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As the result of decades of active research, tremendous amount of experimental data are
available on gene regulatory networks. The ability to dynamically visualize the complex data and
logically integrate the knowledge related to gene function, gene regulation, and biomedical
evidence would be useful for individual researchers to keep up with all the information and
would provide a global view about gene regulatory networks.

In our research, we present the framework of a gene regulatory networks system (GRNS).
GRNS automatically mines biomedical literature to extract gene regulatory information (strain
number, genotype, gene regulatory relation, and phenotype), automatically constructs gene
regulatory networks based on extracted information, and integrates biomedical knowledge into
the regulatory networks.

First, GRNS uses an automated text mining technique to extract information about
regulatory networks from the collection of biomedical texts. GRNS extracts five kinds of gene
regulatory information: strain number, genotype, gene regulatory relation, phenotype, and
unrecognized sentence. Based on the extracted gene regulatory information, GRNS can
automatically construct and visualize gene regulatory networks. Second, to provide researchers

with a clear and global view about the regulatory networks, GRNS uses an interactive
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visualization method to integrate biomedical evidential information into the regulatory networks.
Once a user clicks an entity or a relation of interest, the query interface returns a detailed
information page about the clicked entity or relation. GRNS logically integrates the knowledge
related to gene function, gene regulation and biomedical evidences, collects genetic evidences,
biochemical tests, sequence based predications or biomedical literatures and links this
information with regulatory relationships and regulatory entities data. Third, GRNS provides
analysis tools for gene regulatory networks. The analysis tools include the frequent graph mining

tool and the gene relation predication tool.
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CHAPTER 1
INTRODUCTION

Motivation

After decades of active research, tremendous amounts of experimental data are available
on the gene function and their regulation in different genomes (Shatkay, et al., 2003; Cohen, et
al., 2004; Goodman, et al., 2004; Woods, et al., 2004). The experimental data is embedded in
tens of thousands of published literature and it is difficult for the individual researcher to extract
a comprehensive view of the gene function and regulation in different genomes. Research on
different genomic sequences within recent years has resulted exponential growth of related
literature (Cohen, et al., 2005; Hirschman, et al., 2002). To help individual scientists to keep up
with all the new information, a complete system that not only compiles the experimental
evidences but also logically integrates the knowledge related to gene function and regulation is
desired.

Background

"A gene regulatory network is a collection of DNA segments in a cell which interact with
each other and with other substances in the cell, thereby governing the rates at which genes in the
network are transcribed into mRNA" (Jong, et al., 2002). The regulation can be at different
levels --- the transcriptional level (activation or repression), the post transcriptional level (mRNA
stability), and the translational or post-translational level (protein-protein
interaction/modification) (Fig 1-1). These gene regulatory networks provide researchers with a
global view on the function of genes and the relationships among several regulatory elements
and facilitate the acquisition of relative information and design of future experiments. There are

several ways to construct and simulate gene regulatory networks. We can construct gene
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regulatory networks by the experimental method, by the mathematical models method, by the
rule-based knowledge method, or by the text mining biomedical literature method.

Experimental Method

Using the experimental method is the most direct way to find the regulatory relations
between genes/proteins. A lot of biologists exploit this path to find out the regulation
information. The experimental method is also the most accurate way among all the methods to
construct gene regulatory networks. However, the experimental method is usually employed in
finding the relation information among a small number of genes. It is very difficult to find the
regulation relations in a large-scale genome data by this method. The experimental method
usually provides us accurate but a small-scale of regulatory relation information.

Mathematical Models for Regulatory Networks Construction

The recently developed cDNA microarray technology not only provides a large amount of
available gene expression data, but also provides the possibility of using mathematical models to
simulate gene expression data and construct regulatory networks. Various mathematical
modeling techniques have been used, including Boolean networks, Probabilistic Boolean
Networks, Bayesian networks, and other models.

Boolean networks model

The Boolean network model was introduced by Kauffman (Kauffman, 1969) and recently
developed by Shmulevich (Shmulevich, et al., 2002). Interactions between genes can be
represented by Boolean functions that calculate the state of a gene from the activation of other
genes. In the Boolean network model, gene expression only has two levels: ON and OFF. For a
gene, "ON" corresponds to the gene being expressed; for inputs and outputs, "ON" corresponds

to the substance being present. Boolean gene expression networks represent a relatively simple
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model of the gene expression control mechanisms of the cell. However, this model has not
achieved any interesting theoretical results yet.

Probabilistic boolean networks model

Another classical model is Probabilistic Boolean Networks (PBNs) (Shmulevich et al.,
2002), which extends the Boolean network to accommodate more than one possible function for
each node and has the ability to handle data and the model selection uncertainty. PBNs combine
several promising Boolean functions to predict a target gene. The Markov Chain theory can be
used to analyze the dynamics of PBNSs.

Bayesian networks model

"A Bayesian network (also known as causal probabilistic networks) is an annotated
directed acyclic graph that encodes a joint probability distribution of a set of random variables"
(Friedman et al., 2000). The features of the Bayesian network model include, providing clearly
depicting dependencies and independencies between variables, providing a probability
distribution and combining machine learning and uncertainty. However, the strictly mathematical
assumptions of the Bayesian network model do not always hold in gene expression data.

All of these mathematical models, Boolean networks, Probabilistic Boolean Networks
or Bayesian networks, have some promising features in regulatory networks construction. But
almost all of these mathematical models need strictly mathematically assumptions and these
assumptions may not hold in gene expression data. Besides, the constructed regulatory networks
are difficult to validate. Many mathematical models are developed to simulate the gene
expression data and construct regulatory networks. It is still uncertain if they are good enough to

present the gene expression data.
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Rule-based Method for Regulatory Networks Construction

Another method to regulatory networks construction is the knowledge-based or the rule-
based simulation method (Brutlag. et al., 2000). Basically, a rule-based method has two
components, a set of facts and a set of rules stored in a knowledge base. The rule-based method
can deal with a richer variety of biological knowledge. However, it has the difficulties in
maintaining the consistency of a knowledge base and incorporating quantitative information.
Although there are some attempts to use this method, it is not as popular as other methods.
Text Mining Biomedical Literature for Regulatory Networks Construction

Another method to construct regulatory networks is by text mining biomedical literature.
A text mining system searches for entities, relationships among them, or other specific objects
within text documents (Nenadic, et al., 2003; Liu, et al., 2003; Afantenos, et al., 2005; Yandell,
et al., 2002). Each document is processed to identify and/or extract possible meaningful and
content bearing entities and relationships. This text mining method has several advantages over
other methods:

1. It can process a large set of biomedical literature. Therefore, it can construct regulatory
networks representing large-scale genome data.

2. It extracts evidential information from biomedical literature. Biomedical literature usually
records experimental methods and evidence in discovering the gene regulation relations.
The experimental method is still the most accurate way to find gene regulation relations.
Therefore, if we can extract the information from biomedical literature correctly, we can
get the most accurate regulation relations information as well. The correctness of the
regulation relations information in the text mining method is better than other
mathematical models or rule-based method.

3. There is a large amount of biomedical literature available. For example, the PubMed
database contains information for over 12 million articles and continues to grow at a rate
of 2000 articles per week. The text mining method has enough resources to extract the
useful information and construct gene regulatory networks.

We have decided that the text mining is the best method to construct the gene regulatory

networks, for text mining is based on the existing experiment results. All other modeling
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methods use mathematical or computational models which may be unrealistic. These models
have not been proven that they can totally represent the biological simulation the processes. They
have used a lot of assumptions, which are usually not always true in real biological world. But
the text mining method uses the result in the biomedical literature , which has been accumulated
throughout the years by biologists. The biomedical literature describes the gene regulatory
information based on the real experiment results. The experiment method has been proven that it
is most direct way to find the gene regulatory relation. In the other hand, the text mining method
summarizes gene regulatory network for a large set of genes and species, which the experiment
results have accumulated. The text mining method is useful only when it achieves high precision
in data extraction. Only highly precise data can provide the ability to construct useful gene
regulatory networks. In this dissertation, we provide a framework of the text mining method to
construct gene regulatory networks.
Objective

Our objective was to extract the gene regulatory information from a large biomedical text
collection, then constructed and analyzed the gene regulatory networks based on the information
we retrieve from the biomedical text collection. To achieve this goal, we built the gene
regulatory networks system (GRNS for short). First, the GRNS can automatically extract the
gene regulatory information from a collection of unstructured biomedical text; second, based on
extracted information from the biomedical text, the GRNS can construct and visualize regulatory
networks; third, the GRNS can analyze regulatory networks data, for example, finding a frequent
pattern and predicting new gene regulation relations. To achieve the goal of GRNS, the text

mining and visualization techniques are used.
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Approach and Related Work

In recent years, the extraction of knowledge from biological literature has received
considerable attention. For example, Blaschke et. al. (Blaschke et. al., 1999) used the statistical
"bag of words" approach to the extraction protein-protein interaction. Bengio, Y. (Bengio, Y.
1993) build a Memory-based learning (MBL) system to do the text mining. Yakushiji et. al.
(Yakushiji et. al., 2001) designed an information extraction system using a general-purpose full
parser. Friedman et. al. (Friedman et. al., 2001) presented a GENIES system which extracts
structured information about cellular pathways from biomedical literatures. Marcotte et. al.
(Marcotte et. al., 2001) showed a Bayesian approach of mining literature. McDonald et. al.
(McDonald et. al., 2004) developed an Arizona Relation Parser for extracting gene pathway
relations. Chun et. al. (Chun et. al., 2005) introduced a system to extract disease-gene relations
from Medline by using a dictionary matching with machine learning-based named entity
recognition approach. Hu. et. al. (Hu. et. al., 2005) developed a rule-based system RLIMS-P to
do the database annotation of protein phosphorylation. Yuan et. al. (Yuan et. al., 2006)
developed a web-based version of RLIMS-P. Saric et. al. (Saric et. al., 2005) presented a rule
based approach for extracting information from biomedical text.

