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The increase in the squared multiple correlation coefficient, ΔR2, associated with an 

individual predictor in a regression analysis is a measure commonly used to evaluate the 

importance of that variable in a multiple regression analysis.  Previous research using 

multivariate normal data had shown that relatively large sample sizes are necessary for an 

acceptably accurate confidence interval for this regression effect size measure. 

The coverage probability that an asymptotic confidence interval contained the population 

squared semipartial correlation, Δρ2, was investigated by simulating data from a range of 

nonnormal distributions such that (a) the predictors were nonnormal, (b) the error distribution 

was nonnormal, or  (c) both predictors and errors were nonnormal.  Additional factors 

manipulated included (a) the number of predictor variables, (b) the magnitude of the population 

squared multiple correlation coefficient in the original model, 2 ,rρ  (c) the magnitude of the 

population squared semipartial correlation, Δρ2, and (d) sample size. 

This study showed that when nonnormality is introduced, empirical coverage probability 

was always less than the nominal confidence level, often dramatically so.  The degree of 
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nonnormality in the predictors was the most important factor influencing poor coverage 

probability.  Although coverage probability increased as a function of sample size, when 

nonnormality in the predictors was substantial, the confidence interval is likely to be inaccurate 

no matter how large a sample size is used.  With multivariate normal data, coverage probability 

improved as both 2
rρ and Δρ2 increased.  When predictors are sampled from a nonnormal 

distribution, coverage probability tended to decrease as 2
rρ  and Δρ2 increased and became even 

worse as the degree of nonnormality increased.  It was further demonstrated that the asymptotic 

variance underestimates the sampling variance of ΔR2.  This produces standard errors that are too 

small and results in a confidence interval that is too narrow.  Reliance on this confidence interval 

as a measure of the strength of the effect size will lead us to underestimate the importance of an 

individual predictor to the regression. 
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CHAPTER 1 
INTRODUCTION 

There is a growing consensus that the tradition of null hypothesis significance testing 

(NHST) has led to over-reliance on statistical significance in evaluating research results in the 

behavioral and social sciences.  According to Cohen (1994), the biggest flaw in NHST is that it 

does not tell us what we want to know.  A statistical test evaluates the probability of the sample 

results given the size of the sample assuming that the sample is drawn from a population where 

the null hypothesis is exactly true.  In this framework, the outcome of a significance test is a 

dichotomous decision whether or not to reject the null hypothesis.  As noted by Steiger and 

Fouladi (1997, p. 225), “this dichotomy is inherently dissatisfying to psychologists and 

educators, who frequently use the null hypothesis as a statement of no effect, and are more 

interested in knowing how big an effect is than whether it is (precisely) zero.”  Fundamentally, 

we are interested in determining how accurately the population effect has been estimated from 

the sample data and whether the observed effect size has practical significance.  Statistical 

significance testing fails to provide the answers. 

Within the behavioral and social sciences, methodological recommendations for reporting 

research results have increasingly emphasized the importance of reporting confidence intervals 

(Cumming & Finch, 2001; Smithson, 2001), effect sizes (Olejnik & Algina, 2002; Vacha-Hasse 

& Thompson, 2004), and confidence intervals for effect sizes (Cohen, 1990; Steiger & Fouladi, 

1997; Thompson, 2002) to complement the results of hypothesis testing.  Among the 

recommendations of the APA’s Task Force on Statistical Inference (Wilkinson & Task Force on 

Statistical Inference, 1999) was a proposal to move away from routine reliance on NHST as a 

primary means of analyzing data to exploring, summarizing and analyzing data using visual 

representations, effect-size measures, and confidence intervals.  The most recent edition of The 
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Publication Manual of the American Psychological Association (2001, p. 25-26) states, “For the 

reader to fully understand the importance of your findings, it is almost always necessary to 

include some index of effect size or strength of relationship in your Results section…The general 

principle to be followed, however, is to provide the reader not only with information about 

statistical significance but also with enough information to assess the magnitude of the observed 

effect or relationship.”  The Manual also states that failure to report an effect size is a “defect” 

(p. 5).   

In 1996, Thompson recommended that American Educational Research Association 

(AERA) journals require that effect sizes be reported and interpreted in all studies.  Ten years 

later the AERA Council recommends that statistical results should include an effect size measure 

as well as an indication of the uncertainty of that index of effect such as a confidence interval.  

The recently adopted Standards for Reporting on Empirical Social Science Research in AERA 

Publications (AERA, 2006) states that when quantitative methods are employed, “It is important 

to report the results of analyses that are critical for the interpretation of findings in ways that 

capture the magnitude as well as the significance of those results” (p. 37).   

Editors of over 20 APA and other social science journals have published guidelines 

explicitly requiring authors to report effect sizes (Ellis, 2000; Harris, 2003; Heldref Foundation, 

1997; Hresko, 2000; McLean & Kaufman, 2000; Royer, 2000; Snyder, 2000; Thompson, 1994; 

Vacha-Haase, Nilsson, Rentz, Lance, & Thompson, 2000) and the Editor of Journal of Applied 

Psychology requires an author to provide an explanation when an effect size is not reported 

(Murphy, 1997).  Although this is evidence that editorial practices have evolved somewhat, 

effect size reporting is unlikely to become the norm until we move from recommendation and 

encouragement to requirement (Thompson, 1996; 1999).   
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Effect Sizes and Confidence Intervals 

A confidence interval establishes a range of parameter values that are reasonably consistent 

with the data observed from a sample.  Because a confidence interval gives a best point estimate 

of a parameter of interest and an interval about it reflecting an estimate of likely error, it contains 

all the information to be found in a significance test and more (Cohen, 1994).  The likely range 

of the parameter values provides researchers with a better understanding of their data.  If the 

parameter estimated has meaningful units, a confidence interval can be used to make statistical 

inferences that provide information in the same metric.  According to Cumming and Finch 

(2001), there are four main reasons for promoting the use of confidence intervals: (a) they are 

readily interpretable, (b) are linked to familiar statistical tests, (c) can encourage replication and 

meta-analytic thinking, and (d) give information about precision. 

The term effect size is broadly used to refer to any statistic that provides information that 

helps us judge the “practical significance” of the results of a study (Kirk, 1996).  Cohen (1990) 

recommends that in addition to reporting an effect size, researchers should provide confidence 

intervals for effect sizes in order to gauge the possible range of values an effect size may assume.  

Absent a confidence interval, it is difficult to evaluate the accuracy of the effect size estimate.  

This, in turn, has implications for drawing meaningful conclusions.   

Unfortunately, despite the increasing demand for researchers to do so, reporting effect 

sizes and confidence intervals has yet to become commonplace in educational and psychological 

journals.  Vacha-Hasse, Nilsson, Rentz, Lance, and Thompson (2000) reviewed ten studies of 

effect size reporting in 23 journals, and found effect size(s) to be reported in roughly 10 to 50 

percent of articles, notwithstanding the encouragement to do so from the fourth edition of the 

APA manual (1994).  Empirical studies show that even when effect sizes are reported, 

interpretation is often given short shrift (Finch et al, 2002; Keselman et al., 1998). 
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It is likely that the emphasis on null hypothesis significance testing in graduate courses in 

statistics and research methodology has contributed to a general lack of knowledge concerning 

confidence intervals.  Moreover, techniques for computing confidence intervals are often 

neglected in popular statistics textbooks and are not easily available in the statistical software 

that is routinely employed by applied researchers in the social sciences (Smithson, 2001).  Even 

if these factors were not operating, researchers might be reluctant to report confidence intervals 

because as Steiger and Fouladi (1997, p. 228) observe, “interval estimates are sometimes 

embarrassing.”  Reporting confidence intervals can highlight the level of imprecision of 

statistical estimates and exposes the trivial nature of many published studies.  Smithson (2001,  

p. 614) notes, “Almost any literature review or meta-analysis in psychology would give a very 

different impression from that conveyed by NHST if we routinely ‘reconstructed’ CIs for 

multiple R2 and related GLM parameters.” 

Asymptotic Confidence Intervals for Correlations 

A confidence interval establishes a range of hypothetical parameter values that cannot be 

ruled out given the observed sample data.  The probability that the random interval includes, or 

covers, the true value of the parameter is the coverage probability of the interval. When the exact 

distribution of a statistic is known, the coverage is equal to the confidence level and the interval 

is said to be exact.  A confidence interval is exact if it can be expected to contain a parameter’s 

true value 100(1 – α)% of the time.  Often exact intervals are not available or are difficult to 

calculate, and approximate intervals are used instead. 

Confidence intervals are based on the sampling distribution of a statistic.  Due to the 

central limit theorem, when sample size is sufficiently large, the sampling distribution of statistic 

will become more symmetric and eventually appear nearly normal, even when the population 

itself is not normally distributed.  Methods based on asymptotic theory use approximations to the 
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sampling variance of a statistic.  If only the asymptotic distribution of the statistic is known, we 

can obtain an approximate confidence interval, which may or may not be reasonably accurate in 

finite samples.  If the asymptotic confidence interval procedure is fully adequate, under repeated 

random sampling under identical conditions, a 95% confidence interval would contain the true 

population parameter 95% of the time. The accuracy of the approximation depends on whether 

there is a lack of bias and the degree to which the sampling distribution deviates from normality. 

If a statistic has no bias as an estimator of a parameter, its sampling distribution is centered at the 

true value of a parameter.  An unbiased confidence interval is one where the probability of 

including any value other than the parameter’s true value is less than or equal to 100(1 – α)%.  

An interval is said to be conservative if the rate of coverage is greater than 100(1 – α)%, the 

nominal confidence level.  If the coverage probability is less than the nominal, the interval is said 

to be liberal.  In general, conservative intervals are preferred over liberal ones (Smithson, 2003). 

Whenever a statistic based on asymptotic theory has poor finite sample properties, a confidence 

interval based on that statistic has poor coverage. 

Multiple regression analysis is a common statistical application frequently used to predict a 

dependent variable (outcome) from two or more independent variables (predictors).  The 

interpretation of results would be enhanced by the reporting of confidence intervals and effect 

sizes.  The sample statistic, R2, which estimates the proportion of variance in the dependent 

variable that is explained by the set of predictors, is commonly used to evaluate a multiple 

regression model.  Published research studies frequently report R2 values without any evidence 

of the precision with which they have been estimated.  It is unfortunate that a confidence interval 

for the population parameter, ρ2, is not computed by most popular statistical software packages. 
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Perhaps more significant, the topic is not even discussed in many applied or theoretical statistics 

texts.   

In addition to the amount of variance explained by a given multiple regression model, 

researchers are often interested in evaluating the contribution that one variable makes to the 

regression, over and above a set of other explanatory variables.  The increase in R2, ΔR2, when a 

variable (Xj) is added to a multiple regression model is a useful measure of the strength of the 

relationship between Xj and the dependent variable, Y, controlling for all other independent 

variables in the model.  The change in R2 that we observe by including each new Xj in the 

regression equation is the squared semipartial correlation corresponding to a given regression 

coefficient.  Typically, whether Xj has made a statistically significant contribution to predicting Y 

is tested by conducting a t- or F-test on that regression coefficient.  But, the squared semipartial 

correlation itself is a useful measure of effect size and as recommended by Cohen (1990) and 

Thompson (2002), we should calculate a confidence interval to evaluate the precision with which 

it has been estimated and the range of likely values. 

Hedges and Olkin (1981) presented procedures for constructing a confidence interval for 

the squared semipartial correlation based on calculating the asymptotic covariance matrix for 

commonality components.  Commonality analysis is a procedure by which the variance 

accounted for in the criterion is partitioned into two parts, the unique part and the common part.  

The unique part is attributable to the predictors individually.  This is essentially the partial 

contribution of each predictor to the squared multiple correlation with the criterion.  The second 

part is the common part, attributable to a combination of the predictors, which is the contribution 

to the multiple correlation with the criterion that all of the predictors in the combination share.  
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Thus, commonality analysis is a way to measure the importance of variables through the use of 

partial correlations.   

Hedges and Olkin’s results can be used to construct a confidence interval for ΔR2.  Olkin 

and Finn (1995) derived explicit expressions for asymptotic (large-sample) confidence intervals 

for functions of simple, partial, and multiple correlations.  Since the focus of this study is on the 

squared semipartial correlation, the following discussion will be limited to Olkin and Finn’s 

Model A (p. 157-159).  Model A is the special case for use in determining whether an additional 

variable provides an improvement in predicting the criterion.   

All of the procedures for comparing two sample correlation coefficients or two sample 

squared correlation coefficients described by Olkin and Finn have the same general form.  Let rA 

and rB be the two sample correlations to be compared and ρA and ρB denote their corresponding 

population values. The large-sample distributional form for the difference in two correlations is  

[ ] ( )2( ) ( ) ~ 0,A B A Br r N ∞− − ρ −ρ σ   (1.1) 

where 
 

2 var( ) var( ) 2cov( , )A B A Br r r r∞σ = + −   (1.2) 

is the asymptotic variance of the difference of the two correlation coefficients; 2
∞σ is dependent 

on the population correlations (Olkin & Finn, 1995, p. 156).   

When squared correlation coefficients are compared, the expressions in Equations 1.1 and 

1.2 become 

2 2 2 2 2[( ) ( )] ~ (0, )A B A Br r N ∞− − ρ −ρ σ   (1.3) 

and 
 

( ) ( ) ( )2 2 2 2 2 2 2var 2cov , .A B A B A Br r r r∞σ = − − ρ −ρ −  (1.4) 
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Olkin and Finn present the general form for the large-sample variance of functions of 

correlations 

2 ( , , )ij ik jkf r r r∞ ′σ = Φa a   (1.5) 

specialized to a function of three correlations, rij, rik, and rjk where f(  ) is a function of the 

correlations, Φ is the sampling variance-covariance matrix of the correlations, and vector a 

contains a set of coefficients that depend on the function of the correlations to be evaluated.  The 

variance of sample correlation rij is  

2 2var( ) (1 ) /ij ijr n= −ρ   (1.6) 

and the covariance of two correlations is 

2 2 2 21cov( , ) ( )
2

( ) / .

ij ik ij kl ik il jk jl ik jl il jk

ij ik il ji jk jl ki kj kl li lj lk

r r

n

⎡= ρ ρ ρ +ρ +ρ +ρ +ρ ρ +ρ ρ −⎣

⎤ρ ρ ρ +ρ ρ ρ +ρ ρ ρ +ρ ρ ρ ⎦

 (1.7) 

When two correlations have one variable in common, Equation 1.7 simplifies to  

2 2 2 31
2

cov( , ) (2 )(1 ) / .ij ik jk ij ik ij ik jk jkr r n⎡ ⎤= ρ −ρ ρ −ρ −ρ −ρ +ρ⎣ ⎦  (1.8) 

Large-sample estimates are obtained by replacing the population parameters with values 

computed from sample data.  Using the delta method, it can be shown that if f(rij, rik. rjk) is a 

function of the three correlations, then the vector a consists of the partial derivatives 

a =
12 13 23

, , .f f f
r r r

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

  (1.9) 

In the simplest case, suppose that two variables X1 and X2 are used to predict a third variable, X0. 

In order to determine whether X2, makes a significant contribution to the regression, we are 

interested in the difference, 2 2
0(12) 01R r− .  Here, we use a capital “R” to signify a multiple 

correlation rather than a bivariate correlation, denoted by a lower case “r”.  The symbol 2
0(12)R  
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denotes the squared multiple correlation between X0,  X1 and X2, which is a function of the 

correlations among the variables r01, r02, and r12 given by 

2 2
2 2 01 02 01 02 12
0(12) 0(12) 2

12

2ˆ .
1

r r r r rR
r

+ −
= ρ =

−  
 (1.10) 

The squared correlation between X0 and X1 is represented by 2
01r .  Therefore, a confidence interval 

for 2 2
0(12) 01R r− can be computed using Olkin and Finn’s results for comparing two squared multiple 

correlation coefficients.  In order to compare the population squared multiple correlations 

2
0(12)ρ and 2

01ρ , we use the estimates 2
0(12)R , 2

01r , and 2ˆ ∞σ , the estimated variance of the difference 

2
0(12)R - 2

01r where 

 2 2
0(12) 01var( )R r ′− = aΦa .             (1.11) 

The upper triangular of the symmetric population correlation matrix is  

 
01 02

12

1
1

1
P

ρ ρ⎛ ⎞
⎜ ⎟= ρ⎜ ⎟
⎜ ⎟
⎝ ⎠

  (1.12) 

and the elements of the vector, a, are 

12
1 01 12 022

12

2 ( ),
1

a ρ
= ρ ρ −ρ

−ρ  
 (1.13) 
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The variance-covariance matrix for the sample correlations is 

11 12 13 01 01 02 01 12

22 23 02 02 12

33 12
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r r r r r
r r r
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⎜ ⎟ ⎜ ⎟φ⎝ ⎠ ⎝ ⎠

 (1.16) 
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The sample correlation matrix, R, estimates P and the sample values in R can be used to compute 

the elements of a. 

