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As the result of decades of active research, tremendous amount of experimental data are 

available on gene regulatory networks. The ability to dynamically visualize the complex data and 

logically integrate the knowledge related to gene function, gene regulation, and biomedical 

evidence would be useful for individual researchers to keep up with all the information and 

would provide a global view about gene regulatory networks.  

In our research, we present the framework of a gene regulatory networks system (GRNS). 

GRNS automatically mines biomedical literature to extract gene regulatory information (strain 

number, genotype, gene regulatory relation, and phenotype), automatically constructs gene 

regulatory networks based on extracted information, and integrates biomedical knowledge into 

the regulatory networks.  

First, GRNS uses an automated text mining technique to extract information about 

regulatory networks from the collection of biomedical texts. GRNS extracts five kinds of gene 

regulatory information: strain number, genotype, gene regulatory relation, phenotype, and 

unrecognized sentence. Based on the extracted gene regulatory information, GRNS can 

automatically construct and visualize gene regulatory networks. Second, to provide researchers 

with a clear and global view about the regulatory networks, GRNS uses an interactive 
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visualization method to integrate biomedical evidential information into the regulatory networks. 

Once a user clicks an entity or a relation of interest, the query interface returns a detailed 

information page about the clicked entity or relation. GRNS logically integrates the knowledge 

related to gene function, gene regulation and biomedical evidences, collects genetic evidences, 

biochemical tests, sequence based predications or biomedical literatures and links this 

information with regulatory relationships and regulatory entities data. Third, GRNS provides 

analysis tools for gene regulatory networks. The analysis tools include the frequent graph mining 

tool and the gene relation predication tool.
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CHAPTER 1 
INTRODUCTION 

Motivation 

After decades of active research, tremendous amounts of experimental data are available 

on the gene function and their regulation in different genomes (Shatkay, et al., 2003; Cohen, et 

al., 2004; Goodman, et al., 2004; Woods, et al., 2004). The experimental data is embedded in 

tens of thousands of published literature and it is difficult for the individual researcher to extract 

a comprehensive view of the gene function and regulation in different genomes. Research on 

different genomic sequences within recent years has resulted exponential growth of related 

literature (Cohen, et al., 2005; Hirschman, et al., 2002). To help individual scientists to keep up 

with all the new information, a complete system that not only compiles the experimental 

evidences but also logically integrates the knowledge related to gene function and regulation is 

desired.  

Background  

"A gene regulatory network is a collection of DNA segments in a cell which interact with 

each other and with other substances in the cell, thereby governing the rates at which genes in the 

network are transcribed into mRNA" (Jong, et al., 2002). The regulation can be at different 

levels --- the transcriptional level (activation or repression), the post transcriptional level (mRNA 

stability), and the translational or post-translational level (protein-protein 

interaction/modification) (Fig 1-1). These gene regulatory networks provide researchers with a 

global view on the function of genes and the relationships among several regulatory elements 

and facilitate the acquisition of relative information and design of future experiments. There are 

several ways to construct and simulate gene regulatory networks. We can construct gene 
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regulatory networks by the experimental method, by the mathematical models method, by the 

rule-based knowledge method, or by the text mining biomedical literature method.  

Experimental Method 

Using the experimental method is the most direct way to find the regulatory relations 

between genes/proteins. A lot of biologists exploit this path to find out the regulation 

information. The experimental method is also the most accurate way among all the methods to 

construct gene regulatory networks. However, the experimental method is usually employed in 

finding the relation information among a small number of genes. It is very difficult to find the 

regulation relations in a large-scale genome data by this method. The experimental method 

usually provides us accurate but a small-scale of regulatory relation information.  

Mathematical Models for Regulatory Networks Construction 

The recently developed cDNA microarray technology not only provides a large amount of 

available gene expression data, but also provides the possibility of using mathematical models to 

simulate gene expression data and construct regulatory networks. Various mathematical 

modeling techniques have been used, including Boolean networks, Probabilistic Boolean 

Networks, Bayesian networks, and other models. 

Boolean networks model 

The Boolean network model was introduced by Kauffman (Kauffman, 1969) and recently 

developed by Shmulevich (Shmulevich, et al., 2002). Interactions between genes can be 

represented by Boolean functions that calculate the state of a gene from the activation of other 

genes. In the Boolean network model, gene expression only has two levels: ON and OFF. For a 

gene, "ON" corresponds to the gene being expressed; for inputs and outputs, "ON" corresponds 

to the substance being present. Boolean gene expression networks represent a relatively simple 
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model of the gene expression control mechanisms of the cell. However, this model has not 

achieved any interesting theoretical results yet. 

Probabilistic boolean networks model 

Another classical model is Probabilistic Boolean Networks (PBNs) (Shmulevich et al., 

2002), which extends the Boolean network to accommodate more than one possible function for 

each node and has the ability to handle data and the model selection uncertainty. PBNs combine 

several promising Boolean functions to predict a target gene. The Markov Chain theory can be 

used to analyze the dynamics of PBNs. 

Bayesian networks model 

"A Bayesian network (also known as causal probabilistic networks) is an annotated 

directed acyclic graph that encodes a joint probability distribution of a set of random variables" 

(Friedman et al., 2000). The features of the Bayesian network model include, providing clearly 

depicting dependencies and independencies between variables, providing a probability 

distribution and combining machine learning and uncertainty. However, the strictly mathematical 

assumptions of the Bayesian network model do not always hold in gene expression data. 

     All of these mathematical models, Boolean networks, Probabilistic Boolean Networks 

or Bayesian networks, have some promising features in regulatory networks construction. But 

almost all of these mathematical models need strictly mathematically assumptions and these 

assumptions may not hold in gene expression data. Besides, the constructed regulatory networks 

are difficult to validate.  Many mathematical models are developed to simulate the gene 

expression data and construct regulatory networks. It is still uncertain if they are good enough to 

present the gene expression data. 
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Rule-based Method for Regulatory Networks Construction 

Another method to regulatory networks construction is the knowledge-based or the rule-

based simulation method (Brutlag. et al., 2000). Basically, a rule-based method has two 

components, a set of facts and a set of rules stored in a knowledge base. The rule-based method 

can deal with a richer variety of biological knowledge. However, it has the difficulties in 

maintaining the consistency of a knowledge base and incorporating quantitative information. 

Although there are some attempts to use this method, it is not as popular as other methods.   

Text Mining Biomedical Literature for Regulatory Networks Construction 

 Another method to construct regulatory networks is by text mining biomedical literature. 

A text mining system searches for entities, relationships among them, or other specific objects 

within text documents (Nenadic, et al., 2003; Liu, et al., 2003; Afantenos, et al., 2005; Yandell, 

et al., 2002). Each document is processed to identify and/or extract possible meaningful and 

content bearing entities and relationships. This text mining method has several advantages over 

other methods: 

1. It can process a large set of biomedical literature. Therefore, it can construct regulatory 
networks representing large-scale genome data. 

 
2. It extracts evidential information from biomedical literature. Biomedical literature usually 

records experimental methods and evidence in discovering the gene regulation relations. 
The experimental method is still the most accurate way to find gene regulation relations. 
Therefore, if we can extract the information from biomedical literature correctly, we can 
get the most accurate regulation relations information as well. The correctness of the 
regulation relations information in the text mining method is better than other 
mathematical models or rule-based method. 

 
3. There is a large amount of biomedical literature available.  For example, the PubMed 

database contains information for over 12 million articles and continues to grow at a rate 
of 2000 articles per week. The text mining method has enough resources to extract the 
useful information and construct gene regulatory networks. 

 
We have decided that the text mining is the best method to construct the gene regulatory 

networks, for text mining is based on the existing experiment results. All other modeling 



 

16 

methods use mathematical or computational models which may be unrealistic. These models 

have not been proven that they can totally represent the biological simulation the processes. They 

have used a lot of assumptions, which are usually not always true in real biological world. But 

the text mining method uses the result in the biomedical literature , which has been accumulated 

throughout the years by biologists. The biomedical literature describes the gene regulatory 

information based on the real experiment results. The experiment method has been proven that it 

is most direct way to find the gene regulatory relation. In the other hand, the text mining method 

summarizes gene regulatory network for a large set of genes and species, which the experiment 

results have accumulated. The text mining method is useful only when it achieves high precision 

in data extraction. Only highly precise data can provide the ability to construct useful gene 

regulatory networks. In this dissertation, we provide a framework of the text mining method to 

construct gene regulatory networks.  

Objective  

Our objective was to extract the gene regulatory information from a large biomedical text 

collection, then constructed and analyzed the gene regulatory networks based on the information 

we retrieve from the biomedical text collection. To achieve this goal, we built the gene 

regulatory networks system (GRNS for short). First, the GRNS can automatically extract the 

gene regulatory information from a collection of unstructured biomedical text; second, based on 

extracted information from the biomedical text, the GRNS can construct and visualize regulatory 

networks; third, the GRNS can analyze regulatory networks data, for example, finding a frequent 

pattern and predicting new gene regulation relations. To achieve the goal of GRNS, the text 

mining and visualization techniques are used.  
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Approach and Related Work 

In recent years, the extraction of knowledge from biological literature has received 

considerable attention. For example, Blaschke et. al. (Blaschke et. al., 1999) used the statistical 

"bag of words" approach to the extraction protein-protein interaction. Bengio, Y.  (Bengio, Y.  

1993) build a Memory-based learning (MBL) system to do the text mining. Yakushiji et. al. 

(Yakushiji et. al., 2001) designed an information extraction system using a general-purpose full 

parser. Friedman et. al. (Friedman et. al., 2001) presented a GENIES system which extracts 

structured information about cellular pathways from biomedical literatures. Marcotte et. al. 

(Marcotte et. al., 2001) showed a Bayesian approach of mining literature. McDonald et. al. 