There are two most used methods to extract biological knowledge: either a statistical
method based on co-occurrences of proteins or genes, or a rule-based extraction method.
Statistical methods are good at locating potential protein-protein interactions. But, they usually
cannot provide a clear classification of interaction information. Rule-based relation extraction
methods can achieve good precision and recall if the manually developed pattern is good. For
example, Hu et. al. developed very good pattern templates to extract protein phosphorylation
information. But it is difficult to build a set of complete pattern templates even for a biological

expert. In this dissertation, we provide a framework of a rule-based method with the help of
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potential informative sentences discovering. Therefore, new templates and rules can be
incrementally supplemented.

To help researchers understand the complex regulatory networks, a good visualization
tool is necessary. The visualization of gene regulatory networks is another open field in analysis
of biological networks. Only recently, various bioinformatics tools became available for
visualization regulatory networks or metabolic pathways, such as Pathways Database System-
http://nashua.cwru.edu/pathways (Krishnamurthy et al., 2003) ; VitaPad: visualization tools for
the analysis of pathway data -http://bioinformatics.med.yale.edu (Holford et al., 2005);
BioMiner—modeling, analyzing, and visualizing biochemical pathways and networks--
http://www.zbi.uni-saarland.de/chair/projects/BioMiner (Sirava et al., 2002); The Pathway Tools
Software (Karp et al., 2002); Graphical interface to the gene network database GeNet-
http://www. csa.ru/Inst/gorb_dep/inbios/genet (Serov et al., 1998); PATIKA web: a Web
interface for analyzing biological pathways through advanced querying and visualization-
http://web.patika.org (Dogrusoz et al., 2006). These bioinformatics tools are good at pathway
visualization or pathway information query. However, these visualizations or query tools are not
sufficient for researchers to understand the complex relationships among various biological
subsystems. In the GRNS, we provide an interactive way to browse regulatory networks. Users
can not only browse the networks but also access the related regulatory entities, the biomedical
evidences by simply clicking a regulatory entity or regulatory relationship on the networks.
Once a user clicks on the entity or regulatory relationship, a query interface returns a detailed
information page to the user. Moreover, for every query, GRNS automatically generates a

visualized result, giving the user a more clear view about relationships of the query entities. In
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this way, GRNS logically integrates the knowledge related to gene function, gene regulation and
biomedical evidence.

To help researchers analyze the regulatory networks, some analysis tools are needed. For
example, a tool for mining the biologically meaningful patterns is useful to discover common
motifs of cellular interaction and evolutionary relationships (Lawrence et al., 1993). We model
regulatory networks by directed graphs, which represent the entry elements in vertices and the
relations between entry elements as directed edges. Now we can convert mining problems in
regulatory network into graph mining problem. In general, solving the frequent graph mining
problem in a large graph database is not an easy task. Subgraph isomorphism, already known as
an NP-complete problem, plays an important role in the computation of frequent subgraphs
mining. To reduce this problem, we use the simplifications of utilizing unique vertex labels.
With this simplification, we reduce the frequent graph mining problem to the frequent item sets
mining problem. Item sets problem is a well-studied problem in data mining field, and there are
several well-known algorithms to deal with the frequent item set mining problem. Among them,
Apriori (Agrawal et al., 1994, 1995) is one of the most efficient algorithms. In recent years,
based on the idea of reducing normal graph mining to frequent item set mining, several such
algorithms have appeared (Koyutiirk et al., 2004; Kuramochi et al., 2004; Inokuchi et al., 2003;
Sartipi et al.,2001). But none of these algorithms show how to deal with inexact match graph
mining. Inexact match graph mining is important because in most real applications (especially in
the regulatory networks), due to the effects of noise, distortion, sampling error, or lack of known
fixed patterns, many of the interesting subgraphs would show up slightly different. In this
dissertation, we provide some heuristic methods to deal with inexact matching graph mining.

Research Contributions

The contributions of my research are three-fold.
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First, we propose a rule-based text mining method to extract gene regulatory information
by analyzing full-length biomedical text. The gene regulatory information includes gene
regulatory relation information, strain number, genotype and phenotype information. Most text
mining biomedical literature systems only provide methods to extract gene relation information.
We use the strain table content extraction method to extract the strain number and genotype. We
provide supplement rules to extract phenotype information. Strain number, genotype, and
phenotype information provide supplemental evidence information for extracted gene regulatory
relation information and help the researcher understand and validate the extracted gene relation
information. We also provide a method to discover potential informative sentences. Experts can
find potential new rules based on the unrecognized but informative sentences. This method is
useful since it is difficult for a system to provide complete rules and templates sets in the
beginning.

Second, we provide automatic constructs gene regulatory networks methods based on
graphical representation schemas and graph visualization algorithms. Vertices and edges in
regulatory networks link to the related phenotypes of gene mutants information. Phenotypes of
gene mutants are recorded directly from the results of published papers. The function and
regulatory role of each gene is based on the conclusions of the literatures and supplemented with
sequence-based predictions. Moreover, for every query, we automatically generate visualized
results, giving the user a clear view about the query entities. In this way, GRNS logically
integrates the knowledge related to gene function, gene regulation, and biomedical evidence.
Most other systems provide visualization of gene regulatory network, but do not link it to relate
information in an interactive way and lack the ability of automatically generating the

visualization result for every query result.
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Third, we not only extract gene relation information from the biomedical text, we also
provide analysis tools for the extracted information. The frequent pattern mining tool in GRNS
extend some previous work on graph mining to inexact match graph mining which is important
for real application. It also provides some heuristic methods to reduce the computation time
comparing with other inexact algorithms. The gene relation prediction tool can predict potential
gene regulatory relations based on current gene relation information in the database and

prediction algorithm.
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DNA ———» BMNA ———» mRMNA ——— = protein ————smodified
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(a) transcriptional level

(b)  post transcriptional level
{c) translational level

(d) post translational level

Figure 1-1. Regulation of gene expression at different levels. a) transcriptional level b) post
transcriptional level c) translational level d) post translational level.
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CHAPTER 2
SYSTEM OVERVIEW

In this chapter, we present the GRNS system overview, including the system architecture
of GRNS, the data modeling of GRNS, the visualization modeling of regulatory networks in
GRNS and the description of the experimental dataset-- Pseudomonas aeruginosa Genome.

System Architecture of GRNS

The system architecture of GRNS is shown in Figure 2-1. The GRNS employs two kinds
of Database - Local Database and External Database. The Local DB of GRNS consists of five
kinds of databases. Gene Database (GDB) stores the basic information about genes, proteins and
products. English Dictionary DB stores information about English words, including synonym:s.
Rule DB stores information about text mining rules and templates information. Regulatory
Network Database (NDB) stores the information about regulatory networks, such as subsystem
information and regulatory relation information. Reference Information Database (RDB) stores
the information about reference papers and biomedical evidence, such as genotypes, phenotypes,
and strain names. The external DB resource includes some general database resources, such as
GeneBank' and SWISS-PROT (Boeckmann, et al., 2003). It also includes some specific
organism resources, for example, Pseudomonas aeruginosa Genome Database’ (Stover, et al.,
2000) for Pseudomonas aeruginosa Genome.

GRNS consists of three subsystems -- Text Mining Biomedical Literature Subsystem,
Online Tools Subsystem, and Analysis Tools Subsystem. The structure of Text Mining
Biomedical Literature Subsystem consists of four modules, Knowledge Collection and the

Creation Module, the Pre-Processing Module, the Information Extraction Module (IE for short),

! http://www.ncbi.nih.gov/Genbank/

? http://www.pseudomonas.com/
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and the Post-Processing Module. The tasks of the Knowledge Collection and the Creation
Module include: first, integrating external database data into the local database; second, creating
the templates and rules knowledge for the Information Extraction Module. The Pre-Processing
Module downloads the full-length biomedical texts from PubMed Database and sends the corpus
of texts to the IE Module. First the IE Module does strain-number and genotype information
extraction. Then IE Module does the tokenization, sentences splitter and Part of Speech tagging.
Then the IE Module recognizes the gene, the protein entities, and discriminating words from the
corpus of texts. Then it extracts the relation, the phenotype, and other kinds of entities based on a
rule-based approach. Finally, the extracted information is normalized based on the normalized
rule. After the IE Module processes the collected text, the Post-Processing Module first
automatically constructs the regulatory networks based on the extracted information and specific
existing knowledge, such as gene functional classes’ knowledge and subsystem knowledge. Then
the Post-Processing Module saves potential informative sentences into the database. Experts can
browse these potential sentences and may create new kinds of rules for later use.

Online Tools Subsystem consists of three layers. The top layer of the Online Tools
Subsystem is Web-based User Navigation Interface (WUNI), including three parts: web-based
browsing, web-based querying engine, and the online building or editing regulatory networks
module. The user can browse, build, or edit regulatory networks. The user can also query the
functional role, the regulatory relationship between genes, or the reference information. The
query engine links various gene information, relation information, reference information, and
regulatory network information together and returns the detailed information in a HTML page as
well as a visualized graphical result to the user. The middle layer of the Online Tools Subsystem

is WWW service layer, including several functional modules, such as the visualization module
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(VM), the query analysis module (QA), and the network construction module (NC). These
functional modules process the user requests from WUNI, communicate with the bottom layer
local database, and return the results to WUNI. At the bottom layer of the Online Tools
Subsystem, GRNS implements a relational database system -- the Local Database.

The Analysis Tools Subsystem includes the frequent pattern mining tool and the gene
relation prediction tool. GRNS uses an export module to export regulatory networks in
Regulatory Networks DB to a standard format. The frequent pattern mining tool reads the
exported regulatory networks and uses an inexact match graph mining schema to find the
frequent patterns. The frequent pattern mining tool is a standalone tool. It can mine not only
frequent patterns in the Regulatory Networks DB but also frequent patterns in other external
databases, for example KEGG (Kyoto Encyclopedia of Genes and Genomes)®. The gene relation
prediction tool uses the prediction algorithm to predict the potential gene relation information
based on the current gene relation information in the database.

Data Modeling of GRNS

One objective of GRNS is to automatically extract the gene regulatory information from a
collection of unstructured biomedical text. Here, the biomedical text is any research paper.
Usually these papers are downloaded from the PubMed database. But what is the definition of
the gene regulatory information, and what kind of data are we interested in the information
extracting? Basically, GRNS extracts five kinds of data after processing the biomedical text: the
gene regulatory relation information, the strain number, the genotype, the phenotype, and

unrecognized sentences. A detailed explanation is shown in Table 2-1.

