultant peak 

acceleration is higher, but the headrest contributes more retarding force and the muscles 

contribute a lower retarding force.  Therefore, in accordance with previous work, the headrest 

should be as close to the back of the head as possible in order to avoid hyperextension injuries of 

the neck.1,14,19,22,24,26,27         

Time Motion Analysis 

 The main function of the time motion analysis was to verify the motion of the head 

throughout the whiplash motion during this study.  As seen in Figure 4-3, the direction and 

magnitude of acceleration was constantly changing throughout the motion.  The first point 

selected was 65 and 50 ms after initiation of the vertical and horizontal accelerations, 

respectively, and occurred during phase two. At this time, the head had a forward acceleration of 
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1.11 g’s in combination with a downward acceleration of 0.35 g’s (Table 4-2).  The anterior 

musculature of the neck, specifically the SCM, was responsible for slowing the head down.  

Although the net vertical acceleration was downwards, the musculature was acting to accelerate 

the head upward, against the motion of the head, however the force of the impact was larger than 

the muscle force.  This combination created a net downward force and acceleration.  The next 

point of interest is at 87 ms after initiation of horizontal acceleration and is also in phase two.  It 

is at this moment that the head made initial contact with the headrest.  Notable occurrences 

include a transition from downward to upward vertical acceleration and a continuing increase in 

the horizontal acceleration.  The third major point during phase two was 100 ms after initiation 

of the horizontal acceleration and represented the peak horizontal acceleration throughout the 

entire trial.  This point also represents the end of phase two.  Perhaps the most important time 

span during this phase was the 13 ms in which the head was in contact with the headrest.  It was 

during this short time that the head experienced the most severe g forces in all dimensions.  

However, the headrest is primarily responsible for these high g forces, thus WAD injuries during 

contact with the headrest are unlikely.  In addition, the g forces are not high enough to cause 

significant intracranial injury. 

 Phase three was characterized by far less severe g forces. The first notable point in phase 

three occurs at 153 ms.  Horizontal acceleration has just crossed zero g’s and is now 0.01 g’s in a 

backward direction, meaning that the posterior musculature has been activated and is attempting 

to terminate the forward motion of the head created by the rebound off of the headrest, thus 

producing a backward acceleration.  Vertical acceleration at this point is 0.3861 g’s downward. 

The peak horizontal acceleration occurred 180 ms after the initial horizontal acceleration, or 80 
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ms after phase three began and had a value of 0.5816 g’s.  It is also at this time that phase three 

was completed. 

 The final point of interest occurs 269 ms after initial horizontal acceleration and is in 

phase four.  The head had passed its equilibrium, or upright, point and was forced into slight 

extension.  Peak horizontal acceleration was 0.40 g’s forward and peak vertical acceleration was 

0.56 g’s upward.   

 Overall, the results of this time motion analysis were comparable to previous work done 

by McConnell, et al.13  The impact speed of both trials was very similar, and the overall motion 

of the head during this study seemed to follow the previously defined five stage motion 

associated with whiplash.3,6,7    

Pain 

Using the pain data in conjunction with the horizontal and resultant acceleration data, one 

can infer that the muscles were contributing more during the trials with the seat reclined to 130°.  

This is because there were significant differences in overall pain ratings when comparing 100° 

with 130° and when comparing 115° with 130° (Figure 4-4), with the higher pain rating means 

corresponding to the higher seat angles.  Therefore, the increased time allowed the muscle to 

increase its contribution and spread the force more equally among the muscles and headrest, 

creating pain in some participants, while decreasing the headrest’s contribution.  The pain data 

also show that the 130° seat position was the only position that demonstrated a significant 

difference in pain from one day post-test to three days post-test, which would suggest a more 

significant muscle injury and increased muscle contribution during the testing at 130°.  Other 

structures, such as the vertebrae, intervertebral discs, and ligaments are also at increased risk 

when the seat is more reclined.  If the muscles are unable to absorb the complete force of the 
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impact prior to contact with the headrest, the force will be transmitted to other anatomical 

structures.  The muscles will no longer be able to resist the extension motion of the cervical spine 

and more serious hyperextension injuries become more likely.             