(McDonald et. al., 2004) developed an Arizona Relation Parser for extracting gene pathway 

relations. Chun et. al. (Chun et. al., 2005) introduced a system to extract disease-gene relations 

from Medline by using a dictionary matching with machine learning-based named entity 

recognition approach. Hu. et. al. (Hu. et. al., 2005) developed a rule-based system RLIMS-P to 

do the database annotation of protein phosphorylation. Yuan et. al. (Yuan et. al., 2006) 

developed a web-based version of RLIMS-P. Saric et. al. (Saric et. al., 2005) presented a rule 

based approach for extracting information from biomedical text.   

There are two most used methods to extract biological knowledge: either a statistical 

method based on co-occurrences of proteins or genes, or a rule-based extraction method.  

Statistical methods are good at locating potential protein-protein interactions. But, they usually 

cannot provide a clear classification of interaction information. Rule-based relation extraction 

methods can achieve good precision and recall if the manually developed pattern is good. For 

example, Hu et. al. developed very good pattern templates to extract protein phosphorylation 

information. But it is difficult to build a set of complete pattern templates even for a biological 

expert. In this dissertation, we provide a framework of a rule-based method with the help of 
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potential informative sentences discovering. Therefore, new templates and rules can be 

incrementally supplemented. 

   To help researchers understand the complex regulatory networks, a good visualization 

tool is necessary. The visualization of gene regulatory networks is another open field in analysis 

of biological networks.  Only recently, various bioinformatics tools became available for 

visualization regulatory networks or metabolic pathways, such as Pathways Database System-

http://nashua.cwru.edu/pathways (Krishnamurthy et al., 2003) ; VitaPad: visualization tools for 

the analysis of pathway data -http://bioinformatics.med.yale.edu (Holford et al., 2005);  

BioMiner—modeling, analyzing, and visualizing biochemical pathways and networks--

http://www.zbi.uni-saarland.de/chair/projects/BioMiner (Sirava et al., 2002); The Pathway Tools 

Software (Karp et al., 2002); Graphical interface to the gene network database GeNet-

http://www. csa.ru/Inst/gorb_dep/inbios/genet (Serov et al., 1998); PATIKA web: a Web 

interface for analyzing biological pathways through advanced querying and visualization-

http://web.patika.org (Dogrusoz et al., 2006). These bioinformatics tools are good at pathway 

visualization or pathway information query. However, these visualizations or query tools are not 

sufficient for researchers to understand the complex relationships among various biological 

subsystems. In the GRNS, we provide an interactive way to browse regulatory networks. Users 

can not only browse the networks but also access the related regulatory entities, the biomedical 

evidences by simply clicking a regulatory entity or regulatory relationship on the networks.  

Once a user clicks on the entity or regulatory relationship, a query interface returns a detailed 

information page to the user. Moreover, for every query, GRNS automatically generates a 

visualized result, giving the user a more clear view about relationships of the query entities. In 
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this way, GRNS logically integrates the knowledge related to gene function, gene regulation and 

biomedical evidence. 

  To help researchers analyze the regulatory networks, some analysis tools are needed. For 

example, a tool for mining the biologically meaningful patterns is useful to discover common 

motifs of cellular interaction and evolutionary relationships (Lawrence et al., 1993). We model 

regulatory networks by directed graphs, which represent the entry elements in vertices and the 

relations between entry elements as directed edges. Now we can convert mining problems in 

regulatory network into graph mining problem.  In general, solving the frequent graph mining 

problem in a large graph database is not an easy task. Subgraph isomorphism, already known as 

an NP-complete problem, plays an important role in the computation of frequent subgraphs 

mining. To reduce this problem, we use the simplifications of utilizing unique vertex labels. 

With this simplification, we reduce the frequent graph mining problem to the frequent item sets 

mining problem. Item sets problem is a well-studied problem in data mining field, and there are 

several well-known algorithms to deal with the frequent item set mining problem. Among them, 

Apriori (Agrawal et al., 1994, 1995) is one of the most efficient algorithms. In recent years, 

based on the idea of reducing normal graph mining to frequent item set mining, several such 

algorithms have appeared (Koyutürk et al., 2004; Kuramochi et al., 2004; Inokuchi et al., 2003; 

Sartipi et al.,2001). But none of these algorithms show how to deal with inexact match graph 

mining. Inexact match graph mining is important because in most real applications (especially in 

the regulatory networks), due to the effects of noise, distortion, sampling error, or lack of known 

fixed patterns, many of the interesting subgraphs would show up slightly different. In this 

dissertation, we provide some heuristic methods to deal with inexact matching graph mining.  

Research Contributions 

The contributions of my research are three-fold.  
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First, we propose a rule-based text mining method to extract gene regulatory information 

by analyzing full-length biomedical text. The gene regulatory information includes gene 

regulatory relation information, strain number, genotype and phenotype information.  Most text 

mining biomedical literature systems only provide methods to extract gene relation information. 

We use the strain table content extraction method to extract the strain number and genotype. We 

provide supplement rules to extract phenotype information. Strain number, genotype, and 

phenotype information provide supplemental evidence information for extracted gene regulatory 

relation information and help the researcher understand and validate the extracted gene relation 

information. We also provide a method to discover potential informative sentences. Experts can 

find potential new rules based on the unrecognized but informative sentences. This method is 

useful since it is difficult for a system to provide complete rules and templates sets in the 

beginning. 

Second, we provide automatic constructs gene regulatory networks methods based on 

graphical representation schemas and graph visualization algorithms. Vertices and edges in 

regulatory networks link to the related phenotypes of gene mutants information. Phenotypes of 

gene mutants are recorded directly from the results of published papers. The function and 

regulatory role of each gene is based on the conclusions of the literatures and supplemented with 

sequence-based predictions. Moreover, for every query, we automatically generate visualized 

results, giving the user a clear view about the query entities. In this way, GRNS logically 

integrates the knowledge related to gene function, gene regulation, and biomedical evidence. 

Most other systems provide visualization of gene regulatory network, but do not link it to relate 

information in an interactive way and lack the ability of automatically generating the 

visualization result for every query result. 
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Third, we not only extract gene relation information from the biomedical text, we also 

provide analysis tools for the extracted information. The frequent pattern mining tool in GRNS 

extend some previous work on graph mining to inexact match graph mining which is important 

for real application. It also provides some heuristic methods to reduce the computation time 

comparing with other inexact algorithms. The gene relation prediction tool can predict potential 

gene regulatory relations based on current gene relation information in the database and 

prediction algorithm. 
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Figure 1-1. Regulation of gene expression at different levels. a) transcriptional level b) post 
transcriptional level c) translational level d) post translational level.
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CHAPTER 2 
SYSTEM OVERVIEW 

In this chapter, we present the GRNS system overview, including the system architecture 

of GRNS, the data modeling of GRNS, the visualization modeling of regulatory networks in 

GRNS and the description of the experimental dataset-- Pseudomonas aeruginosa Genome.  

System Architecture of GRNS  

The system architecture of GRNS is shown in Figure 2-1. The GRNS employs two kinds 

of Database - Local Database and External Database. The Local DB of GRNS consists of five 

kinds of databases. Gene Database (GDB) stores the basic information about genes, proteins and 

products. English Dictionary DB stores information about English words, including synonyms. 

Rule DB stores information about text mining rules and templates information. Regulatory 

Network Database (NDB) stores the information about regulatory networks, such as subsystem 

information and regulatory relation information. Reference Information Database (RDB) stores 

the information about reference papers and biomedical evidence, such as genotypes, phenotypes, 

and strain names. The external DB resource includes some general database resources, such as 

GeneBank1 and SWISS-PROT (Boeckmann, et al., 2003). It also includes some specific 

organism resources, for example, Pseudomonas aeruginosa Genome Database2 (Stover, et al., 

2000) for Pseudomonas aeruginosa Genome.  

GRNS consists of three subsystems -- Text Mining Biomedical Literature Subsystem, 

Online Tools Subsystem, and Analysis Tools Subsystem. The structure of Text Mining 

Biomedical Literature Subsystem consists of four modules, Knowledge Collection and the 

Creation Module, the Pre-Processing Module, the Information Extraction Module (IE for short), 

                                                 
1 http://www.ncbi.nih.gov/Genbank/ 

2 http://www.pseudomonas.com/ 
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and the Post-Processing Module. The tasks of the Knowledge Collection and the Creation 

Module include: first, integrating external database data into the local database; second, creating 

the templates and rules knowledge for the Information Extraction Module. The Pre-Processing 

Module downloads the full-length biomedical texts from PubMed Database and sends the corpus 

of texts to the IE Module. First the IE Module does strain-number and genotype information 

extraction. Then IE Module does the tokenization, sentences splitter and Part of Speech tagging. 

Then the IE Module recognizes the gene, the protein entities, and discriminating words from the 

corpus of texts. Then it extracts the relation, the phenotype, and other kinds of entities based on a 

rule-based approach. Finally, the extracted information is normalized based on the normalized 

rule. After the IE Module processes the collected text, the Post-Processing Module first 

automatically constructs the regulatory networks based on the extracted information and specific 

existing knowledge, such as gene functional classes’ knowledge and subsystem knowledge. Then 

the Post-Processing Module saves potential informative sentences into the database. Experts can 

browse these potential sentences and may create new kinds of rules for later use. 

Online Tools Subsystem consists of three layers. The top layer of the Online Tools 

Subsystem is Web-based User Navigation Interface (WUNI), including three parts: web-based 

browsing, web-based querying engine, and the online building or editing regulatory networks 

module. The user can browse, build, or edit regulatory networks.  The user can also query the 

functional role, the regulatory relationship between genes, or the reference information. The 

query engine links various gene information, relation information, reference information, and 

regulatory network information together and returns the detailed information in a HTML page as 

well as a visualized graphical result to the user. The middle layer of the Online Tools Subsystem 

is WWW service layer, including several functional modules, such as the visualization module 
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(VM), the query analysis module (QA), and the network construction module (NC). These 

functional modules process the user requests from WUNI, communicate with the bottom layer 

local database, and return the results to WUNI. At the bottom layer of the Online Tools 

Subsystem, GRNS implements a relational database system -- the Local Database.  