> www.kegg.com
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Why we need these five kinds of data? Clearly, to construct a gene regulatory network, we
need the gene regulatory relation information. The regulation can be at the transcriptional level
(activation or repression), the posttranscriptional (mRNA stability) level, the translational level
or the post-translational (protein-protein interaction/modification) level. We need the strain
number, the genotype, and the phenotype information for the data reliability reason. All this
information is part of the evidence of gene regulation. They help the researcher to validate the
gene regulatory relation information. For unrecognized sentences, it helps us to discover new
rules in the information extraction module.

Visualization Modeling of Gene Regulatory Networks

GRNS automatically provides the visualization of regulatory networks. To do this, we
provide visualization modeling of regulatory networks. Visualized regulatory networks include
two kinds of information, entities and relations. In GRNS, there are seven kinds of entities:
genes, proteins, operons, products, merged-genes, subsystem, and step. An operon is a group of
key nucleotides sequences that are controlled and usually function as a unit. GRNS has simple
operons and complex operons. In a simple operon, there is no relationship between operon’s
genes. In a complex operon, there are relationships between the operon’s genes. Merged-genes
are not natural genes and they are used to improve the layout. Step is used to describe the
biomedical process. A subsystem usually means a group of related functional roles which are
jointly involved in a specific aspect of the cellular machinery. In GRNS, there are more than ten
kinds of relations between entities, such as DNA binding, RNA binding, protein binding, the
two-component regulatory system, the signal molecule production, signal sensing, the product,
the signal/molecule binding, activate, required for and repress. We provide notations and
symbols for visualization modeling of the regulatory networks to generate interactive graphical

regulatory networks for subsystems or the whole genome. These notations and symbols are

26



shown in Figure 2-2. It includes three kinds of information: entities, relations, and color
information for different function classes.

Pseudomonas aeruginosa Genome

Pseudomonas aeruginosa is an environmental bacterium, which causes serious human
infections, especially in those with reduced immunity, patients with Cystic Fibrosis or severe
burns (Larbig, et al., 2002; Dasgupta, et al., 2001; Rossolini, et al., 2005; Shiwani, et al., 1997).
Gram stain of Pseudomonas aeruginosa cells (Todar's Online Textbook of Bacteriology-
www.textbookofbacteriology.net) is provided in Figure 2-3. Pseudomonas aeruginosa Scanning
electron micrograph cells (Todar's Online Textbook of Bacteriology-
www.textbookofbacteriology.net) is shown in Figure 2-4. A complicated regulatory network
coordinates the expression of various virulence genes as well as different functional groups of
genes for an efficient host infection and survival in hostile host environments. Prolonged
treatments with antibiotics often result in multi-drug resistant isolates, which eventually cause
death in the infected individuals.

A large number of virulence genes and regulatory genes encoded by this organism make
this bacterium one of the most successful pathogens on earth. The whole genome sequence of
this microorganism was completed several years ago and is freely available to the public. The
complete sequence of the genome was the largest bacterial genome sequences data, when
published, with 6.3-Mbp in size and encoding 5570 predicted genes. Only 480 encoded protein
functions have been demonstrated experimentally, while the rest, including 1059 strongly
homologous genes functions, demonstrated experimentally in other organisms, 1524 genes
functions proposed based on the presence of a conserved amino acid motif, structural feature or
limited homology, and 2507 genes functions homolog of previously reported genes of unknown

function, or no homology to any previously reported sequences (Stover, et al., 2000). Consistent
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with the observed bacterial adaptability to various growth environments through alteration of the
gene expression pattern, as high as 8% of the genome encodes transcriptional regulators,

In GRNS, we choose Pseudomonas aeruginosa genome as our experimental dataset for
two reasons: first, there is an urgent need to develop new antimicrobial strategies for an effective
control of this deadly bacterium; second, the complete sequence of the genome was one of the
largest bacterial genome sequences data. The GRNS system use genome date independent
methods, which makes it easy to apply the GRNS to the other genome by importing other

genome related names to the local database.
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Table 2-1. Explanation of gene regulatory data.

Name

Explanation

Example

Gene regulation relation

Strain number

Genotype

Phenotype

Unrecognized sentences

Regulation at different level,
including Active, Product,
Modification, Location,
Repress, DNA/RNA Binding,
Two Component,
Signal/Molecular Binding,
Signal Sensing, Required,
Signal Molecular Production,
Protein Binding, Steps

A strain is a genetic variant or
subtype of a virus or
bacterium. The strain-number
is a number to identify the
strain.

The genotype is the specific
genetic makeup (the specific
genome), in the form of DNA
The phenotype of an
individual organism is either
its total physical appearance
and constitution or a
specific manifestation of a
trait

The sentences include gene
name but can not be
recognized as including gene
regulation information.

Fur represses pchR

DH54

IA614 fptA::VTc (FptA-)

Elimination of FptA in IA614
yielding strain DH54 restores
fptA expression to the level
seen in DH143; The loss of
FptA in DH54 actually
alleviated the apparent
repression of pchR expression
observed in [A614.

One potential product ,
dihydroaeruginoate ( Dha ),
was identified in culture
supernatants of iron-limited P.
aeruginosa cells .
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TEXT MINING BIOMEDICAL LITERATURE SUBSYSTEM

In this chapter, we introduce the design and implementation of Text Mining Biomedical
Literature Subsystem in GRNS. First, we present text mining biomedical literature’s problem
definition. Then we provide the design of the Information Extraction Module of the Text Mining
Biomedical Literature Subsystem. Next, we show the running results of the Text Mining
Biomedical Literature Subsystem for one biomedical paper. Then, we supply the evaluation
results of the Text Mining Biomedical Literature Subsystem. In the end, we explain the research
contribution of the Text Mining Biomedical Literature Subsystem.

Problem Definition

Text mining technology is used in GRNS to extract the gene regulatory information from
the collection of biomedical texts. Text mining is defined as the nontrivial extraction of
previously unknown and potentially useful information from texts (Chakrabarti, 2000; Frawley et
al., 1992). In GRNS, we use the text mining technology to extract gene regulatory information
from the collection of biomedical literature. One simple process is shown in Figure 3-1. The
problem of text mining biomedical literature in GRNS is defined as given a collection of
unstructured biomedical documents, using the text mining technology to extract and store the
gene regulatory information to the database. The input, process and output of this problem are
shown as follows:

Input: Biomedical document collections. Most biomedical documents are downloaded
from the PubMed database.

Process: Using text mining technology to compile and analyze the collection of the
document. The text mining technology includes natural language processing and information

extraction.

33



Output: Structured gene regulatory information database entries. The gene regulatory
information includes strain number, the genotype, the phenotype, the gene regulation relation
information and unrecognized sentences.

Information Extraction Module

The Information Extraction Module (IE) is the most important module in the Text Mining
Biomedical Literature Subsystem. A complete text mining process in IE is shown in Figure 3-2.
To clearly explain the Information Extraction Process, we use the sentence "FleQ and RpoN
positively regulate expression of flhA, fliE, fliL, and fleSR genes, among others." (Jyot et al,
2002) as our running example in every step.

Lexicon Construction

Before starting the text mining process, we must build the lexicon. A lexicon is a database
of the vocabulary of a particular domain or a language. Usually, there are two kinds lexicon:
grammar lexicon and semantic lexicon. We build our lexicon as follows: for every word, the
lexicon provides the grammar or semantic part-of-speech tag. We build our grammar lexicon
from Eric Brill's tagger program (Brill, 1995). This tagger program can recognize English words
and numbers and assign the Part-of-Speech tag to these words. Since our experimental data is the
Pseudomonas aeruginosa Genome, we use the Pseudomonas aeruginosa Genome Database
(http://www.pseudomonas.com/) as our main supplement for the semantic lexicon. Besides, we
also add some common biomedical terms (such as gene, operon, binding, active, repress and so
on) in the semantic lexicon. In case of text mining other genomes in the future, we may add
supplemental genome information in the semantic lexicon. Some examples of thegrammar

lexicon and the semantic lexicon are shown in Table 3-1.
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Strain Table Analysis

The strain number and genotype are important gene regulatory information. Usually, there
is a table in the biomedical paper showing all the strains used in the study and their genotypes.
We analyze the strain table and extract the genotype and strain number from the table. One
difficulty in analyzing the strain table is that we do not have a structured table data directly. We
need to extract the table information from the unstructured text. Usually, we do not know where
the table starts, when one table column ends, when one table row ends, and when the table ends.

Fortunately, most biomedical papers provide the strain table in a standard format. For
example, most of the strain table names include "strains" or "plasmids", such as, "Bacterial
strains and plasmids used in this study", "Strains, plasmids, and primers used in this study",
"Bacterial strains and plasmids". If we get one line text like "Table ...strains ... (plasmids) ...",
usually it means a strain table. Next, we need to recognize how many columns in this table and
what the meaning of each column is. In most cases, these columns are also in a standard format.
Most tables include three columns, the first one for the strain number, the second one for the
genotype, and the last one for the reference information. To recognize these columns, we can
follow these patterns. The column name for the strain number usually includes strain or plasmid,
such as, "Strain or plasmid ", " Strain, plasmid, or oligonucleotide ". The column name for
genotype usually includes genotype or description or characteristics, such as, "Description or
sequence", " Characteristics "or "Description". The column name for reference usually includes
the reference or the source, such as, "Reference", " Source or Reference". Based on this
information, we can recognize the column names. The next step is to recognize the strain number
and genotype information. This is a difficult task because we do not have a structured text to
separate every column. But we find out that there are some rules to help us to recognize the

strain number and genotype information. To recognize the strain number, we find out that most
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strain numbers are one word. If the strain number is more than one word, usually the first word
of the multi-words strain number is also a strain number itself. One example of multi-words
strain number is "PAO1 ncr". Here PAOI itself is a strain number. We can find the strain
number in this way: if the first word is not a strain number recognized before, then the first word
is a strain number; otherwise, the first and next word is the strain number. For the genotype, we
do not have a very strong rule to recognize the genotype, but we can recognize the genotype by
recognizing the reference information. Most the reference information is in this format: "this
study" or a number or people name abbreviation. We recognize the reference information first.
Once we find where the reference information and strain number are, all other information in this
line is genotype information. In the end, we need know where the table ends. Usually, when one
table ends, there is one empty line. However, the table does not end after every empty line. If we
read one empty line, then we need to recognize what the next line is after the empty line. If the
next line is the strain number, the genotype, and the reference, then we continually read the table;
otherwise, the table ends.