Because the calculation of analytic derivatives becomes increasingly complicated as the 

number of variables increases, Olkin and Finn illustrated their method for a multiple regression 

model with no more than two predictors.  Graf and Alf (1999) expanded Olkin and Finn’s 

procedures to more general forms.  Graf and Alf substituted numerical derivatives and offered 

two BASIC programs for calculating asymptotic confidence limits on the difference between two 

squared multiple correlations and the difference between two partial correlations.  These 

programs, REDUX-AB, to compare two multiple correlations, and REDUX-CD, to compare two 

partial correlations, compute the Φ matrix, the partial derivatives in vector a, and a 95% 

confidence interval. 

Alf and Graf (1999) present a further simplification that does not employ numerical 

derivatives, is less computationally demanding, and produces results equivalent to the method 

described by Olkin and Finn.  All computations are based on sample estimates.  The problem is 

approached by representing a multiple correlation as a zero-order correlation between the 

outcome variable and another single variable that is a weighted sum of the predictors. Alf and 

Graf defined 

0

0

B
AB

A

rr
r

=
 

 (1.17) 

where the subscripts A and B denote weighted sums of two sets of predictors and rAB is the 

correlation between the two composite variables. 

The confidence interval for the squared semipartial correlation coefficient is determined by 

the special case in which one set of predictors is a proper subset of the predictors in the other 

correlation.  The two squared multiple correlations are computed using the same sample and the 
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variables in the reduced model are a subset of the variables in the full model.  Let 2
rρ and 2

fρ  

denote the population squared multiple correlation coefficients corresponding to 2
rR and 2

fR .  The 

subscript, f, refers to the “full” model with all predictors; the subscript, r, refers to the “reduced” 

model.  The reduced model contains all predictors with the exception of the variable of interest. 

The asymptotic variance of 2
fR is  

( )2 2
2

4 1
( ) .f f

fVar R
n

ρ −ρ
=

 
 (1.18) 

The asymptotic variance of 2
rR is 

( )2 2
2

4 1
( ) .r r

rVar R
n

ρ −ρ
=

 
 (1.19) 

The asymptotic covariance between 2
rR and 2

fR is 

( )( )2 2 2 2 3 3
2 2

4 .5 2 / 1 / /
( , )

f r r f f r f r r f r f
f rCov R R

n

⎡ ⎤ρ ρ ρ ρ −ρ ρ −ρ −ρ −ρ ρ +ρ ρ⎣ ⎦=
.
 (1.20) 

For the squared semipartial correlation, let 2RΔ = 2 2.f rR R−  The asymptotic variance of 2RΔ  is 

2 2 2 2 2( ) ( ) 2 ( , )f r f rVar R Var R Cov R R∞σ = + − .  (1.21) 

An asymptotically correct 100(1 - α)% confidence interval for 2 2 2
f rΔρ = ρ −ρ  is 

2
/ 2 ˆR zα ∞Δ ± σ   (1.22) 

where zα/2 is the (1 - α/2)th percentile of the standard normal distribution and ˆ ∞σ is the estimate of 

∞σ .  In practice, the large-sample variance is estimated by substituting 2
fR for 2

fρ and 2
rR for 2

rρ in 

Equations 1.18, 1.19, and 1.20.   

Equations 1.18 and 1.19 are problematic when the population squared multiple correlations 

are zero because the implication is that the sampling variance of R2 is also zero (Stuart, Ord, & 
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Arnold, 1999).  Similarly, Equation 1.20 implies that the sampling covariance is zero if either 

population multiple correlation coefficient, fρ or rρ , is zero.  If it were known that both 2
fρ  and 

2
rρ were zero and these values were used to construct a confidence interval, we would incorrectly 

conclude that the width of the resulting interval is zero. This computational problem is unlikely 

to occur in practice since we substitute sample multiple correlation coefficients for their 

population values and it is doubtful that either 2
fR or 2

rR will ever be exactly zero.   

The Alf and Graf formulas rely on asymptotic results.  As such, they are only exactly 

correct for infinitely large samples.  Thus, the accuracy of this approximation is heavily 

dependent on sample size.  Alf and Graf (1999, p.74) concluded that “the correlation between 

two multiple correlations will be extremely high when the variables in one multiple correlation 

are a subset of the variables in another multiple correlation” and to ensure that coverage 

probability is equal to the nominal for the confidence interval on Δρ2, “moderately large to large” 

sample sizes are necessary.   

In the absence of more specific recommendations on sample sizes, Algina and Moulder 

(2001) conducted a simulation study to evaluate the empirical probability that the interval in 

Equation 1.22 includes Δρ2 for 95% confidence interval.  Algina and Moulder manipulated 2
fρ , 

2
rρ , the number of predictors in the model (k), and the sample size (n). When the data are 

distributed multivariate normal, results indicate that when Δρ2 > 0, for sample sizes 

representative of those used in psychology (i.e., n ≤ 600), coverage probabilities for a nominal 

95% confidence interval were less than .95.  This tends to be true even with relatively large 

sample sizes, i.e. between 600 and 1200. 
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When 2 2
f rρ −ρ = 0 all coverage probabilities were at least .999 for all sample sizes studied.  

That is, when ρ2 does not increase when a predictor is added to a multiple regression model, the 

confidence interval is always too wide.  Algina and Moulder (2001) posited two reasons for this 

defect in the confidence interval:  (a) for all conditions in which 2 2
f rρ −ρ = 0 the asymptotic 

variance overestimated the sampling variance and (b) the distribution of 2 2
f rR R−  is positively 

skewed with a lower limit of 0.  Because the confidence interval does not take this lower limit 

into account, even if the asymptotic variance was not overestimated, the lower limit would tend 

to be smaller than zero. 

Algina and Moulder (2001) showed that coverage probability tends to increase as 2
rρ  

increases and as Δρ2 increases and tends to decrease as the number of predictors increases.  

Further, when the interval does not contain Δρ2, there is a tendency for the interval to be entirely 

below Δρ2.  Algina and Moulder conclude that using the Alf and Graf method to compute a 

confidence interval with an inadequate sample size will underestimate the strength of the 

relationship between the predictor and the outcome variable. 

The Impact of Nonnormality on Statistical Estimates 

Every procedure used to make statistical inferences is based on a set of core assumptions.  

If the assumptions are met, the test will perform as theorized.  However, the results may be 

misleading when the assumptions are violated.  The most common method for estimating 

regression coefficients is ordinary least squares (OLS).  Ordinary least squares yields unbiased, 

efficient, and normally distributed estimates when the following conditions are met:  (a) No 

measurement error; (2) the mean of the residuals is zero; (3) the residuals have constant variance; 

(4) the residuals are not inter-correlated; and (5) the residuals are normally distributed. 
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In terms of power and accurate probability coverage, standard analysis of variance 

(ANOVA) and regression methods are affected by arbitrarily small departures from normality.  

As early as 1960, Tukey found that nonnormality could have a sizeable impact on power and 

measures of effect size could be misleading whenever means are being compared.  By sampling 

from a contaminated normal distribution, Tukey showed that classical estimators are quite 

sensitive to distributions with heavy tails.  The contaminated normal distribution is a mixture of 

two normal distributions, one of which has a large variance; the other distribution is standard 

normal.  This results in a distribution with heavier tails than the Gaussian.  Heavy-tailed 

distributions are characterized by unusually large or small values.  Both heavy-tailed and skewed 

distributions are commonplace in applied work (Micceri, 1989).  The presence of these 

characteristics in the data can “diminish the chances of detecting true associations among 

random variables and obtaining accurate confidence intervals for the parameters of interest” 

(Wilcox, 1998). 

After reviewing over 400 large data sets from educational and psychological research, 

Micceri (1989) found the majority did not follow univariate normal distributions.  

Approximately two-thirds of ability measures and over 80% of the psychometric measures 

examined exhibited at least moderate asymmetry.  For all data sets studied, 31% of the 

distributions showed skewness, γ1,  greater than .70 and 52% of psychometric measures 

demonstrated extreme to exponential asymmetry, γ1
  > 2.00.  Psychometric measures also 

exhibited heavier tails than ability measures.  Kurtosis estimates ranged from –1.70 to 37.37.  To 

put this in some perspective, the kurtosis for the double exponential distribution is 3.0. 

Breckler (1990) considered 72 articles in personality and social psychology journals and 

found that in analyses relying on the assumption of multivariate normality, only 19% of authors 
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acknowledged this assumption and less than 10% considered whether it had been violated.  

Keselman and his colleagues (1998) reviewed articles in prominent educational and behavioral 

sciences research journals published during 1994 and 1995 and concluded (a) the majority of 

researchers conduct statistical analyses without considering the distributional assumptions of the 

tests they are using and therefore use analyses that are not robust; (b) researchers rarely reported 

effect sizes; and (c) researchers failed to perform power analyses in order to inform sample size 

decisions. 

Statement of the Problem 

Methods for constructing confidence intervals based on asymptotic theory, such as those 

proposed by Olkin and Finn and Alf and Graf, have the potential to be very attractive to applied 

researchers. In the case of the equations presented by Alf and Graf, a hand calculator can be used 

to compute a confidence interval using the appropriate estimates from the results of data analysis 

obtained using standard statistical analysis software.  However, as Algina and Moulder 

demonstrated, even under the best case scenario, where data are drawn from a multivariate 

normal distribution, the coverage probability of the asymptotic confidence interval for Δρ2 is less 

than optimal, and when sample size is relatively small, e.g., < 200, would be considered 

unacceptable by most researchers.  Since multivariate normal data is rare, the performance of Alf 

and Graf’s procedure under “real world” conditions warrants further investigation.   

Purpose of the Study 

My dissertation will extend the work of Algina and Moulder (2001) and investigate the 

effect of the magnitude of population squared multiple correlation coefficients, 2
rρ and 2

fρ , as 

well as the number of predictors, on the asymptotic confidence interval for Δρ2 under a range of 

nonnormal conditions.  The study will investigate coverage probability when (a) the predictor 
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variables are not distributed multivariate normal; (b) the residuals are not normal; and (c) both 

predictors and residuals are nonnormal.  Empirical coverage probabilities will be compared to 

nominal coverage probabilities over a wide range of sample sizes.  My research will  

address the following questions: 

• How adequate is Alf and Graf’s asymptotic confidence interval procedure for the squared 
semipartial correlation coefficient when used with sample sizes typically employed in 
research in education, psychology and the behavioral sciences under conditions of 
nonnormality? 

• Is there a minimum sample size for which this method meets established standards for 
accuracy over a wide range of situations such that recommendations can be made for the 
use of this procedure in reporting the results of applied research? 
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CHAPTER 2 
METHODS 

In conducting a simulation study, especially when the goal is to inform the practice of 

researchers, it is important to ensure that the relevant factors are manipulated and that the levels 

of these factors reflect those routinely observed.  To that end, six factors were manipulated in a 

factorial design using values typical of those observed in applied research:  the number of 

predictors, the size of the squared multiple correlation in the reduced model, the size of the 

squared semipartial correlation, sample size, the distribution for the predictors, and the 

distribution for the error.  These factors, and the levels of these factors, are detailed in Table 2-1. 

Study Design 

Number of predictors 

Algina, Moulder, and Moser (2002) examined sample size requirements for accurate 

estimation of squared semipartial correlation coefficients and found a modest effect on the 

distribution of ΔR2 due to the number of predictors included in the multiple regression model.  

Therefore, it follows that the sample size required for the confidence interval on Δρ2 to be robust, 

i.e. to have the coverage probability equal to the nominal confidence level, will likewise depend 

on the number of predictors.  The number of predictors in the initial set of predictors (k – 1) 

ranged from 2 to 10 in increments of 2.  This allowed investigation of the performance of the 

asymptotic confidence interval for a reasonable range of model sizes. 

Squared multiple correlations 

Algina, Moulder, and Moser also showed that the sampling distribution of ΔR2 strongly 

depends on the population squared multiple correlations in both the full and reduced models, 

2
fρ and 2

rρ .  Based on a survey of all APA journal articles published in 1992 reporting multiple 
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regression results, Jaccard and Wan (1995) found the median squared multiple correlation in 

these studies to be .30.  The 75th percentile for squared multiple correlations was approximately 

.50.   Based on these results, the values for the squared multiple correlation coefficients for the 

predictors in the initial set ( 2
rρ ) ranged from .00 to .60 in steps of .10 (7 levels of the factor). 

Cohen (1988) proposed, as a convention, that .02, .13, and .26 represent small, medium, and 

large effect sizes for squared semipartial correlations.  By manipulating the squared multiple 

correlation coefficient for the entire set of predictors ( 2
fρ ) , such that it ranged from 2

rρ  to  

2
rρ  + .30 in steps of .05, values for Δρ2 that ranged from .00 to .30 in steps of .05 were produced 

(7 levels of the factor).  The values for Δρ2 are reasonably representative of likely effect sizes 

and the values selected for 2
rρ  and 2

fρ  cover a comprehensive range of population squared 

multiple correlations for multiple regression models from ρ2 = .00 to ρ2 = .90. 

Sample size 

Jaccard and Wan also reported typical sample sizes for studies using regression analysis. 

The median sample size was 175; a sample size of 400 was at the 75th percentile.  However, 

Algina and Moulder found with multivariate normal data empirical estimates of the coverage 

probability were smaller than .95 even with a sample size as large as 1200.  Since we expected 

empirical coverage probabilities to be worse for nonnormal data, larger sample sizes than are 

usually observed in psychological research were included.  Sample size ranged from 100 to 1000 

in steps of 100 and from 1000 to 2000 in steps of 250 (14 levels of the factor). 

Distributions 

The distributions chosen for study represent varying levels of nonnormality and were 

selected to:  (a) allow examination of the effects of skewness and kurtosis; and (b) be 

representative of the types of univariate nonnormality commonly encountered in applied research 
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in education and psychology.  The method described in Hoaglin (1985) and Martinez and 

Iglewicz (1984) using the g-and-h distributions was used to generate data that is characterized by 

varying degrees of skewness (γ1) and kurtosis (γ2).  A g-and-h distribution is generated by a 

single transformation of the standard normal distribution and allows for asymmetry and a variety 

of tail weights.  In the case of the standard normal distribution, g = h = 0 and γ1 =  γ2 = 0.  When 

g = 0, a distribution is symmetric.  Distributions with positive skew typically have γ1 > 0 and in 

distributions with negative skew, γ1 < 0.   The tails of the distribution become heavier as h 

increases in value.  Long-tailed distributions, such as the t-distribution, are characterized by  

γ2 > 0.  Short-tailed distributions, such as the uniform distribution, have γ2 < 0. 

The distributions selected for this study and their skewness and kurtosis are presented in 

Table 2-1.  Distribution 1 is the multivariate normal case.  Distribution 2 is symmetric and  

long-tailed and has the same skew and kurtosis as a t-distribution with 10 degrees of freedom.  

Distribution 3 is both asymmetric and leptokurtotic with the same skew and kurtosis as a χ2 

distribution with 10 degrees of freedom.   Since distributions 2 and 3 have similar kurtosis, but 

differ with respect to asymmetry, this allowed us to evaluate the relative importance of skewness 

and kurtosis on the coverage probability of the confidence interval.  Distribution 4 has the same 

skew and kurtosis as 2
4χ .  Distribution 5 is extremely skewed with heavy tails and has skew and 

kurtosis equal to the exponential distribution.  Nonnormality was manipulated in either (a) the 

predictors, (b) the residuals, or (c) in both the predictors and the residuals. 

The error distribution is a univariate distribution. The empirical cumulative distribution 

functions for the four nonnormal distributions selected for this study, generated by sampling 

1,000,000 random variates from each g-and-h distribution, are depicted in Figures 2-1 to 2-4. In 

addition, the deviation from normality is shown by including the normal curve with mean equal 
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to μgh and standard deviation equal to σgh for each distribution.  The population mean and 

standard deviation for each g-and-h distribution were calculated using the formulas given by 

Hoaglin (1985, p. 502-503). 