The Analysis Tools Subsystem includes the frequent pattern mining tool and the gene 

relation prediction tool. GRNS uses an export module to export regulatory networks in 

Regulatory Networks DB to a standard format.  The frequent pattern mining tool reads the 

exported regulatory networks and uses an inexact match graph mining schema to find the 

frequent patterns. The frequent pattern mining tool is a standalone tool. It can mine not only 

frequent patterns in the Regulatory Networks DB but also frequent patterns in other external 

databases, for example KEGG (Kyoto Encyclopedia of Genes and Genomes)3.  The gene relation 

prediction tool uses the prediction algorithm to predict the potential gene relation information 

based on the current gene relation information in the database. 

Data Modeling of GRNS  

One objective of GRNS is to automatically extract the gene regulatory information from a 

collection of unstructured biomedical text. Here, the biomedical text is any research paper. 

Usually these papers are downloaded from the PubMed database. But what is the definition of 

the gene regulatory information, and what kind of data are we interested in the information 

extracting? Basically, GRNS extracts five kinds of data after processing the biomedical text: the 

gene regulatory relation information, the strain number, the genotype, the phenotype, and 

unrecognized sentences. A detailed explanation is shown in Table 2-1.  

                                                 
3 www.kegg.com 
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Why we need these five kinds of data? Clearly, to construct a gene regulatory network, we 

need the gene regulatory relation information. The regulation can be at the transcriptional level 

(activation or repression), the posttranscriptional (mRNA stability) level, the translational level 

or the  post-translational (protein-protein interaction/modification) level. We need the strain 

number, the genotype, and the phenotype information for the data reliability reason. All this 

information is part of the evidence of gene regulation. They help the researcher to validate the 

gene regulatory relation information. For unrecognized sentences, it helps us to discover new 

rules in the information extraction module.  

Visualization Modeling of Gene Regulatory Networks  

GRNS automatically provides the visualization of regulatory networks. To do this, we 

provide visualization modeling of regulatory networks. Visualized regulatory networks include 

two kinds of information, entities and relations. In GRNS, there are seven kinds of entities: 

genes, proteins, operons, products, merged-genes, subsystem, and step. An operon is a group of 

key nucleotides sequences that are controlled and usually function as a unit. GRNS has simple 

operons and complex operons. In a simple operon, there is no relationship between operon’s 

genes. In a complex operon, there are relationships between the operon’s genes. Merged-genes 

are not natural genes and they are used to improve the layout. Step is used to describe the 

biomedical process. A subsystem usually means a group of related functional roles which are 

jointly involved in a specific aspect of the cellular machinery.  In GRNS, there are more than ten 

kinds of relations between entities, such as DNA binding, RNA binding, protein binding, the 

two-component regulatory system, the signal molecule production, signal sensing, the product, 

the signal/molecule binding, activate, required for and repress. We provide notations and 

symbols for visualization modeling of the regulatory networks to generate interactive graphical 

regulatory networks for subsystems or the whole genome. These notations and symbols are 
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shown in Figure 2-2. It includes three kinds of information: entities, relations, and color 

information for different function classes.  

Pseudomonas aeruginosa Genome  

Pseudomonas aeruginosa is an environmental bacterium, which causes serious human 

infections, especially in those with reduced immunity, patients with Cystic Fibrosis or severe 

burns (Larbig, et al., 2002; Dasgupta, et al., 2001; Rossolini, et al., 2005; Shiwani, et al., 1997). 

Gram stain of Pseudomonas aeruginosa cells (Todar's Online Textbook of Bacteriology- 

www.textbookofbacteriology.net) is provided in Figure 2-3. Pseudomonas aeruginosa Scanning 

electron micrograph cells (Todar's Online Textbook of Bacteriology- 

www.textbookofbacteriology.net) is shown in Figure 2-4. A complicated regulatory network 

coordinates the expression of various virulence genes as well as different functional groups of 

genes for an efficient host infection and survival in hostile host environments. Prolonged 

treatments with antibiotics often result in multi-drug resistant isolates, which eventually cause 

death in the infected individuals.  

A large number of virulence genes and regulatory genes encoded by this organism make 

this bacterium one of the most successful pathogens on earth. The whole genome sequence of 

this microorganism was completed several years ago and is freely available to the public. The 

complete sequence of the genome was the largest bacterial genome sequences data, when 

published, with 6.3-Mbp in size and encoding 5570 predicted genes. Only 480 encoded protein 

functions have been demonstrated experimentally, while the rest, including 1059 strongly 

homologous genes functions, demonstrated experimentally in other organisms, 1524 genes 

functions proposed based on the presence of a conserved amino acid motif, structural feature or 

limited homology, and 2507 genes functions homolog of previously reported genes of unknown 

function, or no homology to any previously reported sequences (Stover, et al., 2000). Consistent 
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with the observed bacterial adaptability to various growth environments through alteration of the 

gene expression pattern, as high as 8% of the genome encodes transcriptional regulators,  

 In GRNS, we choose Pseudomonas aeruginosa genome as our experimental dataset for 

two reasons: first, there is an urgent need to develop new antimicrobial strategies for an effective 

control of this deadly bacterium; second, the complete sequence of the genome was one of the 

largest bacterial genome sequences data. The GRNS system use genome date independent 

methods, which makes it easy to apply the GRNS to the other genome by importing other 

genome related names to the local database.  
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Table 2-1.  Explanation of gene regulatory data. 
Name Explanation Example 
Gene regulation relation Regulation at different level, 

including Active, Product, 
Modification, Location, 
Repress, DNA/RNA Binding, 
Two Component, 
Signal/Molecular Binding, 
Signal Sensing, Required, 
Signal Molecular Production, 
Protein Binding, Steps   

Fur represses pchR 

Strain number A strain is a genetic variant or 
subtype of a virus or 
bacterium. The strain-number 
is a number to identify the 
strain. 

DH54 

Genotype The genotype is the specific 
genetic makeup (the specific 
genome), in the form of DNA 

 IA614 fptA::VTc (FptA-) 
 

Phenotype The phenotype of an 
individual organism is either 
its total physical appearance 
and constitution or a 
specific manifestation of a 
trait 

Elimination of FptA in IA614 
yielding strain DH54 restores 
fptA expression to the level 
seen in DH143; The loss of 
FptA in DH54 actually 
alleviated the apparent 
repression of pchR expression 
observed in IA614. 

Unrecognized sentences The sentences include gene 
name but can not be 
recognized as including gene 
regulation information. 

One potential product , 
dihydroaeruginoate ( Dha ) , 
was identified in culture 
supernatants of iron-limited P. 
aeruginosa cells . 
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Figure 2-1.  System architecture of GRNS. 
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Figure 2-2.  Visualization annotation and symbols for GRNS. 
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Figure 2-3.  Gram stain of Pseudomonas aeruginosa cells. 

 

Figure 2-4. Pseudomonas aeruginosa scanning electron micrograph. 
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TEXT MINING BIOMEDICAL LITERATURE SUBSYSTEM 

In this chapter, we introduce the design and implementation of Text Mining Biomedical 

Literature Subsystem in GRNS. First, we present text mining biomedical literature’s problem 

definition. Then we provide the design of the Information Extraction Module of the Text Mining 

Biomedical Literature Subsystem. Next, we show the running results of the Text Mining 

Biomedical Literature Subsystem for one biomedical paper. Then, we supply the evaluation 

results of the Text Mining Biomedical Literature Subsystem. In the end, we explain the research 

contribution of the Text Mining Biomedical Literature Subsystem. 

Problem Definition 

Text mining technology is used in GRNS to extract the gene regulatory information from 

the collection of biomedical texts. Text mining is defined as the nontrivial extraction of 

previously unknown and potentially useful information from texts (Chakrabarti, 2000; Frawley et 

al., 1992). In GRNS, we use the text mining technology to extract gene regulatory information 

from the collection of biomedical literature. One simple process is shown in Figure 3-1. The 

problem of text mining biomedical literature in GRNS is defined as given a collection of 

unstructured biomedical documents, using the text mining technology to extract and store the 

gene regulatory information to the database. The input, process and output of this problem are 

shown as follows: 

Input: Biomedical document collections. Most biomedical documents are downloaded 

from the PubMed database. 

Process: Using text mining technology to compile and analyze the collection of the 

document. The text mining technology includes natural language processing and information 

extraction. 
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Output: Structured gene regulatory information database entries. The gene regulatory 

information includes strain number, the genotype, the phenotype, the gene regulation relation 

information and unrecognized sentences. 

Information Extraction Module 

The Information Extraction Module (IE) is the most important module in the Text Mining 

Biomedical Literature Subsystem. A complete text mining process in IE is shown in Figure 3-2. 

To clearly explain the Information Extraction Process, we use the sentence "FleQ and RpoN 

positively regulate expression of flhA, fliE, fliL, and fleSR genes, among others." (Jyot et al, 

2002) as our running example in every step. 

Lexicon Construction 

Before starting the text mining process, we must build the lexicon. A lexicon is a database 

of the vocabulary of a particular domain or a language.  Usually, there are two kinds lexicon: 

grammar lexicon and semantic lexicon. We build our lexicon as follows: for every word, the 

lexicon provides the grammar or semantic part-of-speech tag. We build our grammar lexicon 

from Eric Brill's tagger program (Brill, 1995). This tagger program can recognize English words 

and numbers and assign the Part-of-Speech tag to these words. Since our experimental data is the 

Pseudomonas aeruginosa Genome, we use the Pseudomonas aeruginosa Genome Database 

(http://www.pseudomonas.com/) as our main supplement for the semantic lexicon. Besides, we 

also add some common biomedical terms (such as gene, operon, binding, active, repress and so 

on) in the semantic lexicon. In case of text mining other genomes in the future, we may add 

supplemental genome information in the semantic lexicon. Some examples of thegrammar 

lexicon and the semantic lexicon are shown in Table 3-1. 
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Strain Table Analysis 

The strain number and genotype are important gene regulatory information. Usually, there 

is a table in the biomedical paper showing all the strains used in the study and their genotypes. 