Tokenization and Sentence Splitter

This process transfers indivisible characters into words and sentences. The text is
transformed in one sentence per line format. The output of Tokenization and Sentence Splitter
for our running example is shown as follows:

FleQ and RpoN positively regulate expression of flhA , fliE , fliL , and fleSR genes ,
among others .

Part-of-speech Tagging

Part-of-speech tagging (POS tagging or POST), also called grammatical tagging, is the

process of marking up the words in a text corresponding to a particular part of speech, based on

both its definition, as well as its context, that is, the relationship with adjacent and related words

36



in a phrase, a sentence, or a paragraph. A simplified form of this is in the identification of words
as nouns, verbs, adjectives, adverbs, etc. To tag the words with POS labels, we use the Brill part-
of-speech tagger(Brill, 1995).The output of POS Tagging for our running example is shown as
follows:

FleQ/NNP and/CC RpoN/NNP positively/RB regulate/VB expression/NN of/IN flhA/NN
J/, THE/NN ,/, fliL/NN ,/, and/CC fleSR/NN genes/NNS ,/, among/IN others/NNS ./.

Term Recognition and Variant Detection

After POS tagging, IE performs term recognition and variant detection to recognize
discriminating words and Gene/Protein names. Discriminating words recognition is relatively
simple: given the pre-defined words set, with the detection of synonym and different verbal
form, we can detect the synonym with the help of a synonym dictionary and label the
discriminating words with any verbal form. Recognizing the Gene/Protein names is challenging.
We need to take care of the problems of the expanded form of abbreviation, homology and
aliases. To deal with these problems, we use a gene-dictionary of aliases and abbreviation. We
construct the gene-dictionary by combining multi-database recourses, such as the SWISS PROT
and the Pseudomonas aeruginosa Genome Database. The output of term recognition and variant

detection for our running example shows as follows:

<s>
FleQ nnpg
and CC
RpoN nnpg

positively RB
regulate regv

expression  expr
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of IN

flhA nnpg
fliE nnpg
fliL  nnpg
and CC

fleSR nnpg
genes NNS
among IN
others NNS
</s>

Relation and Phenotype Identification

We use the cascaded finite state automata to recognize the gene regulatory relation and
phenotype information. The cascaded finite state automata are implemented by a CASS parser
(Abney, 1996). CASS parser is a robust and speedy partial parser. Our rules for gene regulatory
relation and phenotype information recognition are written in the CASS grammar. Some
previous systems also use the CASS parser to recognize the regulatory gene/protein relation
information. The most famous one is the STRING-IE system in EMBL project (Saric et al.,
2005). We follow some basic grammar in STRING-IE with some supplemental grammar rules.

For example, there are some examples of our CASS grammar in finding the gene regulatory
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relations shown in Tables 3-2, 3-3, and 3-4. These examples can-not be recognized by the
STRING-IE CASS grammar. The first line of these tables is the grammar we provide for the
CASS parser. The next line is the meaning of this grammar. Then we provide a real sentence
from a biomedical paper, the parse tree after being parsed by the CASS parser. In the end, we
provide the extracted gene regulatory relation information.

Unrecognized Sentences Detection

It is difficult to build up complete rules to recognize all entities and relations. IE stores the
potential sentences to detect possible template candidates. Experts can create new templates
based on template candidates’ information. We choose the template candidates in this way: if a
sentence includes gene/protein names and fails to match the existing pattern, we assign this
sentence as a template candidate.

Normalization

The relation and all the entities are normalized based on normalization rules. Some
normalization examples are shown in Table 3-5.

Automated Construction and Visualization of Regulatory Networks

After the IE Module, the Text Mining Biomedical Literature Subsystem constructs the
regulatory networks based on the entity and relation information extracted from biomedical
literature. GRNS provides an automatically interactive visualization method to visualize and
integrate the biomedical evidence to the visualized regulatory networks. Interactive visualization
of regulatory networks provides an interactive way to browse the regulatory networks.

Results

We show the text mining results for the paper--" Biosynthesis of Pyochelin and
Dihydroaeruginoic Acid Requires the Iron-Regulated pchDCBA Operon in Pseudomonas

aeruginosa " in the Text Mining Biomedical Literature Subsystem (PMID: 8982005) (Serino et.
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al, 1997). The results include strain number and genotype information in Figure 3-3. The gene
regulatory relation information is shown in Figure3-4. The phenotype information is shown in
Figure 3-5. The unrecognized sentences are shown in Figure 3-6. The visualized gene regulatory
network based on the extracted gene relation information is shown in Figure 3-7.

Evaluation Results

Currently, thousands of genes and relationship data about P. aeruginosa have been
collected from more than 200 full-length papers (Greenberg, 2000; Mattick, 2000; Kanehisa,
2000;Wu et al., 2005; Wu et al., 2006). We use precision and recall to evaluate the results of the
Text Mining Biomedical Literature Subsystem. Precision and recall are the most common
parameters when evaluating the IE system. Precision is to evaluate whether the system can only
extract correct information, recall is to evaluate whether the system can recognize all useful
information (Shatkay et al, 2003). The definition of precision and recall is shown as follows:

Precision = number of correctly extracted entities / number of total extracted entities

Recall = number of correctly extracted entities / number of all correct entities

To evaluate the precision and recall of the extracted information, it is necessary to
manually analyze all information in the corpus and compare them with the extracted information.
There is no automatic tool that can differentiate the correctly extracted entities from
unrecognized but correct entities. We randomly select 20 papers from our current corpus and
provide the evaluation results in Table 3-6. From the evaluation results in Table 3-6, we can see
that the Text Mining Biomedical Literature have high precision and good recall in extracting
relation information and other gene regulatory information.

Comparison with Other Biomedical Text Mining System

In this section, we show the comparison result in our text mining subsystem with other

biomedical systems.
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STRING-IE

The STRING-IE system in EMBL project (Saric et al., 2005) is a rule-based text mining
system. It provides a text mining method to extract the gene relation information from PubMed
database. One example of the STRING-IE result set is shown in Figure 3-8. Comparing with
STRING-IE, our system has several advantages:

4. Our system provides the automatic visualization results for the text mining results. The
STRING-IE system provides the user the parse tree, which is not easy for the user to
understand. Our system can automatically construct and visualize the gene regulatory
networks, which are much easier for user to understand.

5. Our system provides more complete rules for the biomedical text mining. We supplement
some rules, which are not provided by STRING-IE. For example, the grammar extracts
the relations that “gene regulates itself” expression.

6. Our system provides the sentence evidence information for the extracted gene regulatory
relations. So when the user gets the result, he/she also gets why we get the result. The

STRING-IE system does not provide the evidence information.

RLIMS-P

RLIMS-P is implemented by Yuan et. al. (Yuan et. al., 2006). It is a rule based approach
for extracting information from biomedical text. One example of the RLIMS-P result page is
shown in Figure 3-9. Comparing with RLIMS-P, our system has several advantages:

1. Our system can extract the gene regulatory relation for active, repress, product and so on.
The RLIMS-P system can only extract Protein Phosphorylation information. So the

RLIMS-P is limited comparing with our system.

2. Our system provides the automatic visualization results for the text mining results. The
RLIMS-P system only provides the webpage information for the extracted information.

Research Contribution in Text Mining Biomedical Literature Subsystem

There are a lot of similar text mining systems that can extract gene relation information
from biomedical literature, such as STRING-IE system in EMBL project (Saric et al., 2005),
Arizona Relation Parser System (McDonald et. al., 2004). Compared to other systems, our text

mining biomedical literature subsystem mainly has three advantages.
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First, the text mining biomedical literature subsystem can extract the strain number and
genotype, and the phenotype information from the full-length text. Most text mining systems can
extract information from the collection of abstracts. Full-length texts analysis is more
complicated and difficult. Moreover, extracting useful information from tables is challenging
since most of the biomedical articles are unstructured texts. In our system, we can not only mine
full-length text but also extract the strain number and the genotype information from the strain
table, and extract the phenotype information from the full-length text. The strain number and
genotype, and the phenotype information are good supplemental evidence for the gene regulatory
relation information.

Second, we extend the CASS Grammar provided by STRING-IE system (Saric et al.,
2005). STRING-IE system offers an organized and useful CASS grammar for biomedical
literature mining. However, some important gene relation patterns can not be extracted using the
STRING-IE grammar. We supplement some new CASS grammars to help our system recognize
more relation information.

Third, most systems provide visualized results for extracted gene relations. But they do not
integrate all related information or provide all related information in an interactive fashion. In
our system, we link gene information, relation information and mutant information (genotype,
phenotype) together and put all information in interactively visualized gene regulatory networks.
A user can click entities or relations in the gene regulatory network and receive a collection of

related gene regulatory information.
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Table 3-1. Lexicon examples.

Word Grammar Tag Semantic Tag
regulate RB regv
expression NN NN

flhA NN NNPG

fliE NN NNPG

Table 3-2. CASS grammar examplel.

Grammar

ex_reg -> nxpg (cma? wdt?) (rb)* (cma? neg?) (vx?) (rb)*
(VERB) ownexpr

Explanation
Example sentence
Parse tree

Action

One possible gene relation is gene A regulate its own expression.
PchR negatively regulates its own expression
<§>
[ex_reg
[nxpg
[nxpg
[nxpg
[nnpgx
[nnpg PchR]]]]
[neg negatively]
[regv regulates]
[ownexpr
[prps its]
[own own]
[expr expression]]]
[per .]
</s>
<PchR> <REPRESS> <PchR>
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Table 3-3. CASS grammar example2.