In multiple regression, the predictors are multivariate.  Multivariate normality, however, is 

a stronger assumption than univariate normality.  Univariate normality of each of the variables is 

necessary, but not sufficient, and a nonnormal multivariate distribution can have normal 

marginals.  Therefore, a preliminary step in evaluating multivariate normality is to study the 

reasonableness of assuming marginal normality for the observations on each of the variables 

(Gnanadesikan, 1997).  In addition to graphical approaches, a common method for evaluating the 

normality of univariate observations is by means of skewness and kurtosis coefficients, 1b  and 

b2: 
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These are sample estimates of the population skewness and kurtosis parameters 1β and β2, 

respectively.  When the population is normal, 1 0β = and β2 = 3.  If β2 < 3, there is negative 

kurtosis; if β2 > 3, there is positive kurtosis.  Population skewness and kurtosis are also  
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commonly described by γ1 and γ2 (Hoaglin, 1985) where 

1 1γ = β   (2.3) 

and  

2 2 3.γ = β −   (2.4) 

Mardia (1970) proposed indices for assessing multivariate normality that are 

generalizations of the univariate skewness and kurtosis measures 1b  and b2.  Let X1,…,Xn be a 

random sample from a population with mean vector μ and covariance matrix Σ.  The sample 

mean vector and covariance matrix are denoted by X and S, respectively.   The skewness and 

kurtosis, β1,k  and  β2,k, for a multivariate population, as defined by Mardia, are 

( ) ( )
3

1
1,k i jE x x−′⎡ ⎤= − Σ −⎢ ⎥⎣ ⎦
β μ μ   (2.5) 

and  

( ) ( )
2

1
2, .k i jE x x−′⎡ ⎤= − Σ −⎢ ⎥⎣ ⎦

β μ μ   (2.6) 

According to Rencher (1995), since third order central moments for the multivariate normal 

distribution are zero, β1,k = 0 when X ~ N(μ,Σ).  Furthermore, it can be shown that for 

multivariate normal X 

2, ( 2)k k kβ = +   (2.7) 

where k is equal to the number of variables.  Sample estimates of β1,k  and  β2,k are given by 
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1
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and 

21
2,

1 ( ) ( ) .k i j
i

b X X S X X
n

−′⎡ ⎤= − −⎣ ⎦∑   (2.9) 

Multivariate skewness and kurtosis were calculated by simulating 1,000,000 random 

variates sampled from each g-and-h distribution for each level of k under investigation and then 

applying equations 2.8 and 2.9 to obtain estimates of Mardia’s multivariate measures, b1,k  and  

b2,k.  The SAS program used to estimate these indices is included in Appendix A.  Mardia’s 

multivariate skewness estimates are presented in Table 2-2 and Table 2-3 presents Mardia’s 

multivariate kurtosis estimates.  Figures 2-5 and 2-6 are graphic presentations that compare the 

coefficients for the nonnormal distributions to the values expected under multivariate normality 

for the number of predictors under investigation in this study.  

The design for the study is a 5 (data generating distribution for the predictors) × 5 (data 

generating distribution for the errors) × 7 ( 2
rρ ) × 7 (Δρ2) × 5 (k) × 14 (n) fully crossed factorial.   

This resulted in a total of 85,750 unique conditions.  Each combination of factors was replicated 

10,000 times and for each replication, a 95% confidence interval was constructed using the Alf 

and Graf method. 

Background and Theoretical Justification for the Simulation Method 

The multiple regression model can be written as 

0 1 1 2 2 ... .j j j k kj jY X X X= β +β +β + +β + ε   (2.10) 

In the standardized multiple regression model, in the population with k ≥ 1 predictors and one 

criterion, all variables are standardized to mean zero and unit variance so an intercept is not 

needed.  This model is 

1 1 2 2
1

...
k

j j j k kj j i ij j
i

Y X X X X
=

= β +β + +β + ε = β + ε∑  (2.11) 
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where βi is the population standardized regression coefficient associated with the ith predictor;  

eij ~N(0,σ2); i = 1, … , k;  j = 1, … , n.  Assuming that we are operating on the population and 

that the model is correct, predicted values are given by 

1

ˆ
k

j i ij
i

Y X
=

= β∑   (2.12) 

and the squared correlation between the observed (Y) and the predicted ( Ŷ ) values is denoted as 

2
ˆYYρ .  In the sample, this is estimated by R2. When the predictors are uncorrelated, the sum of the 

squared correlations is equal to the variation accounted for by all the predictors  

2 2
ˆ

1

.
i

k

YX YY
i=
ρ = ρ∑   (2.13) 

A simplifying transformation (Browne, 1975) holds that for any set of predictors that has a 

squared multiple correlation, ρ2, with Y, it is always possible to transform the predictors so that 

(a) the transformed predictors are mutually uncorrelated, (b) have unit variance, and (c) the 

regression coefficients are equal to any set of values such that  

2 2 2

1
.

k

j y
j=
β = σ ρ∑   (2.14) 

The quantity Δρ2 is a function of the elements of the covariance matrix for the predictors and the 

criterion. 

In order to illustrate the application of Browne’s results to the current simulation, let †x  

denote the vector of standardized predictor variables, with k k× correlation matrix P and 1k ×  

vector of correlation coefficientsρ between the predictors and the criterion variable, y. The 

squared multiple correlation coefficient for all k variables is denoted by 2
fρ  and for the first 1k −  

variables is denoted by 2
rρ . We seek a transformation of the predictors to x such that the new 
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variables are standardized and uncorrelated, and the regression coefficients relating y to the 

variables in †x are 0iβ = for the first 2k −  variables and 2
1k r−β = ρ and 2 2

k f rβ = ρ −ρ , for the 

last two variables, respectively.  

The transformation can be constructed in two steps.  It is well known that the variables in 

the vector † ,=x Ax  where A is a k k× matrix, will be uncorrelated dependent on an appropriate 

choice of A. For example, A can be selected as the inverse of the left Cholesky factor of 

R ( 1 Ti.e., ,− −=R A A  where T−A indicates the inverse of )'A . The vector of correlation 

coefficients between the transformed predictors and the criterion is Aρ and because the 

transformed variables are uncorrelated, =β Aρ  is the vector of regression coefficients relating 

the criterion variable to the variables in x%. Because the criterion is a standardized variable 

and =x Ax%  is a nonsingular transformation, 2
fρ is unchanged by the transformation, and 2 ′ρ =f β β .  

We next seek a transformation ′=x T x , where ′T is k k× , such that the variables in x are 

standardized and uncorrelated and so that the regression coefficients for the variables in x are 

0iβ =  for the first 2k −  variables and 2
1k r−β = ρ and 2 2

k f rβ = ρ −ρ for the last two variables, 

respectively.  We see that 2
f

′ = ρβ β . Because the variables in x  are standardized and 

uncorrelated, the matrix ′T  must be orthogonal so that the variables in x  will be standardized 

and uncorrelated.  With an orthogonal transformation, =β .Tβ  The matrix T can be constructed 

as follows (M. W. Browne, personal communication with J. Algina, 1999):  

Let = −u β β . Then, ( ) 12 −′ ′= −T I u u u u  is an orthogonal matrix, and .=β Tβ  Because 

′ ′=β β β β , 2 1
′
=

′
u β

u u
, and =β Tβ  it follows that ( )2 .

′
= − −

′
u βTβ β β β

u u
  Thus, if the variables in 
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†x  are transformed to †x T Ax′= , with ′T and A defined as above, the transformed variables will 

be uncorrelated and standardized and the regression coefficients will be ιβ = 0  for the first k – 2 

variables, and 2
1k r−β = ρ  and  2 2

k f rβ = ρ −ρ for the last two variables, respectively.  Because the 

variables are standardized and uncorrelated, the squared multiple correlation coefficient for the 

first k – 1 variables will be 
1

2

1

k

i r
i

−

−

β = ρ∑  and the squared multiple correlation coefficient for all k 

variables will be 2 2 2 2 2

1

k

i r f r f
i−
β = ρ +ρ −ρ = ρ∑ . 

The implication of Browne’s result is that if the predictors are correlated, they can be 

transformed so that (a) the predictors are uncorrelated, (b) the predictive power of k – 1 of the 

predictors is channeled into one of the transformed predictors, (c) the predictive power of the 

remaining predictor is channeled into another of the transformed predictors, and (d) the 

remaining k – 2 predictors have no predictive power (Algina, Moulder, & Moser, 2002).  Rather 

than simulating various covariance structures for the predictors, the application of Browne’s 

results allows us to operate with uncorrelated predictors since it is always possible to transform 

these variables to correlated variables.  This dramatically reduces the number of conditions in the 

simulation to a more manageable number.  In addition, when the focus of the study is squared 

multiple correlation coefficients, there is no loss of generality if the means of the predictors and 

the criterion are rescaled to zero.  

Therefore, in the simulation, (a) the independent variables are mutually uncorrelated with 

mean zero and variance one; (b) the criterion has mean zero and variance one; and (c) the 

regression coefficients are β1 =  ρr, β2 =…= βk-1 = 0,  βk = 22
rf ρ−ρ .  The squared multiple 

correlation is 2
fρ  for variables X1 to  Xk and 2

rρ  for variables X1 to  Xk-1.  Given these conditions, 
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the covariance between Y and X1 is ρr, the covariances of Y with the remaining independent 

variables, X2 to  Xk-1 are all zero, the covariance between Y and Xk  is 22
rf ρ−ρ , and the 

covariance for any pair of X variables is zero. 

Data Simulation 

The data were simulated using the random-number generating function in SAS Version 

9.13.  Computations were performed using SAS Interactive Matrix Language (PROC IML).  

Data management and follow up analyses were also conducted using SAS.  Normal random 

deviates were generated for the n x k data matrix of predictors, X, using the SAS RANNOR 

function.  All nk scores were generated to be statistically independent.  In order to generate data 

from a g-and-h distribution, standard unit normal variables, Zij, were transformed via the 

following equation 

( ) 2exp 1
exp

2
ij ij

ij

gZ hZ
X

g
− ⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

  (2.15) 

when both g and h were nonzero.  When g is zero, equation 2.15 is reduced to  

2

exp .
2

ij
ij ij

hZ
X Z

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
  (2.16) 

The g-and-h distributed variables were then standardized by subtracting the population mean and 

dividing by the population standard deviation.  If g = 0, μgh = 0.  When g > 0, the population 

mean is 

2

exp 1
2(1 )

1gh

g
h

g h

−
−μ =
−

  (2.17) 
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and for h ≤  ½  the population standard deviation is  

22 2 2

22

2exp 2exp 1 exp 1
2(1 ) 2(1 2 ) 2(1 )

.
(1 )1 2gh

g g g
h h h

g hg h

⎡ ⎤ ⎡ ⎤
− + −⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦σ = −

−−
 (2.18) 

In a similar manner, an n × 1 vector of standard normal random variables was generated.  

All n scores were generated to be statistically independent.  The results of this vector were 

multiplied by 2ρ1 f− .  The result is a vector of residuals, e, with mean zero and variance equal 

to 1 - 2
fρ .  These steps ensured that the dependent variable, y, has mean of zero and variance 

equal to 1.0.   

As detailed above, applying Browne’s results, the k × 1 vector of regression coefficients 

was constructed such that elements 1 to k –2 are zero and the next two elements are ρr and 

2 2
f rρ −ρ , respectively.  The sample covariance matrix, S, was calculated from the data 

according to the model y = Xβ + e. 

Let Rf be the correlation matrix for the full set of k predictor variables, Rf + be the k + 1 

correlation matrix for all variables (including the criterion), Rr be the correlation matrix for the 

first k -1 predictors, and Rr + be the correlation matrix for the first k -1 predictors and the 

criterion variable.  All four correlation matrices can then be calculated from S.  The squared 

multiple correlation coefficients for the full and reduced models are given by 

( )
( )

2
det

1
det

f
f

f

R
R

R
+= −   (2.19) 

and 

( )
( )

2 det
1

det
r

r
r

R
R

R
+= −   (2.20) 
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where det ( ) represents the determinant of the matrix (Mulaik, 1972).  For each of the 10,000 

replications of each distributional condition, the asymptotic confidence interval was calculated 

using the method described by Alf and Graf (1999). 

Data Analysis 

Coverage probability, the probability that a confidence interval contains the parameter for 

which the confidence interval was constructed, was used to evaluate the adequacy of the 

confidence intervals.  Coverage probability was estimated as the proportion of the 10,000 

replications in which the confidence interval contained the population squared semipartial 

correlation, Δρ2.  In order to investigate bias, the probability that the confidence interval was 

wholly below Δρ2 and the probability the confidence interval was entirely above Δρ2 were also 

estimated. 

To evaluate the conditions under which a hypothesis test is insensitive to assumption 

violations, Bradley (1978; 1980) proposed three criteria. Given the nominal Type I error rate, α, 

a test is robust if the empirical estimate of α falls within the interval α ± α/s.  A liberal criteria is 

established when s = 2 and the limits are given by α ± .025 = [.025, .075].  Using s = 5, the 

interval for a moderate criterion is [.04, .06].  To establish a strict criterion, s = 10 and the 

interval is [.045, .055].    If these recommendations are adapted and applied to criteria for a 

confidence interval with a nominal coverage probability of .95, the criterion intervals become (a) 

[.925, .975]; (b) [.94, .96]; and (c) [.945, .955]. 

Although there is no universally accepted standard by which procedures are considered 

robust or not, Lix and Keselman (1998) suggest that applied researchers should be comfortable 

working with a procedure that controls Type I error within the bounds established by Bradley’s 

liberal criterion, as long as the procedure also limits the error rate across a wide range of 
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assumption violations.  Applying this recommendation to the procedure for constructing an 

asymptotic confidence interval means that in order to be controlled, the coverage probability 

should fall within the interval [.925, .975].  We used this interval for judging the adequacy of the 

confidence intervals.  Because there are those who would consider this standard to be too lenient, 

confidence intervals were also evaluated according to the more stringent criterion level of .94 to 

.96. 
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 Table 2-1.  Study Design 
Number of predictors, k (5 levels) 

1. k = 2 
2. k = 4 
3. k = 6 
4. k = 8 
5. k = 10 

Size of the squared multiple correlation coefficient for the reduced model (7 levels) 
 1.  2

rρ = .00 
 2.  2

rρ = .10 
 3.  2

rρ = .20 
 4.  2

rρ = .30 
 5.  2

rρ = .40 
 6.  2

rρ = .50 
 7.  2

rρ = .60 

Size of the squared semipartial correlation coefficient (7 levels) 
 1.  2Δρ = .00 
 2.  2Δρ = .05 
 3.  2Δρ = .10 
 4.  2Δρ = .15 
 5.  2Δρ = .20 
 6.  2Δρ = .25 
 7.  2Δρ = .30 

Sample size, n (14 levels) 
1. n = 100 
2. n = 200 
3. n = 300 
4. n = 400 
5. n = 500 
6. n = 600 
7. n = 700 
8. n = 800 
9. n = 900 
10. n = 1000 
11. n = 1250 
12. n = 1500 
13. n = 1750 

            14. n = 2000 
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Table 2-1 Continued 
Distribution for the predictor variables, X (5 levels) 
 1.  g = 0, h = 0 μ = 0,  σ = 1, γ1 = .00, γ2 = .00 
 2.  g = 0, h = .058 μ = 0,  σ = 1.097, γ1 = .00, γ2 = 1.00 
 3.  g = .301, h = -.017 μ = .150,  σ = 1.041, γ1 = .89, γ2 = 1.20 
 4.  g = .502, h = -.048 μ = .249,  σ = 1.108, γ1 = 1.41, γ2 = 3.00 
 5.  g = .760, h = -.098 μ = .378,  σ = 1.252, γ1 = 2.00, γ2 = 6.00 
 
Distribution for the residuals, e (5 levels) 
 1.  g = 0, h = 0 μ = 0,  σ = 1, γ1 = .00, γ2 = .00 
 2.  g = 0, h = .058 μ = 0,  σ = 1.097, γ1 = .00, γ2 = 1.00 
 3.  g = .301, h = -.017 μ = .150,  σ = 1.041, γ1 = .89, γ2 = 1.20 
 4.  g = .502, h = -.048 μ = .249,  σ = 1.108, γ1 = 1.41, γ2 = 3.00 
 5.  g = .760, h = -.098 μ = .378,  σ = 1.252, γ1 = 2.00, γ2 = 6.00 
 
 
Table 2-2.  Mardia’s Multivariate Skewness, b1,k, for the Nonnormal Distributions. 

g = .301 
 h = -.017

k b1,k b1,k b1,k b1,k

2 .01 (-.03, .05) 1.55 (1.51, 1.59) 3.90 (3.81, 3.98) 7.87 (7.71, 8.03)
4 .02 (-.05, .08) 3.15 (3.09, 3.22) 7.65 (7.52, 7.78) 15.80 (15.57, 16.02)
6 .00 (-.09, .08) 4.71 (4.62, 4.80) 11.50 (11.33,11.66) 23.74 (23.47, 24.02)
8 -.01 (-.12, .10) 6.23 (6.11, 6.35) 15.47 (15.26,15.68) 31.64 (31.32, 31.96)

10 .01 (-.13, .14) 7.71 (7.57, 7.86) 19.43 (19.18,19.68) 39.61 (39.23, 39.98)

1This interval represents .025 and .975 percentiles of the 1,000,000 replications.