We analyze the strain table and extract the genotype and strain number from the table. One 

difficulty in analyzing the strain table is that we do not have a structured table data directly. We 

need to extract the table information from the unstructured text. Usually, we do not know where 

the table starts, when one table column ends, when one table row ends, and when the table ends.  

Fortunately, most biomedical papers provide the strain table in a standard format. For 

example, most of the strain table names include "strains" or "plasmids", such as, "Bacterial 

strains and plasmids used in this study", "Strains, plasmids, and primers used in this study", 

"Bacterial strains and plasmids". If we get one line text like "Table …strains … (plasmids) …", 

usually it means a strain table. Next, we need to recognize how many columns in this table and 

what the meaning of each column is. In most cases, these columns are also in a standard format. 

Most tables include three columns, the first one for the strain number, the second one for the 

genotype, and the last one for the reference information. To recognize these columns, we can 

follow these patterns. The column name for the strain number usually includes strain or plasmid, 

such as, "Strain or plasmid ",  " Strain, plasmid, or oligonucleotide ". The column name for 

genotype usually includes genotype or description or characteristics, such as, "Description or 

sequence",  " Characteristics "or "Description". The column name for reference usually includes 

the reference or the source, such as, "Reference",  " Source or Reference". Based on this 

information, we can recognize the column names. The next step is to recognize the strain number 

and genotype information. This is a difficult task because we do not have a structured text to 

separate every column. But we find out that there are some rules to help us to recognize the 

strain number and genotype information. To recognize the strain number, we find out that most 
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strain numbers are one word. If the strain number is more than one word, usually the first word 

of the multi-words strain number is also a strain number itself. One example of multi-words 

strain number is "PAO1 ncr". Here PAO1 itself is a strain number. We can find the strain 

number in this way: if the first word is not a strain number recognized before, then the first word 

is a strain number; otherwise, the first and next word is the strain number. For the genotype, we 

do not have a very strong rule to recognize the genotype, but we can recognize the genotype by 

recognizing the reference information. Most the reference information is in this format: "this 

study" or a number or people name abbreviation. We recognize the reference information first. 

Once we find where the reference information and strain number are, all other information in this 

line is genotype information. In the end, we need know where the table ends. Usually, when one 

table ends, there is one empty line. However, the table does not end after every empty line. If we 

read one empty line, then we need to recognize what the next line is after the empty line. If the 

next line is the strain number, the genotype, and the reference, then we continually read the table; 

otherwise, the table ends.  

Tokenization and Sentence Splitter 

This process transfers indivisible characters into words and sentences. The text is 

transformed in one sentence per line format. The output of Tokenization and Sentence Splitter 

for our running example is shown as follows:  

FleQ and RpoN positively regulate expression of flhA , fliE , fliL , and fleSR genes , 

among others . 

Part-of-speech Tagging 

Part-of-speech tagging (POS tagging or POST), also called grammatical tagging, is the 

process of marking up the words in a text corresponding to a particular part of speech, based on 

both its definition, as well as its context, that is, the relationship with adjacent and related words 
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in a phrase, a sentence, or a paragraph. A simplified form of this is in the identification of words 

as nouns, verbs, adjectives, adverbs, etc. To tag the words with POS labels, we use the Brill part-

of-speech tagger(Brill, 1995).The output of POS Tagging for our running example is shown as 

follows:  

FleQ/NNP and/CC RpoN/NNP positively/RB regulate/VB expression/NN of/IN flhA/NN 

,/, fliE/NN ,/, fliL/NN ,/, and/CC fleSR/NN genes/NNS ,/, among/IN others/NNS ./. 

Term Recognition and Variant Detection 

After POS tagging, IE performs term recognition and variant detection to recognize 

discriminating words and Gene/Protein names. Discriminating words recognition is relatively 

simple: given the pre-defined words set, with the detection of synonym and different verbal 

form, we can detect the synonym with the help of a synonym dictionary and label the 

discriminating words with any verbal form. Recognizing the Gene/Protein names is challenging. 

We need to take care of the problems of the expanded form of abbreviation, homology and 

aliases. To deal with these problems, we use a gene-dictionary of aliases and abbreviation. We 

construct the gene-dictionary by combining multi-database recourses, such as the SWISS_PROT 

and the Pseudomonas aeruginosa Genome Database. The output of term recognition and variant 

detection for our running example shows as follows:  

<s> 

FleQ    nnpg 

and     CC 

RpoN    nnpg 

positively      RB 

regulate        regv 

expression      expr 
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of      IN 

flhA    nnpg 

,       , 

fliE    nnpg 

,       , 

fliL    nnpg 

,       , 

and     CC 

fleSR   nnpg 

genes   NNS 

,       , 

among   IN 

others  NNS 

.       . 

</s> 

Relation and Phenotype Identification 

We use the cascaded finite state automata to recognize the gene regulatory relation and 

phenotype information. The cascaded finite state automata are implemented by a CASS parser 

(Abney, 1996). CASS parser is a robust and speedy partial parser. Our rules for gene regulatory 

relation and phenotype information recognition are written in the CASS grammar. Some 

previous systems also use the CASS parser to recognize the regulatory gene/protein relation 

information. The most famous one is the STRING-IE system in EMBL project (Saric et al., 

2005). We follow some basic grammar in STRING-IE with some supplemental grammar rules. 

For example, there are some examples of our CASS grammar in finding the gene regulatory 
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relations shown in Tables 3-2, 3-3, and 3-4. These examples can-not be recognized by the 

STRING-IE CASS grammar. The first line of these tables is the grammar we provide for the 

CASS parser. The next line is the meaning of this grammar. Then we provide a real sentence 

from a biomedical paper, the parse tree after being parsed by the CASS parser. In the end, we 

provide the extracted gene regulatory relation information.  

Unrecognized Sentences Detection 

It is difficult to build up complete rules to recognize all entities and relations. IE stores the 

potential sentences to detect possible template candidates. Experts can create new templates 

based on template candidates’ information. We choose the template candidates in this way: if a 

sentence includes gene/protein names and fails to match the existing pattern, we assign this 

sentence as a template candidate.  

Normalization 

The relation and all the entities are normalized based on normalization rules. Some 

normalization examples are shown in Table 3-5. 

Automated Construction and Visualization of Regulatory Networks  

      After the IE Module, the Text Mining Biomedical Literature Subsystem constructs the 

regulatory networks based on the entity and relation information extracted from biomedical 

literature. GRNS provides an automatically interactive visualization method to visualize and 

integrate the biomedical evidence to the visualized regulatory networks. Interactive visualization 

of regulatory networks provides an interactive way to browse the regulatory networks. 

Results 

We show the text mining results for the paper--" Biosynthesis of Pyochelin and 

Dihydroaeruginoic Acid Requires the Iron-Regulated pchDCBA Operon in Pseudomonas 

aeruginosa " in the Text Mining Biomedical Literature Subsystem (PMID: 8982005) (Serino et. 
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al, 1997). The results include strain number and genotype information in Figure 3-3. The gene 

regulatory relation information is shown in Figure3-4. The phenotype information is shown in 

Figure 3-5.  The unrecognized sentences are shown in Figure 3-6. The visualized gene regulatory 

network based on the extracted gene relation information is shown in Figure 3-7.  

Evaluation Results 

Currently, thousands of genes and relationship data about P. aeruginosa have been 

collected from more than 200 full-length papers (Greenberg, 2000; Mattick, 2000; Kanehisa, 

2000;Wu et al., 2005; Wu et  al., 2006). We use precision and recall to evaluate the results of the 

Text Mining Biomedical Literature Subsystem. Precision and recall are the most common 

parameters when evaluating the IE system. Precision is to evaluate whether the system can only 

extract correct information, recall is to evaluate whether the system can recognize all useful 

information (Shatkay et al, 2003). The definition of precision and recall is shown as follows: 

Precision = number of correctly extracted entities / number of total extracted entities  

Recall = number of correctly extracted entities / number of all correct entities 

To evaluate the precision and recall of the extracted information, it is necessary to 

manually analyze all information in the corpus and compare them with the extracted information. 

There is no automatic tool that can differentiate the correctly extracted entities from 

unrecognized but correct entities. We randomly select 20 papers from our current corpus and 

provide the evaluation results in Table 3-6. From the evaluation results in Table 3-6, we can see 

that the Text Mining Biomedical Literature have high precision and good recall in extracting 

relation information and other gene regulatory information. 

 Comparison with Other Biomedical Text Mining System 

In this section, we show the comparison result in our text mining subsystem with other 

biomedical systems.  
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STRING-IE 

The STRING-IE system in EMBL project (Saric et al., 2005) is a rule-based text mining 

system. It provides a text mining method to extract the gene relation information from PubMed 

database.  One example of the STRING-IE result set is shown in Figure 3-8. Comparing with 

STRING-IE, our system has several advantages: 

4. Our system provides the automatic visualization results for the text mining results. The 
STRING-IE system provides the user the parse tree, which is not easy for the user to 
understand. Our system can automatically construct and visualize the gene regulatory 
networks, which are much easier for user to understand. 

 
5. Our system provides more complete rules for the biomedical text mining. We supplement 

some rules, which are not provided by STRING-IE. For example, the grammar extracts 
the relations that “gene regulates itself” expression. 