Grammar

ex_regvd -> nxpg comp? vx nxpg regvd;

Explanation
Example sentence

Parse tree

Action

Gene A is regulated by gene B.
Four promoters (flhA, fliE, fliL, and fleSR) that were RpoN and
FleQ regulated were selected for this study.
[ex regvd
[nxpg
[nxpg
[nxpg
[nnpgx
[nnpg flhA]]
[cma ,]
[nnpgx
[nnpg fliE]]
[cma ,]
[nnpgx
[nnpg fliL]]
[cma ,]
[cc and]
[nnpgx
[nnpg fleS]]]
[cc and]
[nxpg
[nnpgx
[nnpg fleR]
[sym)]]]1]
[comp that]
[vx
[bedr were]]
[nxpg
[nxpg
[nxpg
[nnpgx
[nnpg RpoN]]
[cc and]
[nnpgx
[nnpg F1eQ1]11]
[regvd regulated]]
<RpoN> <REGULATED> <flhA>, <RpoN> <REGULATED>
<fliE>, <RpoN><REGULATED> <fliL>, <RpoN>
<REGULATED> <fleSR>, <FleQ> <REGULATED> <flhA>,
<FleQ> <REGULATED> <fliE>, <FleQ> <REGULATED>
<fliL>, <FleQ> <REGULATED> <fleSR>
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Table 3-4. CASS grammar example3.

Grammar

locate_gene (vx?) (ADV)* (vx?) (tb)* (VERB) (in | of | by)
nxpg,

Explanation
Example sentence

Parse tree

Action

Gene A located in upstream/downstream Gene B Relate gene C.
fimS located immediately upstream of algR is also required for
twitching motility
<s>
[ex reg at
[locate gene
[nxpg
[nxpg
[nnpgx
[nnpg fimS]]
[vbn located]]]
[rb immediately]
[upstream upstream]
[of of]
[nxpg
[nxpg
[nnpgx
[nnpg algR]]]]]
[vx
[bez is]]
[rb also]
[requvd required]
[in for]
[nxpg
[nxpg
[nxpg
[nnpgx
[twitching twitching]
[motility motility]]]]]]
</s>
< twitching motility> <REQUIRE> <fimS>
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Table 3-5. Normalization examples.

Terms/Relations Normalized terms/Relations

Normalized Type

Pseudomonas quinolone signal PQS

Operon fleSR fleS, fleR
Gene A is repressed by Gene B Gene B repress Gene B

Gene A negatively regulate Gene A repress Gene B
Gene B

mapping of expanded forms to
acronyms

mapping of operon to the list
of genes

Mapping relation information
in stand form

Mapping relation name in
stand form

Table 3-6. Evaluation result for text mining biomedical literature subsystem.

Name Precision Recall
Strain number 0.93 0.92
Genotype 0.90 0.89
Gene regulatory relation 0.91 0.79
Phenotype 0.87 0.74
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Unstructurad Text Mining
Structured Gene

Collection of
Tesxis

Regulatory Information
Entries

Figure 3-1. A simple text mining process.
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Step1. Strain Table Analysis

Analyze the strain table in the biomedical text,
extract Strain-number and Genotype
Information from the table.

Step3. POS Tagging

This process takes the tokenized text as
input, and assign every word a part-of-speech
tag.

Step5. Variant Detection

Recognized expanded form of abbreviation,
homology and aliases,

Step7. Unrecognized Sentence Detection

Detect unrecognized but potential informative
sentences.

Figure 3-2. A complete text mining process in IE.
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pIES0ET Suicide wector; Ter, ColEl replicon

pLAFRS carrying a 28-kbh BarnHI-HindIII fragment of P. aetuginosa PAOT DHA,
cortaining the structural genes for salicylate and pryochelin biosymthesis

pIESE1S PRF10 carrying a 6.7-kb Belll-Kpnl fragment containing the pehDCBA genes
pIESE1E PIF10 canrying a 4.6-kh EcoRI-Sall fragrnent containing the pechDCBA genes

pIE3300

pBluescript carrying a 953-bp Xrnal-EcoRI fragment (EcoRI site from Tnl 725 insertion

pIIES349 oy
pET240 cavrying a 3.7-kb EeoRI-Diral fragrnent containing pehD9-91aef dermved from
PMESLZZ  M4R0: Chrbpr
pHTLI4E0 Apr, ColE] replicon, QlacEV]
pFL0 Broad-host-range vector, ColEl-pRO1A0DD replicon;, Apr Ter
517-1 thi pro hedR. rech ; cheomosormal BP4 (Tral Tes Kms Aps)

Z11-Blue rech] lac endd ] gyrs 06 thi hedR17 supE44 rel 1FD (prof 1B lacly laeZADR15 Tnl0)

Figure 3-3. Strain number and genotype information extracted from paper "Biosynthesis of
pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon
in Pseudomonas aeruginosa".
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Felation Sentence

Excess iron represses synthesis of pyoverdin | salicylate |, and

salivylate prochelin in P asrginosa
] . Exress ivon represses synthesis of prroverdin , salicylate | and
Hen REPRESS pyoverdin pochelinin P asrginosa
- REPRESS pyochslin Eucess iron represses.sgmthesm of prroverdin, salicylate | and
pyochelinin P, asmginosa
Fur REPRESS pehb. Fur represses transcription of pehB
iron REPRESS Fpts iron represses Fpth

pwochelin BEQUIRE  PehR. PehE. iz recpuired for symthesis of pyochelin and porochelin
PchE. REPRESS PehB. PehB. negattvely regulates its 0w expression

PandS | putattee sigrna factor | and PechB. | merber of Lral faraily
Fards REGULATE prochelin  of transcriptional activators | are positive regulators of pyroverdin
and prrochelin symthesis

PardS | putattve sigroa factor | and PochB. | merber of Sral farodly
FchE. REGULATE pyochelin | of transcriptional activators | are positie regulators of pyroverdin
and prochelin symthesis

FerdS | putattve sigma factor, and PehR. | merber of AraC farly
FchR REGULATE pyoverdin of travscriptional activators | ave positive regulators of prroverdin
and pryochelin symthesis

FerdS | putatrve sigma factor , and PehR. | merdber of AraC faruly
Fonds REGULATE pyorerdin of transcriptional actreators | are positive regulators of prroverdin
and prochelin symthesis

Prrochelin and Dikia Becpnives [ron-Fegulated pehD and pebiC and
Pryochelin BEEQUIRE  pehD pechB and peht Operon in Peendomonas astginnsa

Prochelin and Dha Recuires Iron-Fegulated pehD and pehiC and
Pyochelin BEQUIRE  pchC pechB and peht Operon in Psendomonas asrginnsa

Pyrochelin and Dha Recuires Iron-Fegulated pehD and pehiC and
Pyochelin REQUIRE  pchB pehB and peht Operon in Psendomonas astginnsa

Prrochelin and Dihia Fecuires [ron-Fegulated pehD and pehis and
Fryochelin FEQUIRE  pchts pehB and pehds Operon in Perendomonas sernginosa

Prrochelin and Dihia Beqnives [ron-Fegulated pehD and pebiC and
Dha REQUIEE  pechd pehB and pehds Operon in Prendomonas aerginosa

Figure 3-4. Part of gene regulatory relation information extracted from paper "Biosynthesis of
pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon
in Pseudomonas aeruginosa".
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Strains
Mumhber | CGeng

Phenotype

The prrochelin standard was isolated as described previously | 13 ) frorn a culture filtrate
of strain PALS12E J phIE3300 grown in DCAL medinrm § 54 ) and purified by HPLC

The salicylate-and prrochelin-negattve roatant PATS128-17 of P. asruginosa is
PATS125-1T  complerented by plas-Downloaded frorm jboasa.org at Univ of Florida on & pril 25,
2007 ¥OL. 179, 1997 PYOCHELIN BIOSYHMTHETIC GEWES pehDCBA TN F

PATSIZR

Three insertions ( desighated 7,8, and 9 ; Fiz. 1 and 2 ) Iying in a 2 5-kb region upstrearn
PALS122-17  of pohB dbolished complerentation of strain PATS122-17 | as did others | insertions 3 |
4, and 6 ) in pechB and pehds which were previonsly descrbed { 545

When the pyroverdin- | salicylate- | and pyrochelin-negative strain PATLS128-17 was
PALSI2E-1T  complernented for pyochelin production , e.g. | by plastid phIE3315 | an orange halo
was formed on CAS agar

PAOAIES Insertion 7 was nzed to constret the rantants PAOAZES and PAOAZES |

The best evidence comes from the salicylate-positiee | Dha-and prochelin-negatrve
phenotype of the pehD roatant PACE2E5 { Table 23 .

The + ingertion rortant PAOEZES did not produce Dhia and prvochelin but excreted
salicylate | albeit in sroall araounts ( Table 23 .

L traneducing Iysate of phage ET9tv-2 was prepared from strain PAOEZEE { pehD
PADEIRA V3m ! 5p ) and used to transduce strains PAOAI04( trpE ), PACSOT { areC ), and
PLOI5] ( prok ) to prototroplor

The VWi f S5p elernent used to constract the pehD roatant PAOEZEE | triangle belowr the

PAOAIES

PLOAZES

SR chrornogome ) 18 showt .
Blusscrint Subclones for DM & sequencing were generated in pBluescript K52 ( Stratagene )by
F F nested deletions using an exonuclease 11T Erase-a-hage kit { Prorega )
pKT240 The pehD2-DacF fusion was inserted on a 3 .8-kb EcoBRI-Diral fraginent into the broad-

host-range wector pE T240 cut with EcoRI and Smal | resulting in phdEA122

Both insertion mmtations were transferred to the chromosorae of the wild-type strain
pRIE30ET PA0O1 { Fig. 1 )by marker exchange +3a the swicide plasrad pIIE30ET { see Iaterials and
Ilethods ) .

The + rtation weas transferred on a 1 6-kh BgllI-EKpnl fragraent | Fiz. 1 ) to the ColE1-

Lt least some genes irvvobved in the transforrmation of cormpound 2 into prrochelin are
pWIE3300 located in the vicinity of the pehBE-pchDCBA region on the cosrdd phIE3Z00( 54 ; our
urpblished results )

& 4 A-kb EcoRI-5all fragrent | obtained frorn plasraid phIE3315 containing transposon

pME33L insertion 2, was cloned into vector pQF10 | resulting in plastaid phIE331E

Figure 3-5. Part of phenotype information extracted from paper "Biosynthesis of pyochelin and
dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas
aeruginosa".
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One potential product | dibsrdroaerginoate § Dha ) |, was identified in culture supernatants of ron-lirated
P aemgminosa cells

antifimgsl antibiotic Diha is thought to arizse from reaction of salicylate with cysteine | followed by
cyclization of cysteine

pehD and pehC and pehB and pehd genes constitute transcriptional unit

full-length pehDy and pehi” and pebB and pehd transeript of ca. 4.4 kb conld be detected in ron-deprved ,
growing cells of P apruginosa .