Interval1Interval1 Interval1 Interval1

g = .760
 h = -.098

Distribution

g = 0
h = .058

g = .502
 h = -.048
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Table 2-3.  Mardia’s Multivariate Kurtosis, b2,k, for the Nonnormal Distributions. 

g = .301 
 h = -.017

k b2,k b2,k b2,k b2,k

2 10.05 10.35 (10.32, 10.38) 13.84 19.95 (19.88, 20.02)
4 28.07 28.75 (28.70, 28.80) 35.69 48.01 (47.90, 48.13)
6 54.07 55.09 (55.02, 55.16) 65.50 84.08 (83.93, 84.23)
8 88.10 89.44 (89.34, 89.53) 103.41 128.05 (127.87, 128.24)

10 130.12 131.79 (131.67, 131.91) 149.21 180.03 (179.80, 180.25)

1This interval represents .025 and .975 percentiles of the 1,000,000 replications.

Distribution

(65.39,64.62)
(35.60,35.77)

Interval1Interval1 Interval1 Interval1

g = 0 g = .502

(149.02,149.40)

(13.79,13.89)(10.03,10.08)
(28.02,28.11)
(54.00,53.13)
(88.01,88.19)

(130.01,130.23)
(103.26,103.57)

g = .760
h = .058  h = -.048  h = -.098
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Figure 2-1.  Plot of the empirical cumulative distribution function for a univariate nonnormal 
distribution where g = 0, h = .058 overlaid with a normal curve with μgh = 0,            
σgh = 1.097.  

 

 
Figure 2-2.  Plot of the empirical cumulative distribution function for a univariate nonnormal 

distribution where g = .301, h = -.017 overlaid with a normal curve with μgh = .150, 
σgh = 1.041. 
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Figure 2-3.  Plot of the empirical cumulative distribution function for a univariate nonnormal 

distribution where g = .502, h = -.048 overlaid with a normal curve with μgh = .249, 
σgh = 1.108.  

 
Figure 2-4.  Plot of the empirical cumulative distribution function for a univariate nonnormal 

distribution where g = .760, h = -.098 overlaid with a normal curve with μgh = .378, 
σgh = 1.252 
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Figure 2-5.  Comparison of Mardia’s multivariate skewness for the multivariate normal 

distribution to that of the distributions investigated. 
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Figure 2-6.  Mardia’s multivariate kurtosis for the multivariate normal distribution and the 

nonnormal distributions investigated. 
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CHAPTER 3 
RESULTS 

Replication of Results for Multivariate Normal Data 

Prior to conducting the study, data were simulated for the multivariate normal case in order 

to replicate key findings reported by Algina and Moulder (2001).  Replication served two 

additional purposes.  It verified that the simulation program was functioning properly and that 

reasonably close agreement was achieved between coverage probabilities estimated with 10,000 

replications and coverage probabilities estimates reported by Algina and Moulder based on 

50,000 replications.  Results are compared for k = 2, 6, and 10 in Tables 3-1, 3-2, and 3-3.  The 

shaded columns are the results from this simulation; the unshaded columns reproduce tabled 

results reported by Algina and Moulder (p. 638).  In these tables, as well as subsequent tables 

reporting coverage probabilities, italics indicate that the estimated coverage probability falls 

within the interval from .925 to .975.  Results in bold represent estimated coverage probabilities 

between .94 and .96. 

As Olkin and Finn warned, and Algina and Moulder demonstrated, this procedure does not 

work at all when the population squared semipartial correlation is zero.  Regardless of sample 

size, number of predictors, or the value of the population squared multiple correlation in the 

reduced model, the coverage probability when Δρ2 is zero is always too large, i.e., p̂  ≥ .999.  

This is because if 2
fρ = 2

rρ , ∞σ = 0 even though the actual sampling variance of R2 is not zero.  

Because of this defect in the asymptotic confidence interval, Alf and Graf recommended that 

researchers perform a hypothesis test of the significance of the corresponding regression 

coefficient and apply the asymptotic confidence interval procedure only when the null hypothesis 

is rejected.  Given the coverage probability results when Δρ2 = 0, although coverage probabilities 

are reported in Tables 3-1 to 3-3, they are not included in the assessment of agreement that 
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follows as doing so would tend to exaggerate the degree of correspondence between the two sets 

of estimates. 

Comparing the coverage probability estimates generated by the two studies, for Δρ2 > 0, 

79% were within ± .003 and 94% were within ± .005.  Of the 504 comparisons, 73 (15%) 

showed no difference to 3 decimal places.  When coverage probabilities differed, 208 (41%) 

estimates from the current study were greater and 223 (44%) were smaller than coverage 

probabilities reported by Algina and Moulder.   

For k = 2, reported in Table 3-1, 90% of the estimates from the two simulations were 

within ± .003 and only 5 differences were greater than ± .005.  For 15 of the 168 cases, estimated 

coverage probability would have been categorized differently with respect to Bradley’s criteria 

for robustness, [.925,.975] or [.94,.96].  These discrepancies were evenly split with 8 estimates 

from Algina and Moulder’s study falling in the more stringent interval, that is, closer to the 

nominal level, and 7 values of p̂ estimated in this study satisfied the more stringent criterion.   

Both sets of estimates when k = 2 showed that empirical coverage probability approached 

the nominal as sample size increased and as the magnitude of the squared semipartial correlation 

increased.  The confidence interval was least accurate for the smallest sample size, n = 175, for 

all levels of 2
rρ when Δρ2 = .05.  There was good coverage probability, i.e. at least .94, for  

n ≥ 425 and Δρ2 > .10.  Depending on the tolerance one has for the difference between coverage 

probability and the nominal confidence level, coverage probability could be considered 

marginally adequate, that is, at least .925, for all sample sizes and Δρ2 > .10. 

The agreement between the two replications was somewhat worse as the number of 

predictors increased.  As shown in Tables 3-2 and 3-3, for both k = 6 and k = 10, 127 (76%) 

comparisons were within ± .003.   There were 8 (5%) differences greater than ± .005 with 6 
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predictors and 16 (9%) differences exceeded  ± .005 with 10 predictors.   Although for k = 6 the 

large differences favored the results reported by Algina and Moulder (6 vs. 2), for k = 10 a large 

difference was just as likely to favor the estimates from the current simulation where “favoring” 

is defined as an estimated coverage probability that is closer in value to the nominal.  In Algina 

and Moulder’s data, there was also a tendency for the estimated coverage probability to meet the 

more stringent evaluation criterion when there was mismatch in categorization.  For k = 6 and 

Δρ2 > .10, all coverage probabilities were greater than .925 for n  ≥ 425, and all but one were 

greater than .94 for  n  = 600.   At k = 10, although all coverage probabilities met the liberal 

criterion at n = 600, there was no level of Δρ2 for which all were greater than .94.  Overall, 

agreement between the two studies was quite good and therefore, the current study was 

conducted by simulating 10,000 replications of each condition. 

Simulation Proper 

In this simulation, 857,500,000 independent confidence intervals were calculated.  Given 

there were 10,000 replications of each combination of X, e, n, k, 2
rρ , and Δρ2, coverage 

probability was computed as the proportion of times the constructed confidence interval 

contained Δρ2, the population squared semipartial correlation.  In this manner, 85,750 coverage 

probabilities were estimated.   

Since the distribution from which predictors were sampled and the distribution for the 

residuals were both manipulated, this allowed us to examine four distinct situations that might be 

encountered when analyzing data using multiple regression: (a) normal X, normal e,  (b) normal 

X, nonnormal e, (c) nonnormal X, normal e, and (d) nonnormal X, nonnormal e.  Average 

empirical coverage probability estimates for these four scenarios, as a function of sample size, 

are depicted in Figure 3-1.  Results for all values of k, 2
rρ , and Δρ2, for selected sample sizes, are 
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reported in Tables 3-4 to 3-7.  Estimates for conditions where Δρ2 = 0 were omitted since all 

were either .999 or 1.000, rounded to three decimal places. 

Table 3-4 presents results for normal predictors with normal errors.  If we consider 

Bradley’s liberal interval, .925 to .975, as evidence for robustness, for k = 2, 4, 6, 8, and 10, the 

percentages of nonrobust values at n = 200 were 9%, 12%, 14%, 38%, and 71%, respectively.  

At n = 400, the percentages of empirical values that were not robust decreased dramatically to 

0%, 0%, 0%, 2%, and 2%.   All estimated coverage probabilities were robust at n ≥ 600.  At the 

largest sample sizes reported, n = 1500 and n = 2000, all exceeded .94 and met the more 

stringent standard for robustness 

When predictors were normal with nonnormal residuals, reported in Table 3-5, the 

percentage of nonrobust coverage probabilities increased.  For k = 2, 4, 6, 8, and 10 and n = 200, 

the percentages of nonrobust values were 31%, 38%, 50%, 76%, and 100%, respectively.  As 

expected, the number of nonrobust coverage probabilities decreased as n grew larger.  This 

decrease was notable between n = 200 and n = 400 (7%, 7%, 5%, 14%, and 19%) and less so for  

n = 600 (5%, 2%, 2%, 5%, 7%) and n = 800 (2%, 2%, 2%, 5%, 5%). For n ≥ 1000, all coverage 

probabilities were robust except when 2
rρ = 0 and Δρ2 = .30. 

Table 3-6 shows coverage probability estimates when the predictors were nonnormal and 

the distribution of the residuals was normal.  At n = 200, there were no robust empirical 

estimates at any level of k.  For n = 400, the percentages of estimates outside Bradley’s liberal 

interval were 64%, 62%, 76%, 95%, and 100% for k = 2, 4, 6, 8 and 10, respectively.  For  

n = 600, the percentage of coverage probabilities that were nonrobust for these values of k were 

50%, 55%, 60%, 64%, and 69%.  For sample sizes greater than 600, improvement, as measured 

by a decrease in nonrobust values, was much more gradual.   For k = 2, 4, 6, 8, and 10, and  
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n = 800, the percentages were 50%, 50%, 50%, 57%, and 60%; for n = 1000, 48%, 50%, 50%, 

48%, and 55%; and for n = 1500, 45%, 45%, 50%, 48%, and 52%.  At the largest sample size,  

n = 2000, at least 45% of empirical coverage probabilities at every level of k failed to meet even 

the liberal standard for robustness. 

The coverage probabilities contained in Table 3-7 were estimated for the case where both 

predictors and errors were nonnormal.  For n ≤ 400, there were only 6 estimates greater than 

.925.  Of these, 5 were observed for n = 400 and k = 2, and 1 at n = 400 and k = 4.  For 

n = 600, the percentages of coverage probabilities that were nonrobust were 74%, 71%, 81%, 

86%, and 88% for k = 2, 4, 6, 8, and 10, respectively.  Similar to what was observed with 

nonnormal X and normal e, the improvement in coverage probabilities is minor for n > 600 such 

that when n = 2000, nonrobust estimates were 71% , 71% , 74% , 74% , and 76% for k = 2, 4, 6, 

8, and 10, respectively.   

For all four scenarios, coverage probability tended to decrease as more predictors were 

included in the model, particularly with smaller sample sizes.  Coverage improved as sample size 

increased.  Figure 3-1 suggests that nonnormality in the predictors was more detrimental to the 

adequacy of the confidence interval than was a nonnormal error distribution.  A modest decline 

in coverage probability was observed between normal X, normal e and normal X, nonnormal e, 

but there was a considerable drop off in performance when X was nonnormal even when the 

errors were normally distributed. 

In addition, coverage probability was examined by distributional condition.  A 

distributional condition was defined by the combination of the distribution for the predictors and 

the distribution for the errors.  There were 25 distributional conditions included in this study.  
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For clarity and ease of presentation, the g-and-h distributions from which data were generated 

will be referred to as: (a) pseudo-t10 for g = 0, h = .058; (b) 2
10pseudo-χ for g = .301, h = -.017;  

(c) 2
4pseudo-χ  for g = .502, h = -.048; and (d) pseudo-exponential for g = .760, h = -.098.  The 

descriptive statistics reported in Table 3-8 were based on 2940 coverage probability estimates 

per distributional condition, excluding those cases where Δρ2 = 0. 

Average coverage probability was closest to the nominal confidence level when both X 

and e were normally distributed.  The average coverage probability was smallest for the most 

seriously nonnormal case, both X and e sampled from the pseudo-exponential distribution.  

Within each level of X, mean coverage probability decreased as the error distribution exhibited 

increasing nonnormality.   

A similar pattern was observed for the median.  In the extremes, the median for 

multivariate normal data was .944.  In contrast, for the condition where both X and e were 

distributed pseudo-exponential, half the estimated coverage probabilities were less than .868.  

For all distributional conditions in which X was distributed pseudo-exponential, at each error 

distribution, at least 50% of the estimated coverage probabilities were below .90.    

The variability in coverage probability increased with greater skewness and kurtosis in the 

data.  When X was distributed pseudo-exponential, regardless of the distribution for e, the 

standard deviation was over three times that observed for the multivariate normal case. Although 

the maximum value did not differ a great deal as a function of distributional condition, the 

minimum was much lower and the range was wider for conditions with greater nonnormality.   

Also included in Table 3-8 is an examination of the robustness of the confidence interval 

as a function of distributional condition at n = 600 and n = 2000.  Applying the liberal criterion, 
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.925 to .975, all coverage probabilities were robust at n = 600 for multivariate normal data and 

when predictors were normally distributed and the distribution for the errors was either  

pseudo-t10 or 2
10pseudo-χ .  There was no other distributional condition for which coverage 

probability was adequate for the entire range of values for k, 2
rρ , and Δρ2, even for the largest 

sample size investigated, n = 2000.  For the most extreme distributional condition simulated, 

both X and e drawn from a pseudo-exponential distribution, 100% of the coverage probabilities 

were nonrobust at n = 600.  There was only slight improvement at n = 2000 where 90% of the 

estimates were not robust.  Although it could be argued that data like this is unlikely to occur in 

practice, with an error distribution with severe nonnormality, i.e. pseudo-exponential, there was 

poor coverage even when the predictors were multivariate normal.  At n = 2000, 25.2% of the 

estimates were not robust.   Furthermore, when using multiple regression, applied researchers are 

much more likely to be concerned about the error distribution since violation of this assumption 

influences the power and accuracy of hypothesis tests.  Researchers may not even investigate the 

multivariate skewness and kurtosis for the predictors.  With a normal error distribution, the 

percentages of nonrobust estimates at n = 2000 for predictors distributed pseudo-t10, 2
10pseudo-χ , 

2
4pseudo-χ , and pseudo-exponential, were roughly 7%, 10%, 49%, and 96%, respectively.  

Although results are reported for only two sample sizes, for all distributional conditions and 

sample sizes investigated, when an estimated coverage probability was outside of either criterion 

interval, it was without exception, too small. 

Figure 3-2 illustrates the relationship between coverage probability, distributional 

condition, and sample size.  The best coverage probability, over the full range of sample sizes 

investigated, was observed for the condition in which both X and e were normal.  However, at 

best, average coverage probability never reached the nominal confidence level, .95.  There was a 
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slight degradation in performance for conditions where X was normal and the nonnormal errors 

were distributed pseudo-t10 or 2
10pseudo-χ .  Although it is a bit hard to discern because of the 

overlap for conditions where X was distributed pseudo-t10 and 2
10pseudo-χ , results were similar 

for normal X with e distributed 2
4pseudo-χ , and X sampled from pseudo-t10 with normal error.  

That is, coverage probability estimates were similar when the predictors were normal with 

markedly nonnormal errors and when predictors were sampled from a pseudo-t10 distribution 

with a normal error distribution.   Similarly, the condition in which X was distributed 2
4pseudo-χ  

with normal error exhibits coverage probability comparable to the conditions where predictors 

were moderately nonnormal, sampled from pseudo-t10 and 2
10pseudo-χ , with errors that were 

extremely skewed and kurtotic (pseudo-exponential).  Thereafter, as the distribution for X 

became increasingly nonnormal, coverage probability decreased and was least adequate when the 

predictors were sampled from a pseudo-exponential distribution regardless of the distribution for 

the residuals.  Within each condition for X, coverage probability decreased in the same 

systematic way as a function of the nonnormality in the error distribution such that coverage 

probability was best with normally distributed errors and worst when the errors were distributed 

pseudo-exponential. 