 
6. Our system provides the sentence evidence information for the extracted gene regulatory 

relations. So when the user gets the result, he/she also gets why we get the result. The 
STRING-IE system does not provide the evidence information. 

 
RLIMS-P  

RLIMS-P is implemented by Yuan et. al. (Yuan et. al., 2006). It is a rule based approach 

for extracting information from biomedical text. One example of the RLIMS-P result page is 

shown in Figure 3-9. Comparing with RLIMS-P, our system has several advantages: 

1. Our system can extract the gene regulatory relation for active, repress, product and so on. 
The RLIMS-P system can only extract Protein Phosphorylation information. So the 
RLIMS-P is limited comparing with our system. 

 
2. Our system provides the automatic visualization results for the text mining results. The 

RLIMS-P system only provides the webpage information for the extracted information. 
 

Research Contribution in Text Mining Biomedical Literature Subsystem 

There are a lot of similar text mining systems that can extract gene relation information 

from biomedical literature, such as STRING-IE system in EMBL project (Saric et al., 2005), 

Arizona Relation Parser System (McDonald et. al., 2004). Compared to other systems, our text 

mining biomedical literature subsystem mainly has three advantages. 
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First, the text mining biomedical literature subsystem can extract the strain number and 

genotype, and the phenotype information from the full-length text. Most text mining systems can 

extract information from the collection of abstracts. Full-length texts analysis is more 

complicated and difficult. Moreover, extracting useful information from tables is challenging 

since most of the biomedical articles are unstructured texts. In our system, we can not only mine 

full-length text but also extract the strain number and the genotype information from the strain 

table, and extract the phenotype information from the full-length text. The strain number and 

genotype, and the phenotype information are good supplemental evidence for the gene regulatory 

relation information. 

Second, we extend the CASS Grammar provided by STRING-IE system (Saric et al., 

2005). STRING-IE system offers an organized and useful CASS grammar for biomedical 

literature mining. However, some important gene relation patterns can not be extracted using the 

STRING-IE grammar. We supplement some new CASS grammars to help our system recognize 

more relation information.  

Third, most systems provide visualized results for extracted gene relations. But they do not 

integrate all related information or provide all related information in an interactive fashion. In 

our system, we link gene information, relation information and mutant information (genotype, 

phenotype) together and put all information in interactively visualized gene regulatory networks. 

A user can click entities or relations in the gene regulatory network and receive a collection of 

related gene regulatory information.  
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Table 3-1.  Lexicon examples. 
Word Grammar Tag Semantic Tag 
regulate RB regv 
expression NN NN 
flhA NN NNPG 
fliE NN NNPG 

 

Table 3-2.  CASS grammar example1. 
Grammar ex_reg -> nxpg (cma? wdt?) (rb)* (cma? neg?) (vx?) (rb)* 

(VERB) ownexpr 
Explanation One possible gene relation is gene A regulate its own expression. 
Example sentence PchR negatively regulates its own expression 
Parse tree <s> 

  [ex_reg 
    [nxpg 
      [nxpg 
        [nxpg 
          [nnpgx 
            [nnpg PchR]]]]] 
    [neg negatively] 
    [regv regulates] 
    [ownexpr 
      [prps its] 
      [own own] 
      [expr expression]]] 
  [per .] 
</s> 

Action <PchR> <REPRESS> <PchR> 
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Table 3-3.  CASS grammar example2. 
Grammar ex_regvd -> nxpg comp? vx nxpg regvd; 
Explanation Gene A is regulated by gene B. 
Example sentence Four promoters (flhA, fliE, fliL, and fleSR) that were RpoN and 

FleQ regulated were selected for this study. 
Parse tree [ex_regvd 

    [nxpg 
      [nxpg 
        [nxpg 
          [nnpgx 
            [nnpg flhA]] 
          [cma ,] 
          [nnpgx 
            [nnpg fliE]] 
          [cma ,] 
          [nnpgx 
            [nnpg fliL]] 
          [cma ,] 
          [cc and] 
          [nnpgx 
            [nnpg fleS]]] 
        [cc and] 
        [nxpg 
          [nnpgx 
            [nnpg fleR] 
            [sym )]]]]] 
    [comp that] 
    [vx 
      [bedr were]] 
    [nxpg 
      [nxpg 
        [nxpg 
          [nnpgx 
            [nnpg RpoN]] 
          [cc and] 
          [nnpgx 
            [nnpg FleQ]]]]] 
    [regvd regulated]] 

Action <RpoN> <REGULATED> <flhA>, <RpoN> <REGULATED> 
<fliE>,  <RpoN> <REGULATED> <fliL>, <RpoN> 
<REGULATED> <fleSR>, <FleQ> <REGULATED> <flhA>, 
<FleQ> <REGULATED> <fliE>,  <FleQ> <REGULATED> 
<fliL>, <FleQ> <REGULATED> <fleSR> 
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Table 3-4.  CASS grammar example3. 
Grammar locate_gene (vx?)  (ADV)* (vx?) (rb)* (VERB) ( in | of | by) 

nxpg; 
Explanation Gene A located in upstream/downstream Gene B Relate gene C. 
Example sentence fimS located immediately upstream of algR is also required for 

twitching motility 
Parse tree <s> 

  [ex_reg_at 
    [locate_gene 
      [nxpg 
        [nxpg 
          [nnpgx 
            [nnpg fimS]] 
          [vbn located]]] 
      [rb immediately] 
      [upstream upstream] 
      [of of] 
      [nxpg 
        [nxpg 
          [nnpgx 
            [nnpg algR]]]]] 
    [vx 
      [bez is]] 
    [rb also] 
    [requvd required] 
    [in for] 
    [nxpg 
      [nxpg 
        [nxpg 
          [nnpgx 
            [twitching twitching] 
            [motility motility]]]]]] 
</s> 

Action < twitching motility> <REQUIRE> <fimS> 
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Table 3-5.  Normalization examples. 
Terms/Relations Normalized terms/Relations Normalized Type 
Pseudomonas quinolone signal PQS mapping of expanded forms to 

acronyms 
 

Operon fleSR fleS, fleR mapping of operon to the list 
of genes 

Gene A is repressed by Gene B Gene B repress Gene B Mapping relation information 
in stand form 

Gene A negatively regulate 
Gene B 

Gene A repress Gene B Mapping relation name in 
stand form 

 

Table 3-6.  Evaluation result for text mining biomedical literature subsystem. 
Name Precision Recall 
Strain number 0.93 0.92 
Genotype 0.90 0.89 
Gene regulatory relation 0.91 0.79 
Phenotype 0.87 0.74 
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Figure 3-1.  A simple text mining process. 
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Figure 3-2.  A complete text mining process in IE. 
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Figure 3-3.  Strain number and genotype information extracted from paper "Biosynthesis of 
pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon 
in Pseudomonas aeruginosa". 
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Figure 3-4.  Part of gene regulatory relation information extracted from paper "Biosynthesis of 

pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon 
in Pseudomonas aeruginosa". 
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Figure 3-5.  Part of phenotype information extracted from paper "Biosynthesis of pyochelin and 

dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas 
aeruginosa". 
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Figure 3-6.  Part of unrecognized sentences extracted from paper "Biosynthesis of pyochelin and 

dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas 
aeruginosa". 

 
Figure 3-7.  Visualized gene regulatory network for paper "Biosynthesis of pyochelin and 

dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas 
aeruginosa". 
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Figure 3-8.  Part of E.Coli result from the STRING-IE system. 

 
 

 
 
Figure 3-9.  One example of result web page from the RLIMS-P system. 
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CHAPTER 4 
 ONLINE TOOLS SUBSYSTEM 

In this chapter, we introduce the design and implementation of the Online Tools 

Subsystem in GRNS. First, we present several novel algorithms in the Online Tools Subsystem, 

and then show several results in the Online Tools Subsystem, including some visualized 

regulatory networks in GRNS, query results in GRNS, and an online edit/building regulatory 

network interface.  

Novel Algorithms in Online Tools Subsystem  

In this section, we introduce several algorithms in the Online Tools Subsystem, including 

the automated visualization algorithm, the network extraction, and the reconstruction algorithm 

(NERA) and several algorithms based on NERA. 

Automated Visualization Algorithm 

In GRNS, one basic part is the automated graph visualization. With the automated graph 

visualization, we can provide researchers with a clear view on the gene functions or the 

relationships among several regulatory elements. In GRNS, we use the Graphviz Software 

(Gansner, et al., 1993,1999) to do the automated graph drawing. Graphviz uses the dot's 

algorithm, which provides an efficient way to rank the nodes, some heuristic approaches to 

reduce edge crossings, a scheme for computing the node coordinates as a ranking assignment 

problem and a method for setting spline control points. Graphviz can automatically convert a dot 

format text document into a directed graph and provide us the convenience of the automatic 

graph drawing.           

However, the dot's algorithm has some limitations concerning the automatic drawing of the 

interactive regulatory networks. The dot's algorithm implements an optimal ranking assignment 

with a heuristic weight function and local transpositions to reduce crossings. One basic idea of 
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the dot's algorithm is to assign a vertex rank value based on the direct edge. Given the edges, the 

layout of the graph is decided. That means, when the relationships information in the GRDB is 

given, the layout for an interactive network is decided. However, to obtain a good layout for the 

interactive regulatory networks, we need to make some extra effort. First, due to the complexity 

of the interactive regulatory networks, we need some ways to save the layout space and give the 

users a clear view. Second, because of some requirements of gene relationships, we need a more 

specific layout. We need some heuristic methods to improve the layout of interactive regulatory 

networks. We introduce three heuristic methods for improving the layout in the visualization of 

the regulatory networks in Figures 4-1, 4-2, and 4-3. Some examples of layout of before and 

after using these heuristic methods are shown in Figure 4-4. All examples are small portions of 

some regulatory networks in GRNS. 