Psendornonas asrginosa , uhiguitons bacterinm and opportunistic pathogen |, produces three siderophores
durirg growth under iron-lirniting conditions © pyoverdin , salicylate | and pyochelin 2,11, 12 36,
607 .
Figure 3-6. Part of unrecognized sentences extracted from paper "Biosynthesis of pyochelin and
dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas
aeruginosa".

Fur

Pyvochelin pyvoverdin

Figure 3-7. Visualized gene regulatory network for paper "Biosynthesis of pyochelin and
dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas
aeruginosa".
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Figure 3-8. Part of E.Coli result from the STRING-IE system.
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CHAPTER 4
ONLINE TOOLS SUBSYSTEM

In this chapter, we introduce the design and implementation of the Online Tools
Subsystem in GRNS. First, we present several novel algorithms in the Online Tools Subsystem,
and then show several results in the Online Tools Subsystem, including some visualized
regulatory networks in GRNS, query results in GRNS, and an online edit/building regulatory
network interface.

Novel Algorithms in Online Tools Subsystem

In this section, we introduce several algorithms in the Online Tools Subsystem, including
the automated visualization algorithm, the network extraction, and the reconstruction algorithm
(NERA) and several algorithms based on NERA.

Automated Visualization Algorithm

In GRNS, one basic part is the automated graph visualization. With the automated graph
visualization, we can provide researchers with a clear view on the gene functions or the
relationships among several regulatory elements. In GRNS, we use the Graphviz Software
(Gansner, et al., 1993,1999) to do the automated graph drawing. Graphviz uses the dot's
algorithm, which provides an efficient way to rank the nodes, some heuristic approaches to
reduce edge crossings, a scheme for computing the node coordinates as a ranking assignment
problem and a method for setting spline control points. Graphviz can automatically convert a dot
format text document into a directed graph and provide us the convenience of the automatic
graph drawing.

However, the dot's algorithm has some limitations concerning the automatic drawing of the
interactive regulatory networks. The dot's algorithm implements an optimal ranking assignment

with a heuristic weight function and local transpositions to reduce crossings. One basic idea of
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the dot's algorithm is to assign a vertex rank value based on the direct edge. Given the edges, the
layout of the graph is decided. That means, when the relationships information in the GRDB is
given, the layout for an interactive network is decided. However, to obtain a good layout for the
interactive regulatory networks, we need to make some extra effort. First, due to the complexity
of the interactive regulatory networks, we need some ways to save the layout space and give the
users a clear view. Second, because of some requirements of gene relationships, we need a more
specific layout. We need some heuristic methods to improve the layout of interactive regulatory
networks. We introduce three heuristic methods for improving the layout in the visualization of
the regulatory networks in Figures 4-1, 4-2, and 4-3. Some examples of layout of before and
after using these heuristic methods are shown in Figure 4-4. All examples are small portions of
some regulatory networks in GRNS.

Network Extraction and Reconstruction Algorithm (NERA)

The network extraction and reconstruction algorithm (NERA) is another important
algorithm in GRNS. A lot of other algorithms in GRNS are based on NERA. The function of
NERA can be described as follows: if there are a collection of networks, NERA can extract data
from these networks and generate a new network based on the collection of data and some
specific conditions. One example of NERA is: given a collection of regulatory networks, NERA
can generate a new regulatory network, which only includes regulatory relationships and

regulatory entities related to one regulatory entity C. The NERA is described as follows.

Algorithm Name: NERA
Input: 1) A collection of regulatory networks Ry, R;...R,.
2) Type: genes or relations or regulatory networks or reference

3) Subset, a collection of entities, can be genes or relations or
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regulatory networks
Output: new regulatory network N
Entities={};
Relations={};
Operons={};
For every regulatory network R;
{
For every entity e in R;

If e is not in Entities and e is related to Subset, add e to Entities

For every operon o in R;
If o is not in Operons and Operons does not have an operon o’
has same entities with o and o is related Subset, add o to

Operons

For every relation r in R;
If r is not in Relations and Relations does not have a relation 1’
has same meaning with r and r is related to Subset
{ add r to Relations
If entity in r (e or e;) is an operon which Operons not
contain it
{ find an operon o1 in Operon which contain same

entity with el or e2
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Mapping el or e2 to ol

N= { Entities, Relations, Operons};

Based on NERA, there are several other algorithms useful in network reconstruction and
the visualization of query results. The following are two algorithms based on NERA: Merge-

Network Algorithm and Linking Algorithm.

Algorithm Name: Merge-Network Algorithm

Input: A collection of regulatory networks R;, R;...R,,.

Output: New regulatory network N

When there are several regulatory networks for different subsystems,
generate a regulatory network to represents all these regulatory networks
Given subsystem regulatory networks Rj, R,...Ry,

Call NERA({Ry, R;...R;, }, ‘network’, { R;, Ry...R;, }}

One example of Merge-Network Algorithm is in shown in Figure 4-5.

Algorithm Name: Linking Algorithm

Input: a PubMed Paper ID
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Output: new regulatory network N

When we need visualized the query result about a reference paper.

Subset= Entities in this reference paper Union Relations in this
reference paper

Call NERA (all regulatory networks, ‘reference’, Subset)

Results
Visualized Regulatory Networks

Currently, thousands of genes and relationship data about P. aeruginosa have been
collected (Greenberg, 2000; Mattick, 2000; Kanehisa, 2000;Wu et al., 2005; Wu et al., 2006).
Interactive visualization of regulatory networks for eight important subsystems -- Flagella, Pili,
Type III secretion subsystem, Iron acquisition, Quorum sensing, Biofilm, Alginate synthesis and
Multi-drug efflux subsystem -- have been constructed. In this section, we give a global view of
P. aeruginosa, a detailed explanation of the Type III secretion subsystem and the Iron acquisition
Subsystem.

Global view of P. aeruginosa

The global view for Pseudomonas aeruginosa Genome is shown in Figure 4-6. The global
network includes eight subsystems: Flagella, Pili, Type III secretion system, Iron acquisition,
Quorum sensing, Biofilm, Alginate synthesis, and the Multi-drug efflux system. One subsystem
may affect the activation of others. The relationships between different subsystems are presented
as red lines in the network. For example, the Flagella and Pili are required for the Biofilm
subsystems. P. aeruginosa strains with defect in either Flagella or Pili cannot form the Biofilm.
Meanwhile, different subsystems are coordinately regulated by proteins. Since those proteins

regulate many genes in different subsystems, they are named as global regulators. The
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relationships between global regulators and subsystems are presented as black lines in the
network. For instance, a global regulator, Vfr, activates the Pili, the Type III secretion system,
Iron acquisition, and Quorum sensing subsystems and represses the Flagella subsystem.

Type I1I secretion subsystem

The regulatory network of Type III secretion subsystem (TTSS for short) is shown in
Figure 4-7. The TTSS is an important virulence factor of P. aeruginosa: it inhibits host defense
systems by inducing apoptosis in macrophages, polymorphonuclear phagocytes, and cells. The
TTSS contains a syringe like apparatus, which can directly inject the effector proteins from the
bacterium cytoplasm into the host cell cytosol, causing cell death. The P. aeruginosa TTSS
machinery is encoded by 31 genes arranged in four operons on the chromosome. Four effector
proteins, ExoS, ExoT, ExoY and ExoU have been found in P. aeruginosa. According to the
current working model, the needle forms a pole in the host cell membrane, and the effector
proteins are delivered through the hollow needle. Based on published research, we divide the
TTSS translocation process into six steps, as presented in the black boxes. Following the boxes,
we use the "Type III Secretion System" to represent the overall function of this subsystem. We
find that the regulatory network can clearly describe the relationship in the Type III secretion
subsystem.

Iron acquisition subsystem

The interactive regulatory network for the Iron acquisitions subsystem is shown in Figure
4-8. The Iron acquisition subsystem acquires iron from surrounding environment. To do this, P.
aeruginosa produces and secrets an iron-chelating compound, named siderophore. Two types of
siderophores: pyoverdine and pyochelin, are produced by P. aeruginosa. The pyoverdine and

pyochelin synthesis genes and receptors are under the negative control of a regulator-Fur.
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Query Results

In this section, we provide an example of the query results for the PubMed paper --
"Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that
confers resistance to vanadium" (PMID: 12177331), and give an example of the query gene
results for ToxR.

The query results for Pubmed Paper --"Characterization of a new efflux pump, MexGHI-
OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium" -- PMID
1217733 1(Aendekerk et al., 2002) is shown in Figure 4-9. We find that GRNS can summarize all
related information in one page, and automatically visualize related regulatory entities and
relations. In this way, the researcher can have a clear idea about the query paper. Furthermore,
the author can employ GRNS by inputting the relations information about the author's paper.
GRNS can integrate the newly discovered data and merge the data into our gene regulatory
networks. At the same time, GRNS can generate a visualization of those regulatory networks for
the author. When other users query this author’s paper, the visualization results can be returned
to the query users.

The query results for gene "ToxR" is shown in Figure 4-10. We find that GRNS can
summarize all related information in one page, and automatically visualize related regulatory
entities and the relationship related to the query gene. In this way, the researcher can have a clear
idea about the relation information about the query gene. Besides, since all entities and relation
in the visualized result can be interactively clicked, the researcher can get detailed information
about the related entities and the relations.

Online Build/Edit Tool for Regulatory Networks

Part of interface for the Online Build/Edit Tool for Regulatory Networks is shown in the

Figure 4-11. GRNS provides researchers with a web-based user-friendly tool to build regulatory
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networks. Moreover, the automated visualization tool provides the user the visualization of the
network once the user completes the data input. The GRNS also provides automatically
information linking schema to collect all useful information for the regulatory networks. In this

way, the user can take advantage of GRNS without inputting all detail information.
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Star-like Transformation

Reason Using This Method:

When there are a lot of edges like A->H,B->H,C->H,D->H,E->H F->H,
all vertices A,B, C,D.E, F will be in same level, which will use a lot of
space for this level

Method:

When there are a lot of edges like A-»H,B->H,C-=H,D-=H E-=H,
F-=H, we convert into edges into different direction.

e e

Before start-like transformation After start-like transformation
Figure 4-1. Start-like transformation.