Analysis of Variance and Mean Square Components 

Given the sheer volume of data collected in this study, analysis of variance (ANOVA) was 

used to identify the experimental factors that were important in determining the estimated 

coverage probability, ˆ.p   Factorial ANOVA assumes that multiple factors contribute to the 

variance in the data.  The total variance is partitioned into main effects corresponding to each 

factor, the interactions among them, and random error.   The factors manipulated in the study 

were all treated as between-subjects effects in a fully-crossed ANOVA model that consisted of 6 
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main effects and 56 interactions.  Since the procedure for calculating the confidence interval is 

clearly inappropriate when Δρ2 = 0, the 12,250 coverage probabilities calculated for this value 

were not included in this analysis. It was felt this provided a more accurate reflection of the data.  

ANOVA analyses and variance partitioning of coverage probabilities were therefore based on  

N = 73,500.  The mean squares, F-statistics, and p-values associated with each effect in the full 

model were computed using the ANOVA procedure in SAS.  These results are reported in Table 

3-9.  The combination of a large number of effects and a very large sample size ensured that 

there were many statistically significant effects, including higher-order interactions.  In all, 34 of 

the 62 effects estimated were significant at p < .0001. 

Because statistical significance is in large part a function of sample size, a statistically 

significant effect is not very informative when the sample size is very large.  To better 

understand the relative impact of these effects on coverage probability, it was necessary to obtain 

a measure of influence to determine which effects were associated with a meaningful proportion 

of the variance.  The term variance component is used in the context of analysis of variance with 

random effects and denotes the estimate of the amount of variance that can be attributed to each 

effect.  In the current context, the levels of each factor were purposively selected.  Because 

effects are fixed and not random, the more accurate term is mean square component.  The 

ANOVA method for estimating mean square components equates mean squares to their expected 

values, EMS, and solves for the mean square components in those expectations.  The estimated 

mean square component for each main effect and interaction was computed using the general 

formula  

2 ( ) (Residual)MS MS
jα

α −
θ =  
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where α is the effect of interest and  j is the product of the number of levels for each factor not 

involved in α (Myers & Well, 2003).  In this case, the residual mean square, .0000079, includes 

the mean square for the six-way interaction and the mean square for error.  For example, the 

mean square component for X is given by 

2 7.5162 .0000079 7.516192 .0005113.
(5)(5)(7)(6)(14) 14700X

−
θ = = =  

Since these are simultaneous linear equations with as many unknowns as there are 

equations, they have unique solutions and mean square components are estimated noniteratively.  

An unfortunate characteristic of ANOVA estimators is that they can yield negative estimates 

even though, by definition, they are nonnegative.  Negative components were set equal to zero 

before calculating the proportion of variance that could be attributed to each effect.  The 

components were then summed and the ratio of each mean square component to the sum was 

used as a measure of influence. 

Effects significant at α = .0001 that accounted for at least .5% of the variance are reported 

in Table 3-9.  The distribution for the predictors, X, was responsible for 44.51% of the total 

variance in coverage probability.  The variance component associated with X was nearly four 

times greater than that of any other main effect.  The main effects of Δρ2 and 2
rρ were 

comparatively less important factors in determining average coverage probability, accounting for 

10.12% and 3.26% of the total variance, respectively.  Effects of Δρ2 and 2
rρ were moderated by 

their interaction.  This two-way interaction accounted for an additional 1.60% of the variance.  

The mean square component associated with sample size, n, accounted for 9.41% of the total 

variability in p̂ .  The main effect of e accounted for only 3.38% of the variance indicating that 

the error distribution had a much smaller impact on the coverage probability of the confidence 
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interval than did the distribution of the predictors.  The number of predictor variables, k, had 

very little impact on ˆ ,p  accounting for only .69% of the variability. 

The critical importance of nonnormality in the predictors was further substantiated by the 

fact that interactions involving X explained an additional 22.24% of the variance in p̂ . The 

variance components for the two-way interactions between X and Δρ2
 and X and 2

rρ were 

associated with 11.38% and 8.82% of the total variance, respectively.  The three-way interaction 

of these factors, X × 2
rρ  × Δρ2, moderated the three main effects and the two-way interactions 

and accounted for an additional 2.04% of the total variance in coverage probability.   The main 

effects of X, Δρ2, and 2
rρ , and the interactions of these three factors explained 81.7% of the total 

variance in coverage probabilities. 

The effect of e was also moderated, although to a lesser extent, by the two-way interactions 

between e and Δρ2 and e and 2
rρ .  These interaction effects were responsible for .70% and 1.28%, 

respectively.  The three-way interaction, e × 2
rρ  × Δρ2, explained .54% of the total variance.  The 

main effects of e, Δρ2, and 2
rρ , and their interactions accounted for 5.85% of the variance in p̂ .  

This was further evidence that although a nonnormal error distribution had some effect on the 

coverage of the confidence interval it was not nearly as important as nonnormality in the 

predictors. 

Sample size interacted with the number of predictors, k, and the size of the squared 

semipartial correlation coefficient, Δρ2.  The n × k and n × Δρ2 interaction effects each explained 

approximately 1% of the total variance.  Important effects involving sample size were associated 

with 11.35% of the variability in coverage probability.  Thus, it appears that sample size was also 

more important than nonnormality in the error distribution in determining the adequacy of the 
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confidence interval.  The effects reported in Table 3-9 accounted for an estimated 99.6% of the 

total variance in coverage probability.  The following sections describe the important factors 

influencing coverage probability as identified by the mean square components analysis. 

The Influence of Nonnormality on Coverage Probability 

Nonnormal predictors 

When coverage probability was averaged over all other factors, Table 3-10 shows the 

adequacy of the confidence interval, as measured by coverage probability, worsened as the 

distribution for the predictors became increasingly nonnormal.  When X was distributed 

multivariate normal, average coverage probability was .935 (SD = .014).  When the set of 

predictors was made up of variables sampled from a pseudo-t10 distribution, that is symmetric, 

but more peaked and heavier tailed than the normal distribution, average coverage probability 

dropped to .925 (SD = .015).   A similar estimate of average coverage probability, p̂ =.923  

(SD = .015), was obtained when the explanatory variables were sampled from a population 

distributed as 2
10pseudo-χ .  Because these distributions had similar values for both univariate and 

multivariate kurtosis, but differed with respect to skewness, this result seems to suggest, at least 

for moderate nonnormality, that skewness may be less important than kurtosis in determining the 

adequacy of the confidence interval procedure. When predictors were sampled from a 2
4pseudo-χ  

population distribution, the average coverage probability was .906 (SD = .022).  The average 

coverage probability when predictors were sampled from a distribution that has the same 

skewness and kurtosis as the exponential distribution was .877 (SD = .037). 

The median was also related to the degree of nonnormality present and declined in a 

manner similar to the mean.  In addition, the range of coverage probability values estimated in 

the simulation expanded as the degree of nonnormality became more extreme.  Figure 3-3 



 

59 

presents boxplots that describe the distribution of coverage probability estimates as a function of 

the distribution for X.  We see that all distributions for p̂ are skewed to the right, but the 

distribution was flatter, more spread out, and longer-tailed as the degree of skewness and kurtosis 

in the distribution for the predictors increased. 

Nonnormal error distribution 

Table 3-11 shows descriptive statistics for the main effect of the distribution for error.  The 

means, by error distribution, also declined as a function of the degree of nonnormality present.  

The range between the largest mean, .919 for normally distributed errors, and the smallest, .903 

for errors distributed pseudo-exponential, was much smaller than observed in Table 3-10 for the 

main effect of the distribution for the predictors.  There was also less variability in the median, 

ranging from .929 for normal errors to .911 for pseudo-exponential errors.  The range of 

coverage probabilities and the standard deviations were essentially equal suggesting that there 

was little difference in the variability of coverage probability estimates as a function of the error 

distribution.  The boxplots depicted in Figure 3-4 supported this contention. 

The Impact of Squared Multiple Correlations on Coverage Probability 

Figure 3-5 depicts the relationship between coverage probability and the magnitude of the 

population squared semipartial correlation.  Averaged over all other factors, coverage probability 

tended to decrease as the size of the squared semipartial correlation increased.  Figure 3-5 also 

shows that the effect of Δρ2 on coverage probability varied depending on the distribution for the 

predictors hence the significant interaction between X and Δρ2.  Figure 3-5 and Table 3-12 show 

the relationship between Δρ2 and coverage probability within each distribution for X.   Under 

normality there was actually a slight increase in p̂ from Δρ2 = .05 to Δρ2 = .10, the smallest 

values investigated. This increase essentially leveled off thereafter.  Stable coverage probability 
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between Δρ2 = .05 and Δρ2 = .10 was observed for pseudo-t10 and 2
10pseudo-χ  distributions.  In 

both distributions, p̂ showed a steady, but modest, decline for Δρ2 > .10.  The decline in p̂ when 

X was distributed 2
4pseudo-χ  was modest between Δρ2 = .05 ( p̂ = .924) and Δρ2 = .10  

( p̂ = .919).  The rate of change was much steeper for Δρ2 > .10 such that p̂ decreased to .886 at 

Δρ2 = .30.  For X sampled from the pseudo-exponential distribution, coverage probability was 

essentially a linear function of Δρ2 that declined sharply over the range of Δρ2 from p̂ = .915 

to p̂ = .840. 

There was also a significant interaction, depicted in Figure 3-6, between e and Δρ2.  

However, as reported in Table 3-9, this effect while statistically significant, accounted for little 

of the variance in coverage probability.  A comparison of Figure 3-6 with Figure 3-5 shows a 

similar pattern for the relationship between the error distribution and Δρ2 with less extreme 

variation in the rate at which coverage probability declined.   When the error distribution was 

normal, pseudo-t10, or 2
10pseudo-χ , p̂ declined slightly between Δρ2 = .05 and Δρ2 = .10 with a 

steady, gradual decrease for Δρ2 > .10.  The decline in coverage probability between  

Δρ2 = .05 and Δρ2 = .60 was more nearly linear, with a steeper slope, when the error distribution 

was sampled from either a 2
4pseudo-χ or pseudo-exponential distribution.  The decrease in 

coverage probability was most dramatic when errors were distributed pseudo-exponential.  At 

Δρ2 = .05, p̂ = .923 and at Δρ2 = .60, coverage probability dropped to p̂ = .883.  Coverage 

probabilities, as a function of e and Δρ2, are reported in Table 3-13. 

Figure 3-7 depicts the relationship between 2
rρ and coverage probability.  Coverage 

probability stayed relatively constant between 2
rρ = .00 and 2

rρ = .40 and then decreased for  
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2
rρ = .50 and 2

rρ = .60.  The interaction between X and 2
rρ is also demonstrated in Figure 3-7.  

When the predictors were distributed multivariate normal, coverage probability was a linear 

function of 2
rρ , gradually increasing from .928 at 2

rρ = .00 to .940 at 2
rρ = .60.  For X distributed 

pseudo-t10 and 2
10pseudo-χ , there was a minor increase in coverage probability, roughly .92 to .95, 

between 2
rρ = .00 and 2

rρ = .40.  Coverage probability was smaller for 2
rρ  ≥ .50.  As the 

distribution for X demonstrated greater skewness and kurtosis, the coverage probability function 

tended to be more curvilinear.  For X distributed 2
4pseudo-χ , coverage probability was relatively 

consistent between 2
rρ = .00 and 2

rρ = .30 and decreased steadily for 2
rρ ≥ .40 to a minimum of 

.887 at 2
rρ = .60.  When X was sampled from a pseudo-exponential distribution, coverage 

probability started out at p̂ = .896 at 2
rρ = .00 and decreased between 2

rρ = .00 and 2
rρ = .30 to .885.  

The decline in p̂ was at a much faster rate thereafter such that when 2
rρ = .60, p̂ = .837.  As Table 

3-14 shows, the differences in coverage probabilities, as a function of the degree of nonnormality 

in X, had their smallest range of values at 2
rρ = .00 (.928 to .896) and the range was maximized at 

2
rρ = .60 (.940 to .837). 

While the behavior of p̂ over the levels of Δρ2, as a function of the error distribution, was 

comparable to the relationship between Δρ2 and the distribution for the predictors, the e × 2
rρ  

interaction, presented in Figure 3-8, shows this was not the case for 2
rρ .  In contrast, the 

differences in ˆ ,p  as a function of nonnormality in the error distribution, were greatest at 2
rρ = .00.   

Coverage probability, reported in Table 3-15, ranged from .927 for normal errors to .897 when 

errors were pseudo-exponential.  By the time 2
rρ = .60, coverage probability had essentially 
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converged and was approximately .90 regardless of the degree of nonnormality in the error 

distribution.  Furthermore, for normal errors, maximum coverage probability, .927, occurred for 

2
rρ = .00.  For e distributed pseudo-t10 and 2

10pseudo-χ , the largest coverage probability, .922, 

occurred at 2
rρ = .10.  For 2

10pseudo-χ , the largest average coverage probability, .915, was 

observed for 2
rρ = .20 and 2

rρ = .30.  When the error distribution was sampled from a  

pseudo-exponential population distribution, the largest coverage probability, .907, was observed 

at 2
rρ = .30 and 2

rρ = .40. These results suggest that the X × 2
rρ  and e × 2

rρ   interactions might 

have a counterbalancing effect.  However, the e × 2
rρ interaction, although statistically 

significant, explained a modest 1.3% of the total variance in coverage probability while the  

X × 2
rρ interaction accounted for 9.5% of the total variance. 

The impact of the interaction between Δρ2 and 2
rρ on coverage probability is shown in 

Figure 3-9.  Although there was a tendency for estimated coverage probability to be further from 

the nominal as 2
rρ increased, this was not the case for all values of Δρ2.  When Δρ2 = .05, there 

was an increasing trend in coverage probability over the range of 2
rρ values.  For Δρ2 > .05, 

coverage probability was relatively stable between 2
rρ = .00 and 2

rρ =.30, but then decreased 

substantially from 2
rρ  = .30 to 2

rρ  = .60. 

However, the relationship of p̂ to 2
rρ and Δρ2 varied depending on the distribution for X. 

Figure 3-10 shows the effect of the three-way interaction between X, 2
rρ , and Δρ2 on coverage 

probability.  To aid in the description and interpretation of effects, coverage probabilities, as a 

function of 2
rρ and Δρ2, for each level of X are reported in Tables 3-16 through 3-20.  For the 

multivariate normal case, coverage probability tended to be worse when Δρ2 = .05 and for all 
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levels of Δρ2 coverage probability increased as 2
rρ increased.  The plots of coverage probability 

as a function of Δρ2 and 2
rρ for pseudo-t10 and 2

10pseudo-χ  look remarkably similar to each other 

and have the same pattern of results described for the two-way interaction of 2
rρ and Δρ2, albeit 

over a narrower range of values.  Coverage probability increased over the levels of 2
rρ when  

Δρ2 = .05, but for Δρ2 > .05, coverage probability tended to increase from 2
rρ = .00, reached a 

maximum at 2
rρ = .30, and decreased thereafter.  Although coverage probability was best for  

Δρ2 = .05 and 2
rρ = .60, for all other levels of Δρ2, coverage probability was lowest at 2

rρ = .60. 

Coverage probability was consistent at approximately .925 over the full range for 2
rρ for 

Δρ2 = .05 when the predictors were distributed 2
4pseudo-χ .  For Δρ2 > .05, coverage probability 

was stable between 2
rρ = .00 and 2

rρ = .20, but showed a decline between 2
rρ = .30 and 2

rρ = .60.  

The rate of decline was faster for larger values of Δρ2. 

For X sampled from the pseudo-exponential distribution, coverage probability decreased as 

2
rρ increased for all levels of Δρ2.  The rate of decline varied according to the value of Δρ2 with 

steeper slopes associated with larger values of Δρ2.  The drop in coverage probability was minor 

for Δρ2 = .05, where p̂ = .917 at 2
rρ = .00, falling to p̂ =.907 at 2

rρ = .60.  However, when  

Δρ2 = .30, at 2
rρ = .00 coverage probability was .870 and decreased markedly to p̂ =.777 at 

2
rρ = .60.  Thus, when nonnormality in the predictors was extreme, the importance of the 

magnitude of the squared multiple correlations, Δρ2 and 2
rρ , was critical for determining the 

adequacy of the confidence interval procedure.  Although no condition, on average, 

demonstrated acceptable coverage over the entire range of factors manipulated in this study, 



 

64 

Figure 3-10 illustrates how inaccurate the asymptotic confidence interval can be under conditions 

that could occur in practice.   