Limitations 

 This project had limitations that should be addressed while interpreting the results and for 

designing future studies.  Due to injury risk, only males between the ages of 18 and 35 were 

approved to participate by the Institutional Review Board of the University of Florida, thus it 

cannot be assumed that the results apply to the whole population.  Second, there was no plausible 

way to ensure that the participants were relaxed prior to impact.  Because the platform was 

rolling backwards into a fixed barrier, the participant could predict when the impact would occur.  

This is supported by the time motion analysis of the selected trial.  There are several ways to 

correct this in the future.  Electromyographic recording devices for the musculature of the neck 

could be used to determine exactly when the muscles fired relative to impact.  In addition, the 

barrier could move forward into a stationary seat platform with all visual and auditory cues 

removed from the environment.  This technique could be combined with random dummy trials, 

or trials in which there is no contact between the barrier and the platform.  Third, sample size is a 

concern.  A larger sample size would produce more reliable results.  Fourth, only one seat model 

was used.  For better results, seats from all major car manufacturers could have been used.  Fifth, 

only three angles were tested during this study.  To truly determine the best combination of 

comfort and safety, seat positions in increments of 5° should be tested in further studies.  Sixth, 

the headrest was at the maximum height for all subjects.  Due to differences in height among the 

participants it cannot be assumed that all participants made contact with the same part of the 

headrest.  Finally, the apparatus could have been substituted with real automobiles to create a 

true bumper to bumper impact.  
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Conclusions 

 The data collected during testing show that horizontal and resultant acceleration are 

significantly altered when the orientation of the seat back is changed from 100° to 130°.  In 

addition, the pain felt by the participants increases when comparing 100° and 130° and when 

comparing 115° to 130°.  These results support the current trend in automobile manufacturing to 

produce active head restraints.  If the head restraint moves forward as the seat is reclined 

backwards, it is possible to maintain the same horizontal distance from the back of the head to 

the front of the headrest, thus eliminating much of the muscle force required to arrest the motion 

of the head during a low velocity rear-end collision.  However, much of the population does not 

own an automobile with this capability.  Therefore, it is recommended that a seat position of 

100° is used in order to minimize risk of injury from a rear-end collision when operating an 

automobile.  Finally, I believe that the previously defined five stage whiplash motion3,6,7 should 

be modified to a six stage motion including the two sub-phases previously discussed.  Although 

the rearward rotation of the head is characteristic of both sub-phases, the injury risk and 

decelerating mechanisms are different. 

 

 

 



 

54 

 APPENDIX A 
MEDICAL HEALTH QUESTIONNAIRE 

Subject Number: ____________ 
Age: ___________________ (must be between 18 and 35 to be eligible) 
Height: _________________ 
Weight: _________________ 
Sex:  M /  F  
 
Please answer yes or no to questions #1-11.  If you answer “yes” to any of the following 
questions (1-7,10), you will not be eligible for this study.  If you answered “no” to questions 8 or 
9, you will not be eligible for this study. 
 
1.  Have you ever had a spinal injury of any kind? 
2.  Do you suffer from severe headaches or migraines? 
3.  Do you currently have any injury to your neck or back? 
4.  Have you ever had “whiplash” before? 
5.  Have you ever had a herniated disc or any other disc injury? 
6.  Do you suffer form dizziness? 
7.  Are you currently taking any pain medications? 
8.  Do you have a pain-free range of motion of your cervical spine? 
9.  Can you move your neck freely in all directions? 
10.  Do you suffer from any long standing neck pain? 
11.  Please list any other medical problems that you think would prevent you from participating. 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
_______________________________________________. 
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APPENDIX B 
SORENESS SCALE 

Subject Number: ___________   Session #: _______  Date: _____________ 
 
Directions:  Rate your level of soreness on a 1-10 scale. 
1 = no pain  3 = slightly painful  5 = moderately painful 
8 = very painful 10 = extremely painful 
______________________________________________________________________________ 
1 day post-test 
 Date:________________ 
Level of Soreness:  1 2 3 4 5 6 7 8 9 10 
______________________________________________________________________________ 
3 days post-test 
 Date:________________ 
Level of Soreness: 1 2 3 4 5 6 7 8 9 10 
______________________________________________________________________________ 
1 week post-test 
 Date:________________ 
Level of Soreness: 1 2 3 4 5 6 7 8 9 10 
______________________________________________________________________________ 
2 weeks post-test 
 Date:________________ 
Level of soreness: 1 2 3 4 5 6 7 8 9 10 
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