Merge Transformation

Reason Using This Method!
When there are a lot of vertices have the same relationship to other vertices,
use merge operation can save a lot of space

Method:
Merge vertices A,B, C,D,E. . into one vertex, this new vertex is a complex vertex
and include all information about A, B, C,0LE. ..

Before Merge transformation After Merge transformation

Figure 4-2. Merge transformation.
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Artificial Levels

Reason Using This Method:
Sometimes, a lot of vertices in one level is not a clear layout.

Method:
Forced vertices in different levels

OO OO OO o O O

Before Artificial Levels After Artificial Levals
Figure 4-3. Artificial levels.
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Figure 4-4. Examples before and after using heuristic methods. (a) before star-like
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merge operation (e) before artificial levels (f) after artificial levels.
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Figure 4-5. One example of merge-network algorithm (a) regulatory network R1. (b) regulatory
network R2. (¢c) new regulatory network N.

65
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Figure 4-6. Global view of Pseudomonas aeruginosa.
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Figure 4-7. Regulatory network of type III secretion subsystem.
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Figure 4-8. Regulatory network of iron acquisition subsystem.
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CHAPTER 5
ANALYSIS TOOLS SUBSYSTEM

In this chapter, we introduce the design and implementation of the Analysis Tools
Subsystem in GRNS. The Analysis Tools Subsystem includes the frequent pattern mining tool
and the gene relation prediction tool.

Frequent Pattern Mining Tool

We first give the problem definition of frequent graph mining. Then we present several
data mining algorithms: RNGV (Regulatory Networks Generation Variation) is for regulatory
networks generation and variation, DFS (Data Mining Frequent Subgraphs) is for data mining
frequent subgraphs, and IGM is for the inexact graph match algorithm. In the end, we provide
several frequent patterns from GRNS and KEGG Database.

Problem Definition

We model regulatory networks by directed graphs, which represent the entry elements in
vertices and the relations between entry elements as directed edges. We define our goal in
mining regulatory networks as discovering a set of frequent subgraphs in a set of regulatory
networks. Given a collection of regulatory networks Rj, Ry, ...R,, a support rate © and an

inexact threshold €, the data mining of frequent subgraphs in a regulatory networks database is to

find all closed connected subgraphs that match exactly or inexactly to at least ©*n of the input of

regulatory networks, with the inexact match threshold €.

A closed (or maximal) subgraph is defined as a subgraph whose super graph does not

have the same frequency in the database. The inexact match threshold € is defined as: given a

subgraph S, a regulatory network R, if we say S is an inexact match to R under a threshold e,

then the minimum cost of a sequence of graph edit operations that must be performed on R to

produce S will be no larger than Size(S)* €. Size(S) is the number of the vertex in S plus the
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number of the edges in S. The graph edit operations include the vertex and the edge deletion,
insertion or re-labeling. In our model, the costs of edit operations are defined as follows:

* Insertion cost: equal to 1 for each insertion of vertex or edge.

* Deletion cost: equal to 0 for each deletion of vertex or edge.

* Re-labeling cost: equal to 1 for each re-labeling of vertex or edge.

The notations we use are shown in Table 5-1.

Frequent subgraphs mining in a large regulatory network database is a particularly
challenging problem. However, using the unique vertices model, we may simplify the graph
mining problem and reduce the exact match problem to the frequent item-sets mining problem.
The frequent item-sets mining problem has been well-studied in the data mining field. There are
several existing algorithms dealing with frequent item-sets mining. Among them, Apriori is one
of the most efficient. Our approach follows the basic structure of the Apriori algorithm, and
makes our additional contributions. We make the revisions for several considerations. First, we
use the item set instead of the adjacency matrix model representation to save space. Second, the
Apriori Algorithm treats the vertex as an item but we treat the directed edge as an item. Besides,
the Apriori Algorithm extends one vertex in each round but our approach extends one edge in
each round. Extending edges can achieve better efficiency.

Regulatory Network Generation and Variation (RNGYV) and Data Mining Frequent
Subgraphs (DFS)

RNGYV (Regulatory Network Generation and Variation) algorithm reads all input
regulatory networks, builds a global index table for all vertices and edges based on the vertex’s
name, then finds all frequent edges, and calls DFS to extend each edge to a larger size frequent

subgraph. RNGV is shown as follows.
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Algorithm Name: RNGV
Input: D, n, O, €
Output: frequent subgraphs sets F
Read in every Regulatory Network R;, build a global vertex table and global edge table,
store every R; using global vertex index and global edge index.
For each edge e; in global edge table
{ if it appears at least n*O, let
Si={ei};
Let C;=Neighbor(e;);
Call DFS (D, S;,C;, 0, €, F);
}

Output frequent subgraphs sets F

DFS is shown as follows. The basic idea is that we treat directed edges as items of
traditional frequent item-sets. DFS uses the depth-first algorithm and increases the size of the

subgraph by extending an edge each time.

Algorithm Name: DFS
Input: D, S, Ci, O, ¢,F
Output: F

for all edges e; € Cxdo

{
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Add e;to V;
Extend Sk to Sk:1 by adding edge { e; };
For every R; in D, Call IGM (Sk+1, R;, €, )
if IGM (Sk+1, R;, €, f) return true in at least ©*n RegulatorNetworks )
Extend successful;
Cir1=(Cx UN(ey)/ V;
DFS (D, Sk+1, Ck+1, 0, €);
b

if ( not extend successful)

{
if Sk is closed then F=F WSy ;

return F;

An example of RNGV and DFS is shown in Figure 5-1. We have a collection of four
graphs. Let © =0.5, ¢ = 0.25. In RNGYV, first, we read in four graphs and build a global index for
vertices {a,b,c,d,e,h,m} and directed edges {ab,ac,bc,bd,bh,bm,de}. Then, we find all frequent
edges {ab,ac,bc,bd}; call DFS for each edge. In DFS, we use the depth-first algorithm and
extend one edge in each time. For edge ab, we can extend successfully to
{ab,ac,bc,db},{ab,ac,bc,bh},{ab,ac,bc,bm}. For any other edge, we cannot find other closed
subgraphs. In the end, we get the closed subgraph sets

{{ab,ac,bc,db},{ab,ac,bc,bh},{ab,ac,bc,bm}}.
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Inexact Graph Matching Algorithm (IGM)

By reducing the graph match problem to the data mining frequent item sets problem, we
get a simplified method mining exact frequent subgraph. We can efficiently mine exact match
frequent subgraphs. However, the utilizing of unique vertex labels is not sufficient for the inexact
match. In the inexact match, we allow a sequence of graph edit operations to be applied on
regulatory networks. Since the inexact graph isomorphism is an NP-complete problem, heuristic
methods are required to reduce the computation time. Our goal here is to efficiently find whether
two graphs are an inexact match. We can reduce the computation time by ignoring some
unimportant matching detail and delete some non-efficient matching sub-solution. In GRNS, two
heuristic methods are proposed to reduce the computation time when computing the inexact
match. The first one is the fast checking mechanism to effectively reduce the running time; the
second one is the bounded search mechanism to limit the size of the search space.

The idea of the fast checking mechanism is as follows: before the next round of edit
operation, we check whether we can finish the computation even if we do not know how these
two graphs are isomorphic and further what the ultimate edit operations sequence is like. Before
we explain how fast the checking works, let us see the definition of insertion-distance.

The insertion-distance of a subgraph S (Vs, Es) and a Regular Networks R (V, E) (shown
as [ dist(S,R) ) is defined as follow:

I dist(S, R)=size(S)—(|Matched(V)[+|Matched(E)|), where Matched (V)=VsNV,
Matched(E)=EsNE.

The meaning of Insertion-Distance between S and R corresponds to a sequence of edit
operations, each of which is to delete every vertex and edge in R which does not appear in S, and
insert the vertex and the edge to R which appear in S but not appear in R. Although the sequence

of edit operations corresponding to the Insertion-Distance may not be the optimal edit operations
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sequence, we guarantee that a regulator network R (V, E) can produce subgraph S (Vs, Es) under
this edit operations sequence. Therefore, we define fast checking in the following way:

A subgraph S is the inexact match to a regulator network R if after a sequence of edit
operations {0j, 02, 03...} with cost m, we get R’ (V’, E’). Given a thresholds €, we have: m+
I dist (S, R”) <= € *size (S).

Fast checking can reduce the computation time. The idea behind the fast checking
mechanism is, in computation for answering whether S is an inexact match to R, it is not
necessary to find an ultimate edit operations sequence. The computation complexity of I dist (S,
R’)is | Es |*log |[E’| +| Vs | *log |V’| if we use the AVL tree store the graph.

Another mechanism we use to reduce computation time is the bounded search mechanism.
We use it to limit the size of the search space. We only keep some good edit operations
sequences as the candidates of the next round search, and prune other bad edit operations
sequences. Given a bounded search factor f (usually between 0 and 1), the bounded search is
described in the following manner:

Given a subgraph S (Vs, Es) and a regulator network R (V, E), after a sequence of edit
operations { 01, 02, 03...} in R, we get R’ (V’, E’) and an edit cost m. We define that R’ (V’, E’)
and { o1, 02, 03...} can be kept to next round if m + [_dist(S, R”) <= f*size(S).