Network Extraction and Reconstruction Algorithm (NERA) 

The network extraction and reconstruction algorithm (NERA) is another important 

algorithm in GRNS. A lot of other algorithms in GRNS are based on NERA. The function of 

NERA can be described as follows: if there are a collection of networks, NERA can extract data 

from these networks and generate a new network based on the collection of data and some 

specific conditions. One example of NERA is: given a collection of regulatory networks, NERA 

can generate a new regulatory network, which only includes regulatory relationships and 

regulatory entities related to one regulatory entity C. The NERA is described as follows. 

 

Algorithm Name: NERA 

Input: 1) A collection of regulatory networks R1, R2…Rn. 

         2) Type: genes or relations or regulatory networks or reference 

         3)  Subset, a collection of entities, can be genes or relations or        
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              regulatory networks 

Output: new regulatory network N 

Entities={}; 

Relations={}; 

Operons={}; 

For every regulatory network Ri  

      { 

               For every entity  e in Ri 

                               If e is not in Entities  and e is related to Subset, add e to Entities 

                

                For every operon o in Ri 

                             If o is not in Operons and Operons does not have an operon o’                       

                        has same entities with o and o is related Subset, add o to            

                       Operons 

 

                For every relation r in Ri 

                             If r is not in Relations and Relations does not have a relation r’  

                     has same meaning with r and r  is related to Subset 

                     { add r to Relations 

                         If entity in r (e1 or e2) is an operon which Operons not  

                               contain it 

                              { find an operon o1 in Operon which contain same  

                                  entity with e1 or e2 
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                                  Mapping e1 or e2 to o1  

                              } 

                       }                      

          } 

 

N= { Entities, Relations, Operons}; 

 

    Based on NERA, there are several other algorithms useful in network reconstruction and 

the visualization of query results. The following are two algorithms based on NERA:  Merge-

Network Algorithm and Linking Algorithm.   

 

Algorithm Name: Merge-Network Algorithm 

Input: A collection of regulatory networks R1, R2…Rn. 

Output: New regulatory network N 

When there are several regulatory networks for different subsystems,    

generate a regulatory network to represents all these regulatory networks 

Given subsystem regulatory networks R1, R2…Rn, 

Call NERA({R1, R2…Rn }, ‘network’, { R1, R2…Rn }}   

 

One example of Merge-Network Algorithm is in shown in Figure 4-5. 

 

Algorithm Name: Linking Algorithm 

Input: a PubMed Paper ID  
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Output: new regulatory network N 

When we need visualized the query result about a reference paper. 

Subset= Entities in this reference paper Union Relations in this    

  reference paper 

Call NERA (all regulatory networks, ‘reference’, Subset) 

 

Results 

Visualized Regulatory Networks 

Currently, thousands of genes and relationship data about P. aeruginosa have been 

collected (Greenberg, 2000; Mattick, 2000; Kanehisa, 2000;Wu et al., 2005; Wu et  al., 2006). 

Interactive visualization of regulatory networks for eight important subsystems -- Flagella, Pili, 

Type III secretion subsystem, Iron acquisition, Quorum sensing, Biofilm, Alginate synthesis and 

Multi-drug efflux subsystem -- have been constructed. In this section, we give a global view of 

P. aeruginosa, a detailed explanation of the Type III secretion subsystem and the Iron acquisition 

Subsystem.  

Global view of P. aeruginosa 
  

The global view for Pseudomonas aeruginosa Genome is shown in Figure 4-6. The global 

network includes eight subsystems: Flagella, Pili, Type III secretion system, Iron acquisition, 

Quorum sensing, Biofilm, Alginate synthesis, and the Multi-drug efflux system. One subsystem 

may affect the activation of others. The relationships between different subsystems are presented 

as red lines in the network. For example, the Flagella and Pili are required for the Biofilm 

subsystems. P. aeruginosa strains with defect in either Flagella or Pili cannot form the Biofilm. 

Meanwhile, different subsystems are coordinately regulated by proteins. Since those proteins 

regulate many genes in different subsystems, they are named as global regulators. The 
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relationships between global regulators and subsystems are presented as black lines in the 

network. For instance, a global regulator, Vfr, activates the Pili, the Type III secretion system, 

Iron acquisition, and Quorum sensing subsystems and represses the Flagella subsystem. 

Type III secretion subsystem 

The regulatory network of Type III secretion subsystem (TTSS for short) is shown in 

Figure 4-7. The TTSS is an important virulence factor of P. aeruginosa: it inhibits host defense 

systems by inducing apoptosis in macrophages, polymorphonuclear phagocytes, and cells. The 

TTSS contains a syringe like apparatus, which can directly inject the effector proteins from the 

bacterium cytoplasm into the host cell cytosol, causing cell death. The P. aeruginosa TTSS 

machinery is encoded by 31 genes arranged in four operons on the chromosome.  Four effector 

proteins, ExoS, ExoT, ExoY and ExoU have been found in P. aeruginosa. According to the 

current working model, the needle forms a pole in the host cell membrane, and the effector 

proteins are delivered through the hollow needle. Based on published research, we divide the 

TTSS translocation process into six steps, as presented in the black boxes. Following the boxes, 

we use the "Type III Secretion System" to represent the overall function of this subsystem. We 

find that the regulatory network can clearly describe the relationship in the Type III secretion 

subsystem. 

Iron acquisition subsystem 

The interactive regulatory network for the Iron acquisitions subsystem is shown in Figure 

4-8. The Iron acquisition subsystem acquires iron from surrounding environment. To do this, P. 

aeruginosa produces and secrets an iron-chelating compound, named siderophore. Two types of 

siderophores: pyoverdine and pyochelin, are produced by P. aeruginosa. The pyoverdine and 

pyochelin synthesis genes and receptors are under the negative control of a regulator-Fur.  
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Query Results 

In this section, we provide an example of the query results for the PubMed paper -- 

"Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that 

confers resistance to vanadium" (PMID: 12177331), and give an example of the query gene 

results for ToxR. 

The query results for Pubmed Paper --"Characterization of a new efflux pump, MexGHI-

OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium" -- PMID 

12177331(Aendekerk et al., 2002) is shown in Figure 4-9. We find that GRNS can summarize all 

related information in one page, and automatically visualize related regulatory entities and 

relations. In this way, the researcher can have a clear idea about the query paper. Furthermore, 

the author can employ GRNS by inputting the relations information about the author's paper. 

GRNS can integrate the newly discovered data and merge the data into our gene regulatory 

networks. At the same time, GRNS can generate a visualization of those regulatory networks for 

the author. When other users query this author’s paper, the visualization results can be returned 

to the query users. 

The query results for gene "ToxR" is shown in Figure 4-10. We find that GRNS can 

summarize all related information in one page, and automatically visualize related regulatory 

entities and the relationship related to the query gene. In this way, the researcher can have a clear 

idea about the relation information about the query gene. Besides, since all entities and relation 

in the visualized result can be interactively clicked, the researcher can get detailed information 

about the related entities and the relations.  

Online Build/Edit Tool for Regulatory Networks 

Part of interface for the Online Build/Edit Tool for Regulatory Networks is shown in the 

Figure 4-11. GRNS provides researchers with a web-based user-friendly tool to build regulatory 
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networks. Moreover, the automated visualization tool provides the user the visualization of the 

network once the user completes the data input. The GRNS also provides automatically 

information linking schema to collect all useful information for the regulatory networks. In this 

way, the user can take advantage of GRNS without inputting all detail information. 
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Figure 4-1.  Start-like transformation. 

 
 
Figure 4-2. Merge transformation. 
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Figure 4-3. Artificial levels. 
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Figure 4-4. Examples before and after using heuristic methods. (a) before star-like 

transformation (b) after star-like transformation (c) before merge operation (d) after 
merge operation (e) before artificial levels (f) after artificial levels. 
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Figure 4-5. One example of merge-network algorithm (a) regulatory network R1. (b) regulatory 

network R2. (c)  new regulatory network N. 

 

.
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Figure 4-6. Global view of Pseudomonas aeruginosa. 
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Figure 4-7. Regulatory network of type III secretion subsystem. 
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Figure 4-8. Regulatory network of iron acquisition subsystem. 
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Figure 4-9. Query result for paper PMID 12177331. (a) detailed page for paper PMID 12177331 
(b) mutant information for paper PMID 12177331 (c) visualized result for paper 
PMID 12177331. 
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Figure 4-10. Query result for gene "ToxR" (a) detailed page for query gene "ToxR" (b) 

visualized result for query gene "ToxR". 
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Figure 4-11. Part of interface for online build/edit tool for regulatory networks. 
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CHAPTER 5 
ANALYSIS TOOLS SUBSYSTEM 

In this chapter, we introduce the design and implementation of the Analysis Tools 

Subsystem in GRNS. The Analysis Tools Subsystem includes the frequent pattern mining tool 

and the gene relation prediction tool. 

Frequent Pattern Mining Tool  

We first give the problem definition of frequent graph mining. Then we present several 

data mining algorithms: RNGV (Regulatory Networks Generation Variation) is for regulatory 

networks generation and variation, DFS (Data Mining Frequent Subgraphs) is for data mining 

frequent subgraphs, and IGM is for the inexact graph match algorithm. In the end, we provide 

several frequent patterns from GRNS and KEGG Database.  

Problem Definition 

We model regulatory networks by directed graphs, which represent the entry elements in 

vertices and the relations between entry elements as directed edges. We define our goal in 

mining regulatory networks as discovering a set of frequent subgraphs in a set of regulatory 

networks. Given a collection of regulatory networks R1, R2, …Rn, a support rate Ө and an 

inexact threshold є, the data mining of frequent subgraphs in a regulatory networks database is to 

find all closed connected subgraphs that match exactly or inexactly to at least Ө*n of the input of 

regulatory networks, with the inexact match threshold є.  