The Impact of Sample Size on Coverage Probability 

As seen in Figures 3-1 and 3-2, regardless of the distribution for the predictors or the 

distribution for error, coverage probability increased rapidly between n = 100 and n = 400.  The 

average coverage probability at n = 100 was .882 increasing to .912 at n = 400.  The rate of 

increase, from .914 to .917, was considerably slower between n = 500 and n = 800.  Furthermore, 

it appears that there was little to be gained by increasing the size of the sample beyond n = 1000 

with respect to the adequacy of the confidence interval.  Coverage probability is increasing so 

slowly between n = 1000 and n  = 2000 (from .918 to .920) that it is likely that sample sizes well 

in excess of 2000 would be required to ensure the robustness of the confidence interval over a 

wide range of nonnormal conditions.  Evidence to support this contention was evaluated by 

estimating coverage probabilities for X and e distributed pseudo-exponential; n = 5000; 2
rρ = .00, 

.30, and .60; and Δρ2 = .05, .10, .15, .20, .25, and .30.  Results indicated that even with an 

extremely large sample size, when nonnormality is severe, coverage probability remained 

inadequate.  Only 7 of 54 coverage probability estimates exceeded .925 and consequently, 87% 

were nonrobust.  Six of the robust estimates were observed for 2
rρ  = .00 or 2

rρ =.30 and  

Δρ2 = .05 for all three levels of k.  The remaining robust estimate occurred for k = 10, 2
rρ  = .00, 

and Δρ2 = .10. 

Figure 3-11 shows that the effect of sample size was not the same at every level of Δρ2.  

The interaction between n and Δρ2 was due to the fact that the effect of Δρ2 was smaller when the 

sample size was smaller than the effect of Δρ2 when the sample size is larger.  In addition, the 

average values for p̂ are not is the same order as a function of Δρ2 for smaller sample sizes.  For 
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example, at n = 100, although coverage probability was clearly inadequate for all levels of Δρ2, it 

was worse for the smallest value, Δρ2 = .05, as well as the largest values, Δρ2 = .25 and Δρ2 =.30.  

Coverage probability improved noticeably for Δρ2 = .05 at n = 200 although it was still not as 

large as it was for Δρ2 = .10.  By n = 300 coverage probability for Δρ2 = .05 and Δρ2 = .10 were 

equal.  At n ≥ 400, coverage probability was a function of Δρ2 growing worse as Δρ2 increased.  

Coverage probabilities, as a function of sample size and Δρ2, are presented in Table 3-21.   

As shown in Figure 3-12, the rate of increase in coverage probability as a function of 

sample size depended on the number of predictors in the model.  For the smaller sample sizes, 

most notably at n = 100, although average coverage probability was clearly inadequate, it was 

considerably worse when there were more predictors in the model.  As the sample size increased, 

the difference between coverage probabilities as a function of the number of predictors became 

progressively smaller.  Table 3-22 shows that at sample sizes greater than 1000, the difference in 

coverage probability was minimal and it appears that the number of predictors  exerted very little 

influence on coverage probability. 

Probability Above and Below the Confidence Interval 

When the confidence interval did not contain the population squared semipartial 

correlation coefficient, the probability that the confidence interval was below Δρ2 and the 

probability that the confidence interval was above Δρ2 were also estimated.   When Δρ2 = 0, 

average coverage probability was .9998. Only 18,754 of the 122,250,000 confidence intervals 

constructed did not contain the population parameter.  There were only 4 instances in which the 

interval was wholly below Δρ2; 18,750 confidence intervals were wholly above Δρ2.   

When the increase in the squared multiple correlation was zero the confidence interval was 

too conservative, but for all other values of Δρ2, the confidence intervals tended to be too liberal.  
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For the 73,500 conditions where Δρ2 > .05, the probability that the confidence interval was 

wholly below Δρ2 was twice the probability that the confidence interval was entirely above Δρ2 

(.664 vs. .336).  The confidence interval is biased in the sense that there is a systematic error that 

causes the estimated confidence limits to regularly miss the population parameter in the same 

direction.  The tendency to underestimate Δρ2 occurs because the estimated asymptotic standard 

error declines as ΔR2 declines.  As a result, when ΔR2 < Δρ2 there is a tendency for the interval to 

be completely below Δρ2 (Algina & Moulder, 2001).   

The Relationship between Estimated Asymptotic Variance, Empirical Sampling Variance 
of ΔR2, and Coverage Probability 

As previously noted, all coverage probabilities were at least .998 for Δρ2 = 0.  This result 

indicates that when a predictor was added to a multiple regression model and there was no 

increase in ρ2, the confidence interval was always too wide.  As previously noted, there were two 

reasons for this shortcoming in the confidence interval.  The distribution of ΔR2 is skewed to the 

right and since the increase in R2 cannot be less than zero it has a lower limit of zero.  Because 

the confidence interval formula does not recognize this lower limit, when the population value 

was Δρ2 = 0, the confidence interval tended to have a lower limit less than zero.   

The second basis for the problem, identified by Algina and Moulder, is that the asymptotic 

variance overestimates the sampling variance of ΔR2.  This was verified in the current study by 

calculating for each combination of X, e, n, k, 2
rρ , and Δρ2 (a) the mean estimated asymptotic 

variance over the 10,000 replications and (b) the empirical sampling variance of ΔR2.  For all 

conditions where Δρ2 = 0, the ratio of the average value of (a) to (b), denoted as MEAV/VarΔR2, 

ranged from 1.27 to 2.18 with a mean of 1.95 and a median of 1.96. 
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The ratio, MEAV/VarΔR2, was also evaluated for Δρ2 > 0.  ANOVA and mean square 

components analyses were conducted for MEAV/VarΔR2 as the outcome variable.  As was the 

case with coverage probability, due to the large sample size, only 24 of 62 effects failed to 

demonstrate significance at p < .0001.  Effects significant at α = .0001 that accounted for at least 

.5 % of the variance are reported in Table 3-23. These effects accounted for 97.8% of the 

variability in the variance ratio, MEAV/VarΔR2.  The distribution for the predictors explained 

51.78% of the variance in the ratio.  An additional 21.06% was attributable to the size of the 

squared semipartial correlation coefficient.  Less important for accurate estimation of the 

variance were the main effects of e and 2
rρ .  These effects explained 6.26% and 2.67% of the total 

variance, respectively. 

As observed for coverage probability, a substantial proportion of the variance, 89.5%, was 

accounted for by the main effects of X, Δρ2, and 2
rρ , and the interaction of these effects:  6.81% 

was associated with the X × Δρ2 interaction, 6.45% was associated with the X × 2
rρ interaction, 

and the three-way interaction, X × 2
rρ × Δρ2, explained a modest .72%.  The interaction between 

the distribution for the errors and 2
rρ accounted for an additional 2.02%.  Although sample size 

plays a role in determining the coverage probability, it was not important in determining the ratio 

since the effect of n was included in calculating the variance. 

Figure 3-13 illustrates how MEAV/VarΔR2 varies as a function of the distribution for the 

predictors, 2
rρ , and Δρ2.  This figure corresponds to Figure 3-10, describing coverage probability 

as a function of the X × 2
rρ × 2Δρ interaction, and shows a similar pattern.  For the multivariate 

normal case, variance ratios got further from 1.0 as Δρ2 increased for 2
rρ = 0.  As 2

rρ increased, 
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variance ratios improved for all values of Δρ2.  This improvement was greater for larger values 

of Δρ2.  By the time 2
rρ = .60, there was no difference in the MEAV/VarΔR2 ratio as a function 

of 2
rρ .  The behavior of the variance ratio helps to explain the fact that for normal data coverage 

probability increases with both Δρ2 and 2
rρ . 

For X distributed pseudo-t10 and 2
10pseudo-χ , the pattern for MEAV/VarΔR2 as a function 

of Δρ2 and 2
rρ was very similar. This was also observed for coverage probability.  At all values 

of 2
rρ , the variance ratio got smaller as Δρ2 increased.  For Δρ2 = .05, the MEAV/VarΔR2 ratio 

was consistent across the range for 2
rρ .  There was a slight curvilinear relationship in the  

Δρ2 × 2
rρ plots for Δρ2 > .15 such that variance estimation improved slightly from 2

rρ = .00 to  

2
rρ = .30 and then declined from 2

rρ = .30 to 2
rρ = .60.  Therefore, variance estimates were best for 

all values of Δρ2 at 2
rρ = .30 and the most serious variance underestimation occurred when both 

2
rρ and Δρ2 were largest. 

When X was distributed 2
4pseudo-χ or pseudo-exponential the difference between the 

variance ratio at the smallest value of Δρ2 and the largest was greater than for the previous 

distributions at 2
rρ = .00 and this difference became progressively larger as 2

rρ increased.  For the 

most extreme degree of nonnormality, although MEAV/VarΔR2 was never greater than .90, 

when Δρ2 represents a large effect size, the accuracy of the estimated variance was particularly 

poor over the range of 2
rρ values. 

The scatterplot in Figure 3-14 is further evidence of a strong positive association between 

coverage probability and MEAV/VarΔR2.  The correlation between coverage probability and the 
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variance ratio was r = .91.  As the asymptotic variance more accurately estimated the actual 

sampling variance of ΔR2, coverage probability approached the nominal confidence level.  When 

coverage probabilities were poor, the estimated asymptotic variance could be less than half that 

of the empirical sampling variance of ΔR2. 

The strength of the relationship between coverage probability and MEAV/VarΔR2 depends 

on the distribution for the predictors, as shown in Figures 3-15 to 3-19.  For multivariate normal 

data, presented in Figure 3-15, the mean variance ratio was .946 (SD = .06).  The median was 

.963 with a range from .666 to 1.050.  Approximately 10% of the estimates were greater than 1.0 

indicating that the asymptotic variance, albeit rarely, sometimes overestimated the empirical 

sampling variance.  As the plot shows, however, a variance ratio near 1.0 was not a guarantee 

that the coverage probability will necessarily be close to .95 and coverage probability was as low 

as .85.  Not surprisingly, the correlation between coverage probability and MEAV/VarΔR2 was 

lower than that for the full data set, r = .62. 

Although the correlation between coverage probability and MEAV/VarΔR2 was similar to 

that for normal data, r = .63, when the predictors were sampled from the pseudo-t10 distribution, 

less than 1% of the variance ratios were above 1 (Figure 3-16).  The mean variance ratio was 

.881 (SD=.065), the median was .886, and the range was .631 to 1.044. 

The estimates from the 2
10pseudo-χ  distribution again demonstrate close similarity to the 

pseudo-t10 distribution.  Although the scatterplot in Figure 3-17 is somewhat less dispersed 

reflected in a slightly higher correlation, r = .68, the descriptive statistics show close agreement. 

The mean variance ratio was .870 (SD=.068), the median was .874, and the range was .626 to 

1.044. Again, less than 1% of the ratio estimates were greater than 1.0. 
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As multivariate skewness and kurtosis increased, the correlation between coverage 

probability and MEAV/VarΔR2 became much stronger.  For the 2
4pseudo-χ distribution  

r = .86.  As Figure 3-18 demonstrates, the scatterplot was more compact and more spread out.  

The range of values was wider, 548 to 1.004, due to a lower minimum value.  There was only 1 

variance ratio greater than 1.  The mean was .785 (SD = .100) and the median was .788. 

Figure 3-19 shows the strongest relationship (r = .91) between coverage probability and 

MEAV/VarΔR2 for the pseudo-exponential distribution.  With skewness and kurtosis 

corresponding to the exponential distribution, the scatterplot was tightly concentrated and 

substantially more elongated.  None of the variance ratios were greater than 1 and over 25% 

were less than .60.  Variance ratios ranged from a low of .381 to a high of .972.  The mean was 

.881 (SD=.132) and the median was .673. 

In summary, for multivariate normal data, MEAV/VarΔR2 was best when Δρ2 was small, 

but as 2
rρ increased, variance was more accurately estimated and by the time 2

rρ = .60, 

MEAV/VarΔR2 was not dependent on Δρ2.  This pattern of results did not hold when 

nonnormality was introduced in the predictors.   For moderate nonnormality, MEAV/VarΔR2 

tended to be more dependent on the value of Δρ2 than on the magnitude of 2
rρ .   When 

nonnormality was more extreme, variance estimation became more inaccurate as both Δρ2 and 

2
rρ increased.  Thus, when a variable was added to a multiple regression model that already 

explained a sizeable proportion of the variation in the outcome, for example, 2
rρ = .60, the effect 

size associated with that variable was large, for example, Δρ2 = .30, and the data were not 

multivariate normal, using Alf and Graf’s formula underestimated the variance.  Furthermore, 

this study showed that when nonnormality was severe, the estimated asymptotic variance could 
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be less than half that indicated by the sampling distribution of ΔR2.  In practice, this is likely to 

produce standard errors that are too small resulting in a confidence interval that is too narrow.  

Reliance on this confidence interval as a measure of the strength of the effect size will lead us to 

underestimate the importance of an individual predictor to the regression. 
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Table 3-1.  Replication of Algina and Moulder’s Results for Multivariate Data and Two Predictors. 

n
175 0.00 1.000 1.000 0.907 0.904 0.925 0.925 0.931 0.930 0.936 0.937 0.938 0.939 0.940 0.934

0.10 1.000 1.000 0.911 0.910 0.926 0.922 0.933 0.932 0.938 0.935 0.940 0.938 0.938 0.938
0.20 1.000 1.000 0.913 0.912 0.930 0.929 0.935 0.933 0.938 0.938 0.942 0.940 0.940 0.939
0.30 1.000 1.000 0.919 0.919 0.931 0.928 0.935 0.941 0.938 0.939 0.939 0.941 0.942 0.939
0.40 1.000 1.000 0.922 0.923 0.934 0.934 0.940 0.939 0.939 0.941 0.942 0.940 0.941 0.944
0.50 1.000 1.000 0.923 0.929 0.936 0.939 0.939 0.938 0.941 0.942 0.942 0.939 0.943 0.941
0.60 1.000 1.000 0.931 0.928 0.939 0.937 0.941 0.943 0.941 0.940 0.942 0.939 0.943 0.940

300 0.00 1.000 1.000 0.923 0.923 0.937 0.932 0.938 0.936 0.943 0.943 0.943 0.945 0.944 0.944
0.10 1.000 1.000 0.928 0.927 0.935 0.939 0.942 0.940 0.944 0.946 0.944 0.942 0.943 0.944
0.20 1.000 1.000 0.929 0.931 0.938 0.936 0.940 0.946 0.942 0.941 0.943 0.946 0.946 0.946
0.30 1.000 1.000 0.930 0.935 0.940 0.939 0.941 0.942 0.944 0.944 0.944 0.944 0.943 0.943
0.40 1.000 1.000 0.934 0.929 0.941 0.943 0.944 0.942 0.945 0.947 0.946 0.946 0.946 0.946
0.50 1.000 1.000 0.935 0.936 0.941 0.943 0.943 0.944 0.946 0.948 0.945 0.944 0.946 0.948
0.60 1.000 1.000 0.938 0.937 0.943 0.942 0.944 0.943 0.944 0.942 0.945 0.945 0.945 0.945

425 0.00 1.000 1.000 0.931 0.933 0.938 0.942 0.942 0.943 0.944 0.948 0.945 0.944 0.947 0.947
0.10 1.000 1.000 0.933 0.934 0.941 0.940 0.944 0.944 0.944 0.946 0.944 0.948 0.947 0.948
0.20 1.000 1.000 0.933 0.940 0.942 0.942 0.945 0.946 0.945 0.944 0.947 0.942 0.946 0.947
0.30 1.000 1.000 0.935 0.937 0.942 0.944 0.945 0.941 0.946 0.943 0.946 0.947 0.945 0.947
0.40 1.000 1.000 0.936 0.935 0.943 0.941 0.945 0.946 0.944 0.949 0.946 0.947 0.949 0.948
0.50 1.000 1.000 0.939 0.939 0.944 0.943 0.946 0.943 0.947 0.946 0.948 0.945 0.945 0.946
0.60 1.000 1.000 0.941 0.941 0.944 0.947 0.946 0.945 0.945 0.947 0.947 0.947 0.946 0.945

600 0.00 1.000 1.000 0.935 0.935 0.943 0.941 0.945 0.944 0.945 0.946 0.947 0.944 0.946 0.950
0.10 1.000 1.000 0.937 0.936 0.945 0.942 0.945 0.944 0.948 0.944 0.947 0.946 0.949 0.949
0.20 1.000 1.000 0.939 0.941 0.945 0.947 0.946 0.942 0.946 0.944 0.948 0.948 0.948 0.944
0.30 1.000 1.000 0.939 0.939 0.945 0.943 0.945 0.948 0.945 0.942 0.945 0.945 0.946 0.948
0.40 1.000 1.000 0.940 0.942 0.945 0.945 0.947 0.946 0.949 0.948 0.948 0.951 0.948 0.948
0.50 1.000 1.000 0.943 0.941 0.946 0.948 0.946 0.943 0.949 0.942 0.947 0.948 0.949 0.947
0.60 1.000 1.000 0.943 0.942 0.946 0.945 0.946 0.945 0.949 0.948 0.948 0.948 0.947 0.945