Based on the two heuristic methods introduced previously, we develop the IGM algorithm

as follows:

Algorithm Name: IGM
Input: S, R, e, f

Output: true if inexact matched, false if not
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MAXCOST:= e*size(S);
if( I_dist(S,M) <= MAXCOST) return true;
N:= Neighbor(S,R);
if N=® return false;
for every vertex vjin S
{
Cost++; //means the cost for re-labeling =1
for every vertex nj in R
{
if(vertex in R and vertex vi is equal )
Cost--;
if it is the first step mapping
{
Mapping the R to R’ by relabeling n; to v;;
if(I_dist(S, R”) + Cost<= MAXCOST)
return true;
if (I_dist(S, R”) + Cost<=
f*size(S))
add Mq:= ( nj, vi ) to the Queue; }

else //it is not the first time mapping

while(Queue not Empty)

{ read the map from queue in Mq;
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if Mq is a Break Symbol, break;
Mq:=Mqu ( nj,vi) ;
Mapping the R to R’ by relabeling every
pair in Mq;
if( I dist(S,m) + Cost<= MAXCOST) return
true;
if (I_dist(S,m) + Cost<= f*size(S))
add Mq to the Queue;
} //lend of while
} //end of for every vertex nj in R
Put a Break Symbol in Queue, so we can

recognize  when current level finish;

Here is an example of how IGM works in Figure 5-2. Given Subgraphl and Graphl, if e =
0.25, IGM returns true in 2nd line. Since I dist (Graphl, subgraphl) =2 and € *Size
(Subgraphl) = 2. IGM does not need any more computation. If € = 0.2, f=0.33, we need to do
more work. The process is shown in Figure 5-2 (b). The (c,a) means relabeling vertex ¢ in
Graphl to vertex a. (c,a) 6 means if relabeling ¢ in Graphl to a, I dist(Subgraphl,Graphl)+cost
= 6. In each round, only the ones with a rectangle, which fit the condition of the bounded search,
are put in queue and computed in the next round. We discover, using bounded search factor f, we

can prune many bad edit operations and only keep some good ones. For example, only (a,a) is
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saved in the first round. In the end, we find re-labeling vertex h to d can let I dist (Subgraphl,
Graphl) + cost <= €*Size (Subgraphl). IGM ends here and returns true.

Result
One example of frequent pattern in GRNS

We show the frequent subgraphs in Regulatory Networks in GRNS in Figure 5-3. Right
now, no obvious repeated pattern appears in GRNS. Most of the frequent elements are the results
we include in other subsystems and their relations between global regulators when we display
one subsystem.

One example of frequent pattern in KEGG

The frequent pattern mining tool is a standalone tool. We can use this tool to mine frequent
pattern not only in GRNS but also use in other systems. The following example is a frequent
pattern we discover in KEGG (Kyoto Encyclopedia of Genes and Genomes) database. KEGG is
a database on molecular interaction networks in biological processes. By March of 2005, KEGG
includes carbohydrate metabolism, energy metabolism, lipid metabolism, amino acid metabolism
and so on, an overall of 15 types. The total number of pathways is 20,560 from 250 organisms.

The results of frequent subgraphs discovered in the reference pathways of amino acid
metabolism pathways are shown in Figure 5-4. The vertices of the figures are labeled by the
enzymes’ name corresponding to the KEGG ID (for detailed information access:
http://www.genome.jp/dbget-bin/www_bfind?enzyme).

We find out that, extending graph mining to inexact matching, we can get potentially more
interesting results.

Comparison of IGM with SUBDUE

The run time for data mining the amino acid metabolism pathways under different inexact

match thresholds is shown in Table 5-2. Our algorithm has satisfactory performance. For this
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large dataset, it only takes about one second. Besides, when extending the exact matching to the
inexact matching, our computation time does not increase much. The computation time for the
inexact matching is comparable to the computation time to Koyutiirk et al. (Koyutiirk et al.,
2004) for the extract matching time. Moreover, since we use sparse graph representation to save
the space, our algorithm also shows better space saving compared with other algorithms, for
example, the SUBDUE System. We show the run time of IGM and SUBDUE system for the
inexact matching in Table 5-3. We find out that, on one hand, IGM is much faster than
SUBDUE; on the other hand, when € increases, SUBDUE cannot give us the results due to the
run-out memory. However, IGM can give the results, when € increases. IGM is an efficient
algorithm and has better performance both in run time and space.

Gene Relation Prediction Tool

We first give the problem definition of gene relation prediction. Then we present the gene
prediction algorithm. In the end, we provide an example of the gene relation prediction.

Problem Definition

We define our goal in gene relation predicting algorithm as discovering a complete set of
potential gene relations based on a collection of gene regulatory networks and several rules. We
model regulatory networks by directed graphs, which represent the entry elements in vertices, the
relations between entry elements as directed edges and the type of regulation as labels for edges.
We define the gene relation prediction problem as follows:

Suppose we have a collection of gene regulatory networks, represented by directed graphs

po ]

{(V1, E1), (V2, E2), ...(Vn, En)}. First, we build a new graph G” =( ( J ), (9&- )). Then given any
vertex U in G’, the gene regulation relation prediction algorithm tells whether there is a path p

from U to any vertex W in the graph G’ if W is not directly connected with u. If p exists, then we
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store this path. Moreover, based on the label information in every edge in p, we label the p. The
gene regulation relation prediction algorithm is similar to the transitive closure algorithm for a
directed graph with the two supplements: first, the gene regulatory relation prediction algorithm
stores the path information if the path between the given pair of vertices exists; second, if the
path between the given pair of vertices exists, the gene regulation relation prediction algorithm
needs to decide the label information for the path.

Gene Relation Prediction Algorithm

Algorithm Name: GRPA

Input: G’ =( (27, (UE )),vertex u

Output: A collection of path p, which p is a path from U to any vertex W in the graph G’ in
the case W is not directly connected with u.

Neighbor u = all vertices directly connected to u

newAdd = copy of Neighbor U ;
While newAdd size > 0

Edge= copy of newAdd;

newAdd = empty;
For every vertex i in Edge
{

Neighbor i = all vertices directly connected to i
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For every vertex j in Neighbor i
{
If vertex j is not in Neighbor u
{ Add j in newAdd;
Add j in Neighbor u;
Add path p= {u->->i->j } to Path u;

}

}

For every path p in Path_u, predict the label for p.

Output Path_u ;

Result
We show the gene relation prediction algorithm result for the gene "LasR" in Figure 5-5.
We find the predicting result includes the discovered potential relations with LasR and the

evidence information for every predicting relation.
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Table 5-1. Notations in RNGV, DFS and IGM.

Symbol Description

D The dataset of a collection of metabolic pathways
n The numbers of regulator Network in D

Sk A subgraph with k edges

R A regulator network

Ck A set of candidates with k edges

F A set of frequent subgraphs

Vv A set of already visited edges

N(ei) The neighbor of ei . The set of edge share at least one vertex with ei
5 Threshold of inexact match

S} Support rate threshold

f bounded search factor

Table 5-2. Run time of IGM on metabolism pathways datasets.

Metabolism  Support rate Threshold of inexact Running Time(sec.)
Pathway threshold © match > & '
Amino Acid  15% 0 0.8

Metabolism  15% 0.1 1.0

Table 5-3. Run time comparisons with subsude system.

Size of . .
Metabolism  Metabol  Support rate T?.reshold R}mmng R}mmng
Pathway ism threshold © of inexact Time(sec.)  Time(sec.) In

Pathway match > In IGM Subdue
Amino Acid 179 0.1 0.1 1.0 1000
Metabolism 0.15 | I e —
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CHAPTER 6
CONCLUSION AND FUTURE WORKS

Conclusion

In this dissertation, we present the framework of the Gene Regulatory Networks System:
GRNS. The goals of GRNS are automatically mining biomedical literature and constructing gene
regulatory networks based on extracted biomedical information. GRNS first utilizes an
automated text mining method to extract useful information from biomedical literature. Then it
automatically constructs and visualizes the regulatory networks based on the extracted
information and existed domain-specific knowledge. To provide researchers with a clear and
global view about the regulatory networks, GRNS uses an interactive visualization method,
integrating biomedical evidential information into the regulatory networks. Once a user clicks on
an entity or relation of interest, the query interface returns a detailed information page about the
clicked entity or relation. It provides researchers with a web-based user-friendly tool to build and
edit regulatory networks. GRNS provides a standalone analysis tool to find the frequent patterns
in regulatory networks, which can help researchers to find biomedical meaningful patterns.
GRNS also provides the gene relation prediction tool to predict potential gene regulatory relation
information. In summary, GRNS is a useful tool to automatically extract gene regulatory
information from biomedical literature, construct gene regulatory network based on the
information extracted, and provide the online management and analysis of gene regulatory
networks.

Future Work
Analysis Tool for Error Detecting in Regulatory Networks

In the future, the error detection tool may be developed to find potential errors in the

regulatory networks. It will utilize a rule-based method and help to improve the accuracy of the
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regulatory networks. One example of a possible rule can be: if one regulatory network includes a
relationship “A Products B”, then B must be a product type. If B is any other type, then either the
relationship “A Products B” is wrong or the type of B is wrong.

Regulatory Networks Predication Model

GRNS provides the gene relation predication model for potential gene relation
information. How about the predication model for an unknown genome data? The text mining
method can efficiently construct regulatory networks on well-studied genome data, i.e. if there is
enough research literature about this genome field. But if there is a newly discovered genome,
how we can quickly predict the functional roles of each gene in this genome and build up the
predicted regulatory networks without much literature knowledge?

Our basic idea is in the following: there may be a well-studied genome B similar to the
newly discovered genome A. Regulatory networks about B are available. If we can find out a
mapping rule about genes in genome A and genes in genome B, then we can get regulatory
networks about genome A by replacing all genes in regulatory networks of genome B to
mapping genes in genome A.

One possible mapping rule is using BLAST (Basic Local Alignment Search Tool) to find
the most similar genes between genome A and genome B. The Basic Local Alignment Search
Tool (BLAST) can find regions of local similarity between sequences. The program compares
nucleotide or protein sequences to sequence databases and calculates the statistical significance
of matches. BLAST can be used to infer functional and evolutionary relationships between
sequences as well as help identify members of gene families.

Although the basic idea seems simple, there are several uncertain factors to the prediction
model. First, how does one decide if genome A and genome B are similar enough? Apparently, if

we use non-similar genomes in the predicting model, no interesting results will be expected.
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Second, how does onbe decide the threshold for the gene similarity? BLAST will calculate the
statistical significance of matched sequences. We will need to decide a threshold to assign the
result into binary categories. Third, is there any other information that can help us prepare the
prediction model?

Regulatory networks predication model is an interesting topic. We may expand our system

to make some attempts to build a predication model for regulatory network construction.
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