        A closed (or maximal) subgraph is defined as a subgraph whose super graph does not 

have the same frequency in the database. The inexact match threshold є is defined as: given a 

subgraph S, a regulatory network R, if we say S is an inexact match to R under a threshold є, 

then the minimum cost of a sequence of graph edit operations that must be performed on R to 

produce S will be no larger than Size(S)* є. Size(S) is the number of the vertex in S plus the 
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number of the edges in S. The graph edit operations include the vertex and the edge deletion, 

insertion or re-labeling. In our model, the costs of edit operations are defined as follows: 

• Insertion cost:  equal to 1 for each insertion of vertex or edge. 

• Deletion cost:  equal to 0 for each deletion of vertex or edge. 

• Re-labeling cost: equal to 1 for each re-labeling of vertex or edge. 

The notations we use are shown in Table 5-1. 

Frequent subgraphs mining in a large regulatory network database is a particularly 

challenging problem. However, using the unique vertices model, we may simplify the graph 

mining problem and reduce the exact match problem to the frequent item-sets mining problem. 

The frequent item-sets mining problem has been well-studied in the data mining field. There are 

several existing algorithms dealing with frequent item-sets mining. Among them, Apriori is one 

of the most efficient. Our approach follows the basic structure of the Apriori algorithm, and 

makes our additional contributions. We make the revisions for several considerations. First, we 

use the item set instead of the adjacency matrix model representation to save space. Second, the 

Apriori Algorithm treats the vertex as an item but we treat the directed edge as an item. Besides, 

the Apriori Algorithm extends one vertex in each round but our approach extends one edge in 

each round. Extending edges can achieve better efficiency. 

Regulatory Network Generation and Variation (RNGV) and Data Mining Frequent 
Subgraphs (DFS) 

RNGV (Regulatory Network Generation and Variation) algorithm reads all input 

regulatory networks, builds a global index table for all vertices and edges based on the vertex’s 

name, then finds all frequent edges, and calls DFS to extend each edge to a larger size frequent 

subgraph. RNGV is shown as follows. 
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Algorithm Name: RNGV 

Input:  D, n, Ө, є  

Output: frequent subgraphs sets F 

 Read in every Regulatory Network Ri, build a global vertex table and global edge table, 

store every Ri   using global vertex index and global edge index. 

 For each edge ei in global edge table 

 {   if it appears at least n*Ө, let  

   S1={ ei }; 

   Let C1=Neighbor(ei); 

    Call DFS (D, S1 , C1 , Ө, є, F); 

  } 

 Output frequent subgraphs sets F 

 

      DFS is shown as follows. The basic idea is that we treat directed edges as items of 

traditional frequent item-sets. DFS uses the depth-first algorithm and increases the size of the 

subgraph by extending an edge each time. 

 

Algorithm Name: DFS 

Input: D, Sk , Ck , Ө, є,F 

Output: F 

 for all edges ei ∈ Ck do 

   { 
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    Add ei to V; 

    Extend Sk   to Sk+1 by adding edge { ei };  

     For every Rj in D, Call IGM (Sk+1, Rj, є , f )   

     if (IGM (Sk+1, Rj, є , f )  return true in at least Ө*n RegulatorNetworks ) 

        Extend successful; 

  Ck+1 =( Ck ∪ N(ei)) / V; 

  DFS (D, Sk+1 , Ck+1 , Ө, є ); 

 } 

   if ( not extend successful)  

    {  

      if  Sk  is closed then F =F ∪Sk ; 

           return  F; 

    } 

       

An example of RNGV and DFS is shown in Figure 5-1.  We have a collection of four 

graphs. Let Ө =0.5, є = 0.25. In RNGV, first, we read in four graphs and build a global index for 

vertices {a,b,c,d,e,h,m} and directed edges {ab,ac,bc,bd,bh,bm,de}. Then, we find all frequent 

edges {ab,ac,bc,bd}; call DFS for each edge. In DFS, we use the depth-first algorithm and 

extend one edge in each time. For edge ab, we can extend successfully to 

{ab,ac,bc,db},{ab,ac,bc,bh},{ab,ac,bc,bm}. For any other edge, we cannot find other closed 

subgraphs. In the end, we get the closed subgraph sets 

{{ab,ac,bc,db},{ab,ac,bc,bh},{ab,ac,bc,bm}}. 
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Inexact Graph Matching Algorithm (IGM) 

By reducing the graph match problem to the data mining frequent item sets problem, we 

get a simplified method mining exact frequent subgraph. We can efficiently mine exact match 

frequent subgraphs. However, the utilizing of unique vertex labels is not sufficient for the inexact 

match. In the inexact match, we allow a sequence of graph edit operations to be applied on 

regulatory networks. Since the inexact graph isomorphism is an NP-complete problem, heuristic 

methods are required to reduce the computation time. Our goal here is to efficiently find whether 

two graphs are an inexact match. We can reduce the computation time by ignoring some 

unimportant matching detail and delete some non-efficient matching sub-solution. In GRNS, two 

heuristic methods are proposed to reduce the computation time when computing the inexact 

match. The first one is the fast checking mechanism to effectively reduce the running time; the 

second one is the bounded search mechanism to limit the size of the search space. 

The idea of the fast checking mechanism is as follows: before the next round of edit 

operation, we check whether we can finish the computation even if we do not know how these 

two graphs are isomorphic and further what the ultimate edit operations sequence is like. Before 

we explain how fast the checking works, let us see the definition of insertion-distance. 

The insertion-distance of a subgraph S (Vs, Es) and a Regular Networks R (V, E) (shown 

as I_dist(S,R) ) is defined as follow:  

I_dist(S, R)=size(S)–(|Matched(V)|+|Matched(E)|), where Matched (V)=Vs∩V, 

Matched(E)=Es∩E. 

The meaning of Insertion-Distance between S and R corresponds to a sequence of edit 

operations, each of which is to delete every vertex and edge in R which does not appear in S, and 

insert the vertex and the edge to R which appear in S but not appear in R. Although the sequence 

of edit operations corresponding to the Insertion-Distance may not be the optimal edit operations 
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sequence, we guarantee that a regulator network R (V, E) can produce subgraph S (Vs, Es) under 

this edit operations sequence. Therefore, we define fast checking in the following way: 

A subgraph S is the inexact match to a regulator network R if after a sequence of edit 

operations {o1, o2, o3…} with cost m, we get R’ (V’, E’). Given a thresholds є, we have: m+ 

I_dist (S, R’) <= є *size (S).  

Fast checking can reduce the computation time. The idea behind the fast checking 

mechanism is, in computation for answering whether S is an inexact match to R, it is not 

necessary to find an ultimate edit operations sequence. The computation complexity of I_dist (S, 

R’) is | Es |*log |E’| +| Vs | *log |V’| if we use the AVL tree store the graph. 

Another mechanism we use to reduce computation time is the bounded search mechanism. 

We use it to limit the size of the search space. We only keep some good edit operations 

sequences as the candidates of the next round search, and prune other bad edit operations 

sequences. Given a bounded search factor f (usually between 0 and 1), the bounded search is 

described in the following manner:  

Given a subgraph S (Vs, Es) and a regulator network R (V, E), after a sequence of edit 

operations { o1, o2, o3…}  in R, we get R’ (V’, E’) and an edit cost m. We define that R’ (V’, E’) 

and { o1, o2, o3…}  can be kept to next round if m + I_dist(S, R’) <= f*size(S). 

Based on the two heuristic methods introduced previously, we develop the IGM algorithm 

as follows: 

 

Algorithm Name: IGM  

Input: S, R, є , f 

Output: true if inexact matched, false if not 
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  MAXCOST:= є*size(S); 

   if( I_dist(S,M) <= MAXCOST) return true; 

   N:= Neighbor(S,R);  

   if  N=Φ  return false; 

   for every vertex vi in S  

  { 

    Cost++;  //means the cost for re-labeling =1 

      for every vertex nj in R  

       {  

     if(vertex in R and vertex vi is equal )     

             Cost--; 

      if it is the first step mapping 

        { 

     Mapping the R to R’ by relabeling nj to vi; 

            if(I_dist(S, R’) + Cost<= MAXCOST)  

                       return true; 

          if (I_dist(S, R’) + Cost<=                                                  

                       f*size(S))  

      add Mq:= ( nj, vi ) to the Queue;  } 

         else //it is not the first time mapping 

   { 

      while(Queue not Empty) 

  {    read the map from queue in Mq; 
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                      if  Mq is a Break Symbol, break; 

                     Mq:=Mq∪ ( nj,vi) ;  

     Mapping the R to R’ by relabeling every  

          pair in Mq; 

 if( I_dist(S,m) + Cost<= MAXCOST) return         

          true; 

 if (I_dist(S,m) + Cost<= f*size(S)) 

                add  Mq to the Queue; 

   } //end of while 

  } //end of for every vertex nj in R 

    Put a Break Symbol in Queue, so we can  

        recognize     when current level finish; 

 

 } 

                           

Here is an example of how IGM works in Figure 5-2. Given Subgraph1 and Graph1, if є = 

0.25, IGM returns true in 2nd line. Since I_dist (Graph1, subgraph1) = 2 and є *Size 

(Subgraph1) = 2. IGM does not need any more computation. If є = 0.2, f = 0.33, we need to do 

more work. The process is shown in Figure 5-2 (b). The (c,a) means relabeling vertex c in 

Graph1 to vertex a. (c,a) 6 means if relabeling c in Graph1 to a, I_dist(Subgraph1,Graph1)+cost 

= 6. In each round, only the ones with a rectangle, which fit the condition of the bounded search, 

are put in queue and computed in the next round. We discover, using bounded search factor f, we 

can prune many bad edit operations and only keep some good ones. For example, only (a,a) is 
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saved in the first round. In the end, we find re-labeling vertex h to d can let I_dist (Subgraph1, 

Graph1) + cost <= є*Size (Subgraph1). IGM ends here and returns true. 