0.00 0.05 0.10 0.15 0.20 0.25 0.30

 
Note:  Bold results are estimated coverage probabilities between .94 and .96; italicized results are estimated coverage probabilities between .925 and .975. 
           Shaded columns are results from this study; unshaded columns are the results reported by Algina and Moulder (2001, p. 638-640). 
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Table 3-2.  Replication of Algina and Moulder’s Results for Multivariate Data and Six Predictors 

n
175 0.00 1.000 1.000 0.897 0.896 0.918 0.915 0.927 0.925 0.930 0.928 0.933 0.937 0.935 0.936

0.10 1.000 1.000 0.903 0.906 0.920 0.920 0.928 0.923 0.932 0.934 0.935 0.935 0.934 0.932
0.20 1.000 1.000 0.908 0.909 0.922 0.926 0.926 0.931 0.931 0.934 0.934 0.928 0.934 0.935
0.30 1.000 1.000 0.909 0.914 0.922 0.925 0.930 0.928 0.930 0.934 0.933 0.932 0.933 0.935
0.40 1.000 1.000 0.912 0.915 0.925 0.924 0.930 0.932 0.932 0.925 0.932 0.932 0.934 0.933
0.50 1.000 1.000 0.918 0.918 0.927 0.929 0.931 0.934 0.931 0.926 0.932 0.933 0.930 0.939
0.60 1.000 1.000 0.921 0.919 0.929 0.933 0.929 0.934 0.930 0.929 0.932 0.931 0.931 0.927

300 0.00 1.000 1.000 0.920 0.919 0.932 0.932 0.935 0.936 0.938 0.937 0.939 0.940 0.942 0.941
0.10 1.000 1.000 0.923 0.918 0.932 0.927 0.937 0.937 0.939 0.939 0.939 0.940 0.940 0.944
0.20 1.000 1.000 0.925 0.926 0.933 0.935 0.938 0.939 0.939 0.939 0.940 0.941 0.940 0.942
0.30 1.000 1.000 0.926 0.924 0.935 0.938 0.939 0.935 0.941 0.942 0.940 0.938 0.940 0.940
0.40 1.000 1.000 0.927 0.931 0.936 0.931 0.936 0.940 0.941 0.942 0.941 0.940 0.940 0.942
0.50 1.000 1.000 0.933 0.931 0.935 0.935 0.938 0.936 0.938 0.934 0.940 0.942 0.939 0.939
0.60 1.000 1.000 0.933 0.933 0.938 0.943 0.938 0.934 0.940 0.939 0.939 0.940 0.939 0.937

425 0.00 1.000 1.000 0.927 0.925 0.938 0.939 0.940 0.937 0.941 0.945 0.943 0.941 0.944 0.944
0.10 1.000 1.000 0.930 0.927 0.937 0.936 0.941 0.935 0.941 0.944 0.943 0.945 0.943 0.942
0.20 1.000 1.000 0.931 0.932 0.939 0.942 0.940 0.942 0.943 0.941 0.944 0.944 0.943 0.945
0.30 1.000 1.000 0.934 0.935 0.937 0.943 0.941 0.940 0.941 0.942 0.945 0.938 0.943 0.942
0.40 1.000 1.000 0.935 0.937 0.941 0.937 0.942 0.944 0.943 0.939 0.941 0.944 0.943 0.946
0.50 1.000 1.000 0.936 0.934 0.941 0.940 0.940 0.936 0.943 0.940 0.943 0.940 0.943 0.941
0.60 1.000 1.000 0.936 0.939 0.942 0.944 0.942 0.943 0.941 0.944 0.941 0.944 0.941 0.944

600 0.00 1.000 1.000 0.933 0.934 0.941 0.938 0.944 0.941 0.944 0.944 0.945 0.949 0.946 0.947
0.10 1.000 1.000 0.937 0.936 0.941 0.943 0.942 0.942 0.943 0.945 0.944 0.949 0.947 0.945
0.20 1.000 1.000 0.937 0.935 0.942 0.936 0.941 0.943 0.943 0.947 0.944 0.946 0.945 0.946
0.30 1.000 1.000 0.939 0.941 0.943 0.938 0.944 0.941 0.946 0.941 0.945 0.949 0.947 0.943
0.40 1.000 1.000 0.940 0.939 0.942 0.941 0.946 0.942 0.945 0.941 0.945 0.946 0.946 0.941
0.50 1.000 1.000 0.942 0.935 0.942 0.944 0.945 0.943 0.945 0.945 0.945 0.946 0.943 0.944
0.60 1.000 1.000 0.941 0.942 0.942 0.942 0.945 0.945 0.945 0.946 0.943 0.942 0.944 0.946

0.00 0.05 0.10 0.15 0.20 0.25 0.30

 
Note:  Bold results are estimated coverage probabilities between .94 and .96; italicized results are estimated coverage probabilities between .925 and .975. 
           Shaded columns are results from this study; unshaded columns are the results reported by Algina and Moulder (2001, p. 638-640). 



 

 

74

Table 3-3.  Replication of Algina and Moulder’s Results for Multivariate Data and Ten Predictors. 

n
175 0.00 1.000 1.000 0.890 0.893 0.910 0.913 0.917 0.919 0.921 0.920 0.921 0.920 0.927 0.925

0.10 1.000 1.000 0.895 0.888 0.910 0.916 0.919 0.918 0.919 0.922 0.923 0.926 0.923 0.926
0.20 1.000 1.000 0.897 0.898 0.913 0.911 0.919 0.917 0.921 0.920 0.923 0.927 0.921 0.921
0.30 1.000 1.000 0.901 0.904 0.916 0.918 0.920 0.920 0.920 0.921 0.923 0.921 0.922 0.914
0.40 1.000 1.000 0.904 0.907 0.918 0.914 0.920 0.924 0.921 0.922 0.919 0.917 0.918 0.916
0.50 1.000 1.000 0.909 0.910 0.920 0.916 0.918 0.924 0.918 0.914 0.917 0.922 0.916 0.916
0.60 1.000 1.000 0.911 0.912 0.919 0.917 0.919 0.922 0.915 0.916 0.911 0.912 0.910 0.904

300 0.00 1.000 1.000 0.914 0.922 0.928 0.926 0.929 0.934 0.935 0.935 0.936 0.934 0.938 0.935
0.10 1.000 1.000 0.917 0.921 0.926 0.923 0.933 0.934 0.934 0.936 0.935 0.937 0.936 0.935
0.20 1.000 0.999 0.919 0.919 0.927 0.924 0.933 0.934 0.932 0.936 0.936 0.937 0.935 0.931
0.30 1.000 1.000 0.922 0.923 0.931 0.931 0.932 0.934 0.934 0.936 0.934 0.936 0.934 0.930
0.40 1.000 1.000 0.924 0.919 0.929 0.934 0.934 0.937 0.933 0.932 0.932 0.934 0.931 0.931
0.50 1.000 1.000 0.924 0.922 0.930 0.931 0.933 0.938 0.932 0.934 0.931 0.933 0.930 0.930
0.60 1.000 1.000 0.926 0.927 0.930 0.924 0.931 0.935 0.931 0.932 0.927 0.935 0.927 0.926

425 0.00 1.000 1.000 0.923 0.924 0.935 0.935 0.936 0.941 0.938 0.937 0.938 0.941 0.940 0.940
0.10 1.000 1.000 0.927 0.926 0.934 0.931 0.938 0.934 0.939 0.935 0.938 0.938 0.940 0.940
0.20 1.000 1.000 0.928 0.928 0.936 0.939 0.937 0.938 0.940 0.938 0.939 0.939 0.939 0.934
0.30 1.000 1.000 0.930 0.934 0.936 0.934 0.936 0.934 0.939 0.939 0.939 0.939 0.938 0.936
0.40 1.000 1.000 0.932 0.930 0.936 0.934 0.938 0.936 0.939 0.937 0.941 0.935 0.936 0.937
0.50 1.000 1.000 0.930 0.931 0.936 0.939 0.936 0.939 0.938 0.939 0.939 0.934 0.935 0.935
0.60 1.000 1.000 0.935 0.934 0.936 0.935 0.937 0.937 0.935 0.938 0.937 0.935 0.936 0.938

600 0.00 1.000 1.000 0.933 0.926 0.938 0.938 0.941 0.940 0.944 0.938 0.942 0.943 0.943 0.946
0.10 1.000 1.000 0.933 0.939 0.937 0.941 0.941 0.940 0.941 0.941 0.945 0.944 0.943 0.939
0.20 1.000 1.000 0.935 0.929 0.939 0.937 0.940 0.938 0.941 0.949 0.942 0.940 0.944 0.941
0.30 1.000 1.000 0.935 0.930 0.939 0.941 0.941 0.940 0.941 0.942 0.941 0.942 0.943 0.937
0.40 1.000 1.000 0.936 0.937 0.941 0.944 0.944 0.944 0.942 0.942 0.942 0.940 0.942 0.937
0.50 1.000 1.000 0.934 0.940 0.942 0.942 0.941 0.939 0.942 0.941 0.940 0.942 0.939 0.938
0.60 1.000 1.000 0.940 0.939 0.940 0.940 0.940 0.936 0.939 0.940 0.939 0.942 0.940 0.937

0.20 0.25 0.300.00 0.05 0.10 0.15

 
Note:  Bold results are estimated coverage probabilities between .94 and .96; italicized results are estimated coverage probabilities between .925 and .975. 
           Shaded columns are results from this study; unshaded columns are the results reported by Algina and Moulder (2001, p. 638-640). 
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Table 3-4.  Empirical Coverage Probabilities for Normal Predictors and Normal Errors. 
k

n Δρ2 2 4 6 8 10
200 0.00 0.05 0.912 0.911 0.901 0.896 0.898

0.10 0.926 0.925 0.926 0.918 0.915
0.15 0.930 0.930 0.932 0.928 0.916
0.20 0.934 0.936 0.934 0.928 0.924
0.25 0.941 0.936 0.934 0.927 0.928
0.30 0.943 0.940 0.940 0.932 0.931

0.10 0.05 0.912 0.907 0.904 0.904 0.906
0.10 0.932 0.932 0.925 0.923 0.918
0.15 0.934 0.935 0.929 0.925 0.922
0.20 0.942 0.935 0.938 0.925 0.927
0.25 0.940 0.938 0.936 0.930 0.923
0.30 0.942 0.940 0.942 0.937 0.930

0.20 0.05 0.916 0.917 0.916 0.916 0.902
0.10 0.929 0.930 0.928 0.921 0.922
0.15 0.942 0.933 0.932 0.924 0.925
0.20 0.938 0.938 0.938 0.928 0.928
0.25 0.942 0.937 0.939 0.930 0.928
0.30 0.940 0.942 0.942 0.930 0.925

0.30 0.05 0.925 0.913 0.915 0.911 0.906
0.10 0.935 0.932 0.927 0.924 0.919
0.15 0.939 0.932 0.933 0.931 0.926
0.20 0.938 0.936 0.931 0.923 0.926
0.25 0.944 0.940 0.935 0.931 0.928
0.30 0.943 0.940 0.937 0.932 0.927

0.40 0.05 0.924 0.919 0.919 0.917 0.909
0.10 0.935 0.936 0.928 0.927 0.919
0.15 0.941 0.935 0.933 0.930 0.920
0.20 0.942 0.938 0.938 0.928 0.922
0.25 0.945 0.939 0.933 0.930 0.924
0.30 0.949 0.939 0.933 0.931 0.920

0.50 0.05 0.932 0.927 0.925 0.913 0.914
0.10 0.934 0.935 0.931 0.923 0.922
0.15 0.946 0.941 0.935 0.928 0.923
0.20 0.942 0.938 0.930 0.928 0.924
0.25 0.940 0.942 0.937 0.930 0.918
0.30 0.941 0.942 0.935 0.927 0.921

0.60 0.05 0.937 0.928 0.922 0.923 0.918
0.10 0.941 0.939 0.931 0.923 0.924
0.15 0.943 0.937 0.931 0.929 0.923
0.20 0.940 0.938 0.935 0.927 0.921
0.25 0.949 0.938 0.935 0.929 0.916
0.30 0.944 0.939 0.934 0.923 0.919

2
rρ

 
Note:  Bold results are estimated coverage probabilities between .94 and .96; italicized results are estimated  
 coverage probabilities between .925 and .975. 
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Table 3-4.  Continued 

k

n Δρ2 2 4 6 8 10
400 0.00 0.05 0.931 0.927 0.929 0.923 0.924

0.10 0.935 0.940 0.934 0.934 0.936
0.15 0.942 0.941 0.940 0.937 0.939
0.20 0.940 0.945 0.940 0.941 0.937
0.25 0.945 0.943 0.942 0.947 0.937
0.30 0.946 0.947 0.943 0.942 0.938

0.10 0.05 0.929 0.932 0.928 0.928 0.927
0.10 0.940 0.942 0.939 0.938 0.936
0.15 0.943 0.942 0.941 0.940 0.937
0.20 0.946 0.942 0.938 0.939 0.936
0.25 0.946 0.942 0.941 0.942 0.941
0.30 0.946 0.947 0.946 0.945 0.937

0.20 0.05 0.931 0.929 0.929 0.930 0.929
0.10 0.939 0.940 0.941 0.937 0.931
0.15 0.944 0.942 0.936 0.936 0.936
0.20 0.944 0.945 0.942 0.943 0.935
0.25 0.947 0.947 0.942 0.939 0.941
0.30 0.942 0.946 0.940 0.942 0.936

0.30 0.05 0.938 0.933 0.934 0.935 0.929
0.10 0.941 0.944 0.935 0.936 0.937
0.15 0.942 0.940 0.941 0.938 0.939
0.20 0.945 0.944 0.942 0.941 0.938
0.25 0.946 0.944 0.943 0.935 0.938
0.30 0.946 0.945 0.943 0.940 0.939

0.40 0.05 0.933 0.935 0.934 0.930 0.930
0.10 0.944 0.941 0.936 0.937 0.931
0.15 0.950 0.940 0.941 0.941 0.934
0.20 0.944 0.947 0.944 0.939 0.939
0.25 0.948 0.944 0.940 0.944 0.933
0.30 0.947 0.946 0.943 0.944 0.934

0.50 0.05 0.935 0.935 0.936 0.932 0.931
0.10 0.949 0.940 0.942 0.936 0.937
0.15 0.946 0.942 0.945 0.937 0.939
0.20 0.950 0.942 0.938 0.941 0.937
0.25 0.946 0.946 0.942 0.938 0.939
0.30 0.948 0.949 0.943 0.939 0.937

0.60 0.05 0.943 0.940 0.938 0.935 0.932
0.10 0.941 0.943 0.934 0.935 0.938
0.15 0.943 0.944 0.943 0.938 0.935
0.20 0.945 0.943 0.944 0.939 0.935
0.25 0.943 0.943 0.938 0.932 0.935
0.30 0.950 0.947 0.945 0.936 0.927

2
rρ
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Table 3-4.  Continued 
k

n Δρ2 2 4 6 8 10
600 0.00 0.05 0.931 0.935 0.937 0.927 0.929

0.10 0.945 0.943 0.942 0.941 0.936
0.15 0.947 0.946 0.945 0.942 0.937
0.20 0.945 0.949 0.944 0.941 0.942
0.25 0.942 0.950 0.948 0.944 0.944
0.30 0.948 0.944 0.945 0.947 0.941

0.10 0.05 0.943 0.933 0.940 0.935 0.932
0.10 0.939 0.942 0.946 0.940 0.940
0.15 0.943 0.945 0.942 0.942 0.941
0.20 0.945 0.950 0.940 0.943 0.942
0.25 0.948 0.947 0.947 0.944 0.940
0.30 0.950 0.949 0.941 0.942 0.943

0.20 0.05 0.938 0.936 0.939 0.938 0.936
0.10 0.948 0.944 0.946 0.940 0.941
0.15 0.949 0.946 0.945 0.940 0.945
0.20 0.945 0.949 0.946 0.943 0.943
0.25 0.946 0.947 0.944 0.941 0.944
0.30 0.952 0.946 0.946 0.947 0.940