Result 

One example of frequent pattern in GRNS 

We show the frequent subgraphs in Regulatory Networks in GRNS in Figure 5-3. Right 

now, no obvious repeated pattern appears in GRNS. Most of the frequent elements are the results 

we include in other subsystems and their relations between global regulators when we display 

one subsystem.  

One example of frequent pattern in KEGG 

The frequent pattern mining tool is a standalone tool. We can use this tool to mine frequent 

pattern not only in GRNS but also use in other systems. The following example is a frequent 

pattern we discover in KEGG (Kyoto Encyclopedia of Genes and Genomes) database. KEGG is 

a database on molecular interaction networks in biological processes. By March of 2005, KEGG 

includes carbohydrate metabolism, energy metabolism, lipid metabolism, amino acid metabolism 

and so on, an overall of 15 types. The total number of pathways is 20,560 from 250 organisms.   

The results of frequent subgraphs discovered in the reference pathways of amino acid 

metabolism pathways are shown in Figure 5-4. The vertices of the figures are labeled by the 

enzymes’ name corresponding to the KEGG ID (for detailed information access: 

http://www.genome.jp/dbget-bin/www_bfind?enzyme).  

We find out that, extending graph mining to inexact matching, we can get potentially more 

interesting results. 

Comparison of IGM with SUBDUE  

The run time for data mining the amino acid metabolism pathways under different inexact 

match thresholds is shown in Table 5-2. Our algorithm has satisfactory performance. For this 
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large dataset, it only takes about one second. Besides, when extending the exact matching to the 

inexact matching, our computation time does not increase much. The computation time for the 

inexact matching is comparable to the computation time to Koyutürk et al. (Koyutürk et al., 

2004) for the extract matching time. Moreover, since we use sparse graph representation to save 

the space, our algorithm also shows better space saving compared with other algorithms, for 

example, the SUBDUE System. We show the run time of IGM and SUBDUE system for the 

inexact matching in Table 5-3. We find out that, on one hand, IGM is much faster than 

SUBDUE; on the other hand, when є increases, SUBDUE cannot give us the results due to the 

run-out memory. However, IGM can give the results, when є increases. IGM is an efficient 

algorithm and has better performance both in run time and space. 

Gene Relation Prediction Tool  

We first give the problem definition of gene relation prediction. Then we present the gene 

prediction algorithm. In the end, we provide an example of the gene relation prediction. 

Problem Definition 

We define our goal in gene relation predicting algorithm as discovering a complete set of 

potential gene relations based on a collection of gene regulatory networks and several rules. We 

model regulatory networks by directed graphs, which represent the entry elements in vertices, the 

relations between entry elements as directed edges and the type of regulation as labels for edges.  

We define the gene relation prediction problem as follows: 

Suppose we have a collection of gene regulatory networks, represented by directed graphs 

{(V1, E1), (V2, E2), …( Vn, En)}. First, we build a new graph G’ =( ( ), ( )). Then given any 

vertex u in G’, the gene regulation relation prediction algorithm tells whether there is a path p 

from u to any vertex w in the graph G’ if w is not directly connected with u. If p exists, then we 
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store this path. Moreover, based on the label information in every edge in p, we label the p.  The 

gene regulation relation prediction algorithm is similar to the transitive closure algorithm for a 

directed graph with the two supplements: first, the gene regulatory relation prediction algorithm 

stores the path information if the path between the given pair of vertices exists; second, if the 

path between the given pair of vertices exists, the gene regulation relation prediction algorithm 

needs to decide the label information for the path. 

Gene Relation Prediction Algorithm 

 

Algorithm Name: GRPA  

Input: G’ =( ( ), ( )),vertex u 

Output: A collection of path p, which p is a path from u to any vertex w in the graph G’ in 

the case w is not directly connected with u.  

Neighbor_u = all vertices directly connected to u 

          newAdd = copy of Neighbor_u ; 

      

While newAdd size > 0 

     { 

   Edge= copy of newAdd; 

             newAdd = empty; 

 

     For every vertex i in Edge 

         { 

                Neighbor_i = all vertices directly connected to i 
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                For every vertex j in Neighbor_i 

                   { 

                      If vertex j is not in Neighbor_u 

                            { Add j in newAdd; 

                              Add j in Neighbor_u; 

                              Add path p= {u->-> i->j } to Path_u ; 

                            } 

                    } 

          } 

}        

For every path p in Path_u, predict the label for p.  

Output Path_u ; 
 

Result 

We show the gene relation prediction algorithm result for the gene "LasR" in Figure 5-5.  

We find the predicting result includes the discovered potential relations with LasR and the 

evidence information for every predicting relation. 
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Table 5-1.  Notations in RNGV, DFS and IGM. 
Symbol Description 
D The dataset of a collection of metabolic pathways 
n The numbers of regulator Network in D 
Sk A subgraph with k edges 
R A regulator network 
Ck A set of candidates with k edges 
F A set of frequent subgraphs 
V A set of already visited edges 
N(ei) The neighbor of ei . The set of edge share at least one vertex with ei 
∋ Threshold of inexact match 
Ө Support rate threshold 
f bounded search factor 

 

Table 5-2.  Run time of IGM on metabolism pathways datasets. 
Metabolism 
Pathway 

Support rate 
threshold Ө 

Threshold of inexact 
match ∋   Running Time(sec.) 

15% 0 0.8 Amino Acid 
Metabolism  15% 0.1 1.0 
 
Table 5-3.  Run time comparisons with subsude system. 

Metabolism 
Pathway 

Size of 
Metabol
ism 
Pathway   

Support rate 
threshold Ө 

Threshold 
of inexact 
match ∋   

Running 
Time(sec.) 
In IGM 

Running 
Time(sec.) In 
Subdue 

0.1 1.0 1000 Amino Acid 
Metabolism  

179 
 

0.1 
 0.15 1.5 ----- 
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Figure 5-1. An example of RNGV and DFS. (a) a collection of metabolic pathways. (b) the 

process of RNGV and DFS. 
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Figure 5-2. An IGM example. (a) subgraph1 and graph1 (b) inexact match process. 

 
Figure 5-3. Frequent subgraphs in regulatory networks in GRNS when Ө=25% and є =0. 
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Figure 5-4. Frequent subgraphs in amino acid metabolism: (a) exact matched subgraph; (b), (c), 

(d), (e) inexact matched subgraph when Ө=15% and є =0.1.
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Figure 5-5. Part of gene regulation prediction results for gene "LasI".
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CHAPTER 6 
CONCLUSION AND FUTURE WORKS 

Conclusion  

In this dissertation, we present the framework of the Gene Regulatory Networks System: 

GRNS. The goals of GRNS are automatically mining biomedical literature and constructing gene 

regulatory networks based on extracted biomedical information. GRNS first utilizes an 

automated text mining method to extract useful information from biomedical literature. Then it 

automatically constructs and visualizes the regulatory networks based on the extracted 

information and existed domain-specific knowledge. To provide researchers with a clear and 

global view about the regulatory networks, GRNS uses an interactive visualization method, 

integrating biomedical evidential information into the regulatory networks. Once a user clicks on 

an entity or relation of interest, the query interface returns a detailed information page about the 

clicked entity or relation. It provides researchers with a web-based user-friendly tool to build and 

edit regulatory networks. GRNS provides a standalone analysis tool to find the frequent patterns 

in regulatory networks, which can help researchers to find biomedical meaningful patterns. 

GRNS also provides the gene relation prediction tool to predict potential gene regulatory relation 

information. In summary, GRNS is a useful tool to automatically extract gene regulatory 

information from biomedical literature, construct gene regulatory network based on the 

information extracted, and provide the online management and analysis of gene regulatory 

networks.   

Future Work 

Analysis Tool for Error Detecting in Regulatory Networks  

In the future, the error detection tool may be developed to find potential errors in the 

regulatory networks. It will utilize a rule-based method and help to improve the accuracy of the 



 

90 

regulatory networks. One example of a possible rule can be: if one regulatory network includes a 

relationship “A Products B”, then B must be a product type. If B is any other type, then either the 

relationship “A Products B” is wrong or the type of B is wrong.  

Regulatory Networks Predication Model  

GRNS provides the gene relation predication model for potential gene relation 

information. How about the predication model for an unknown genome data? The text mining 

method can efficiently construct regulatory networks on well-studied genome data, i.e. if there is 

enough research literature about  this genome field. But if there is a newly discovered genome, 

how we can quickly predict the functional roles of each gene in this genome and build up the 

predicted regulatory networks without much literature knowledge?    

Our basic idea is in the following:  there may be a well-studied genome B similar to the 

newly discovered genome A. Regulatory networks about B are available. If we can find out a 

mapping rule about genes in genome A and genes in genome B, then we can get regulatory 

networks about genome A by replacing all genes in regulatory networks of genome B to 

mapping genes in genome A.  

One possible mapping rule is using BLAST (Basic Local Alignment Search Tool) to find 

the most similar genes between genome A and genome B. The Basic Local Alignment Search 

Tool (BLAST) can find regions of local similarity between sequences. The program compares 

nucleotide or protein sequences to sequence databases and calculates the statistical significance 

of matches. BLAST can be used to infer functional and evolutionary relationships between 

sequences as well as help identify members of gene families. 

Although the basic idea seems simple, there are several uncertain factors to the prediction 

model. First, how does one decide if genome A and genome B are similar enough? Apparently, if 

we use non-similar genomes in the predicting model, no interesting results will be expected. 
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Second, how does onbe decide the threshold for the gene similarity? BLAST will calculate the 

statistical significance of matched sequences. We will need to decide a threshold to assign the 

result into binary categories. Third, is there any other information that can help us prepare the 

prediction model? 

Regulatory networks predication model is an interesting topic. We may expand our system 

to make some attempts to build a predication model for regulatory network construction. 
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