0.30 0.05 0.939 0.940 0.933 0.938 0.936
0.10 0.945 0.942 0.941 0.943 0.938
0.15 0.943 0.951 0.945 0.943 0.943
0.20 0.944 0.945 0.945 0.941 0.938
0.25 0.949 0.945 0.941 0.947 0.941
0.30 0.948 0.945 0.948 0.941 0.938

0.40 0.05 0.937 0.943 0.936 0.934 0.939
0.10 0.949 0.941 0.944 0.943 0.940
0.15 0.949 0.945 0.945 0.944 0.944
0.20 0.949 0.945 0.944 0.946 0.939
0.25 0.949 0.949 0.948 0.944 0.943
0.30 0.945 0.949 0.945 0.943 0.943

0.50 0.05 0.941 0.941 0.940 0.943 0.936
0.10 0.946 0.949 0.941 0.946 0.941
0.15 0.944 0.941 0.945 0.942 0.948
0.20 0.950 0.950 0.943 0.943 0.944
0.25 0.946 0.946 0.941 0.946 0.941
0.30 0.951 0.947 0.945 0.945 0.938

0.60 0.05 0.940 0.945 0.944 0.942 0.944
0.10 0.945 0.946 0.945 0.939 0.944
0.15 0.948 0.945 0.946 0.943 0.942
0.20 0.952 0.942 0.941 0.940 0.937
0.25 0.950 0.947 0.945 0.945 0.944
0.30 0.948 0.948 0.945 0.942 0.944

2
rρ
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Table 3-4.  Continued 

k

n Δρ2 2 4 6 8 10
800 0.00 0.05 0.939 0.940 0.939 0.937 0.936

0.10 0.944 0.943 0.946 0.942 0.945
0.15 0.947 0.941 0.946 0.945 0.945
0.20 0.948 0.951 0.943 0.944 0.946
0.25 0.948 0.949 0.948 0.944 0.946
0.30 0.949 0.951 0.946 0.945 0.944

0.10 0.05 0.938 0.942 0.939 0.938 0.939
0.10 0.943 0.949 0.942 0.941 0.938
0.15 0.945 0.942 0.946 0.947 0.943
0.20 0.940 0.943 0.948 0.946 0.943
0.25 0.942 0.945 0.946 0.947 0.946
0.30 0.951 0.948 0.946 0.947 0.944

0.20 0.05 0.938 0.940 0.938 0.935 0.940
0.10 0.944 0.944 0.944 0.945 0.939
0.15 0.950 0.944 0.941 0.945 0.946
0.20 0.946 0.946 0.947 0.945 0.946
0.25 0.949 0.947 0.944 0.948 0.946
0.30 0.947 0.948 0.943 0.946 0.941

0.30 0.05 0.944 0.938 0.942 0.939 0.939
0.10 0.949 0.945 0.946 0.942 0.942
0.15 0.947 0.949 0.945 0.948 0.943
0.20 0.943 0.949 0.946 0.949 0.943
0.25 0.947 0.948 0.944 0.939 0.944
0.30 0.951 0.945 0.948 0.948 0.943

0.40 0.05 0.946 0.938 0.941 0.944 0.942
0.10 0.947 0.947 0.945 0.944 0.942
0.15 0.946 0.948 0.944 0.943 0.941
0.20 0.947 0.946 0.947 0.944 0.944
0.25 0.948 0.947 0.950 0.943 0.946
0.30 0.948 0.945 0.946 0.946 0.941

0.50 0.05 0.947 0.940 0.951 0.942 0.939
0.10 0.948 0.947 0.949 0.943 0.941
0.15 0.950 0.946 0.949 0.944 0.939
0.20 0.949 0.944 0.944 0.949 0.944
0.25 0.951 0.946 0.946 0.947 0.943
0.30 0.953 0.948 0.951 0.944 0.942

0.60 0.05 0.945 0.944 0.945 0.943 0.937
0.10 0.953 0.948 0.948 0.944 0.943
0.15 0.948 0.946 0.943 0.941 0.942
0.20 0.943 0.948 0.945 0.946 0.942
0.25 0.947 0.948 0.945 0.943 0.944
0.30 0.950 0.951 0.944 0.945 0.943

2
rρ
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Table 3-4.  Continued 

k

n Δρ2 2 4 6 8 10
1000 0.00 0.05 0.940 0.943 0.938 0.939 0.937

0.10 0.947 0.946 0.942 0.944 0.943
0.15 0.947 0.945 0.945 0.941 0.946
0.20 0.947 0.947 0.944 0.948 0.941
0.25 0.949 0.947 0.946 0.948 0.950
0.30 0.953 0.950 0.949 0.945 0.948

0.10 0.05 0.945 0.946 0.945 0.944 0.943
0.10 0.950 0.944 0.945 0.946 0.942
0.15 0.945 0.948 0.943 0.945 0.947
0.20 0.950 0.951 0.946 0.944 0.944
0.25 0.949 0.949 0.947 0.948 0.944
0.30 0.949 0.951 0.946 0.945 0.950

0.20 0.05 0.944 0.944 0.945 0.943 0.940
0.10 0.949 0.941 0.946 0.944 0.944
0.15 0.948 0.944 0.947 0.947 0.946
0.20 0.947 0.946 0.943 0.945 0.945
0.25 0.950 0.948 0.949 0.948 0.947
0.30 0.947 0.947 0.949 0.946 0.945

0.30 0.05 0.945 0.937 0.940 0.946 0.942
0.10 0.946 0.949 0.943 0.943 0.944
0.15 0.945 0.948 0.946 0.944 0.946
0.20 0.948 0.948 0.945 0.948 0.945
0.25 0.947 0.949 0.947 0.943 0.943
0.30 0.951 0.948 0.947 0.945 0.950

0.40 0.05 0.943 0.944 0.948 0.945 0.940
0.10 0.944 0.945 0.948 0.946 0.946
0.15 0.947 0.949 0.945 0.940 0.952
0.20 0.948 0.947 0.944 0.947 0.949
0.25 0.947 0.948 0.949 0.948 0.945
0.30 0.951 0.946 0.950 0.949 0.947

0.50 0.05 0.946 0.946 0.945 0.946 0.947
0.10 0.950 0.943 0.948 0.942 0.943
0.15 0.949 0.949 0.945 0.944 0.945
0.20 0.951 0.948 0.948 0.943 0.946
0.25 0.946 0.947 0.946 0.947 0.948
0.30 0.948 0.945 0.951 0.947 0.941

0.60 0.05 0.946 0.943 0.942 0.945 0.943
0.10 0.951 0.945 0.946 0.945 0.946
0.15 0.946 0.944 0.944 0.943 0.948
0.20 0.951 0.950 0.947 0.945 0.942
0.25 0.944 0.949 0.944 0.946 0.941
0.30 0.947 0.951 0.949 0.944 0.943

2
rρ
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Table 3-4.  Continued 

k

n Δρ2 2 4 6 8 10
1500 0.00 0.05 0.946 0.942 0.944 0.944 0.944

0.10 0.949 0.947 0.949 0.943 0.945
0.15 0.946 0.949 0.949 0.947 0.945
0.20 0.949 0.944 0.949 0.945 0.947
0.25 0.947 0.946 0.947 0.945 0.946
0.30 0.950 0.948 0.949 0.945 0.944

0.10 0.05 0.945 0.945 0.949 0.942 0.946
0.10 0.945 0.944 0.948 0.945 0.947
0.15 0.950 0.949 0.954 0.947 0.952
0.20 0.945 0.951 0.953 0.946 0.945
0.25 0.949 0.947 0.948 0.945 0.949
0.30 0.949 0.948 0.947 0.949 0.944

0.20 0.05 0.945 0.944 0.945 0.940 0.944
0.10 0.951 0.943 0.945 0.945 0.948
0.15 0.949 0.950 0.947 0.952 0.945
0.20 0.948 0.949 0.950 0.948 0.948
0.25 0.951 0.947 0.946 0.949 0.947
0.30 0.947 0.946 0.948 0.952 0.952

0.30 0.05 0.951 0.942 0.945 0.941 0.943
0.10 0.950 0.950 0.947 0.947 0.945
0.15 0.947 0.949 0.946 0.950 0.946
0.20 0.950 0.947 0.950 0.949 0.948
0.25 0.949 0.952 0.954 0.950 0.941
0.30 0.953 0.952 0.949 0.949 0.944

0.40 0.05 0.944 0.944 0.942 0.942 0.948
0.10 0.949 0.949 0.947 0.948 0.948
0.15 0.949 0.955 0.947 0.948 0.944
0.20 0.947 0.950 0.947 0.946 0.945
0.25 0.946 0.949 0.949 0.947 0.945
0.30 0.947 0.952 0.947 0.947 0.949

0.50 0.05 0.948 0.948 0.947 0.945 0.943
0.10 0.949 0.951 0.950 0.950 0.942
0.15 0.947 0.951 0.950 0.946 0.949
0.20 0.951 0.951 0.947 0.948 0.945
0.25 0.952 0.947 0.948 0.947 0.947
0.30 0.947 0.952 0.945 0.950 0.949

0.60 0.05 0.951 0.950 0.944 0.949 0.945
0.10 0.948 0.948 0.948 0.947 0.947
0.15 0.948 0.951 0.949 0.948 0.949
0.20 0.953 0.952 0.944 0.946 0.948
0.25 0.949 0.951 0.948 0.946 0.941
0.30 0.950 0.951 0.952 0.949 0.947

2
rρ
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Table 3-4.  Continued 

k

n Δρ2 2 4 6 8 10
2000 0.00 0.05 0.946 0.945 0.945 0.943 0.940

0.10 0.950 0.948 0.945 0.948 0.944
0.15 0.946 0.944 0.948 0.952 0.950
0.20 0.947 0.944 0.949 0.948 0.949
0.25 0.945 0.945 0.949 0.948 0.945
0.30 0.951 0.949 0.947 0.944 0.951

0.10 0.05 0.949 0.948 0.943 0.946 0.946
0.10 0.949 0.952 0.951 0.947 0.944
0.15 0.947 0.945 0.945 0.947 0.948
0.20 0.946 0.954 0.949 0.949 0.948
0.25 0.945 0.950 0.948 0.946 0.948
0.30 0.947 0.943 0.950 0.950 0.950

0.20 0.05 0.951 0.946 0.944 0.947 0.944
0.10 0.946 0.947 0.943 0.948 0.943
0.15 0.949 0.952 0.950 0.951 0.949
0.20 0.948 0.951 0.946 0.952 0.950
0.25 0.948 0.950 0.947 0.944 0.949
0.30 0.945 0.945 0.951 0.949 0.946

0.30 0.05 0.947 0.948 0.945 0.950 0.944
0.10 0.945 0.951 0.945 0.948 0.945
0.15 0.946 0.947 0.950 0.947 0.948
0.20 0.949 0.948 0.948 0.945 0.945
0.25 0.945 0.951 0.950 0.947 0.946
0.30 0.948 0.949 0.950 0.945 0.945

0.40 0.05 0.948 0.951 0.948 0.947 0.948
0.10 0.947 0.949 0.948 0.947 0.944
0.15 0.946 0.951 0.950 0.951 0.949
0.20 0.955 0.951 0.949 0.948 0.944
0.25 0.949 0.947 0.948 0.950 0.948
0.30 0.949 0.951 0.943 0.952 0.948

0.50 0.05 0.949 0.944 0.946 0.946 0.948
0.10 0.948 0.951 0.947 0.952 0.945
0.15 0.949 0.946 0.950 0.947 0.947
0.20 0.946 0.949 0.948 0.948 0.950
0.25 0.948 0.953 0.951 0.950 0.947
0.30 0.948 0.949 0.949 0.952 0.949

0.60 0.05 0.948 0.950 0.943 0.944 0.945
0.10 0.947 0.946 0.949 0.954 0.941
0.15 0.949 0.949 0.950 0.948 0.946
0.20 0.953 0.951 0.950 0.949 0.948
0.25 0.946 0.951 0.947 0.951 0.944
0.30 0.953 0.952 0.950 0.948 0.943

2
rρ
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Table 3-5.  Empirical Coverage Probabilities for Normal Predictors and Nonnormal Errors. 
k

n Δρ2 2 4 6 8 10
200 0.00 0.05 0.910 0.906 0.902 0.901 0.898

0.10 0.919 0.917 0.920 0.910 0.910
0.15 0.921 0.920 0.919 0.916 0.909
0.20 0.920 0.920 0.915 0.914 0.912
0.25 0.916 0.917 0.914 0.913 0.907
0.30 0.916 0.916 0.913 0.909 0.906

0.10 0.05 0.913 0.908 0.906 0.902 0.901
0.10 0.924 0.921 0.918 0.915 0.913
0.15 0.925 0.926 0.921 0.918 0.915
0.20 0.925 0.923 0.920 0.914 0.911
0.25 0.923 0.924 0.918 0.918 0.911
0.30 0.922 0.921 0.916 0.914 0.909

0.20 0.05 0.915 0.912 0.907 0.909 0.904
0.10 0.927 0.926 0.922 0.916 0.916
0.15 0.928 0.924 0.922 0.922 0.920
0.20 0.931 0.927 0.925 0.921 0.919
0.25 0.929 0.927 0.924 0.919 0.913
0.30 0.927 0.925 0.923 0.918 0.915

0.30 0.05 0.920 0.916 0.914 0.909 0.906
0.10 0.930 0.927 0.924 0.918 0.917
0.15 0.934 0.929 0.925 0.923 0.918
0.20 0.932 0.929 0.925 0.920 0.920
0.25 0.932 0.930 0.926 0.923 0.919
0.30 0.934 0.930 0.928 0.922 0.916

0.40 0.05 0.924 0.919 0.914 0.913 0.910
0.10 0.932 0.930 0.926 0.921 0.918
0.15 0.935 0.931 0.930 0.925 0.919
0.20 0.935 0.932 0.927 0.925 0.919
0.25 0.937 0.933 0.929 0.925 0.917
0.30 0.938 0.935 0.931 0.921 0.917

0.50 0.05 0.926 0.924 0.920 0.915 0.913
0.10 0.935 0.931 0.928 0.924 0.921
0.15 0.937 0.932 0.928 0.925 0.920
0.20 0.938 0.935 0.933 0.928 0.921
0.25 0.941 0.934 0.930 0.924 0.917
0.30 0.939 0.936 0.931 0.927 0.918

0.60 0.05 0.932 0.925 0.926 0.920 0.914
0.10 0.938 0.937 0.930 0.925 0.921
0.15 0.940 0.937 0.930 0.925 0.920
0.20 0.942 0.938 0.930 0.925 0.920
0.25 0.941 0.937 0.930 0.926 0.917
0.30 0.943 0.937 0.930 0.923 0.915

2
rρ

 
Note:  Bold results are estimated coverage probabilities between .94 and .96; italicized results are estimated  
 coverage probabilities between .925 and .975. 
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Table 3-5.  Continued 

k
n Δρ2 2 4 6 8 10

400 0.00 0.05 0.927 0.925 0.927 0.922 0.922
0.10 0.930 0.929 0.931 0.928 0.927
0.15 0.931 0.932 0.931 0.923 0.924
0.20 0.927 0.929 0.925 0.923 0.922
0.25 0.924 0.921 0.922 0.921 0.921
0.30 0.918 0.920 0.920 0.921 0.916

0.10 0.05 0.929 0.926 0.926 0.926 0.920
0.10 0.933 0.932 0.930 0.928 0.927
0.15 0.932 0.931 0.929 0.927 0.926
0.20 0.930 0.930 0.929 0.928 0.925
0.25 0.929 0.928 0.926 0.925 0.925
0.30 0.924 0.924 0.925 0.921 0.919

0.20 0.05 0.930 0.927 0.926 0.926 0.925
0.10 0.934 0.934 0.933 0.930 0.929
0.15 0.932 0.932 0.932 0.929 0.925
0.20 0.933 0.933 0.930 0.930 0.927
0.25 0.935 0.934 0.930 0.930 0.926
0.30 0.932 0.931 0.930 0.926 0.925

0.30 0.05 0.933 0.930 0.928 0.930 0.924
0.10 0.936 0.938 0.933 0.932 0.932
0.15 0.938 0.937 0.932 0.933 0.931
0.20 0.937 0.937 0.933 0.932 0.930
0.25 0.935 0.936 0.935 0.931 0.931
0.30 0.938 0.936 0.934 0.931 0.930

0.40 0.05 0.936 0.935 0.931 0.932 0.928
0.10 0.937 0.938 0.938 0.934 0.934
0.15 0.939 0.938 0.937 0.934 0.931
0.20 0.940 0.939 0.937 0.934 0.932
0.25 0.940 0.935 0.937 0.934 0.931
0.30 0.943 0.937 0.938 0.933 0.930

0.50 0.05 0.937 0.937 0.935 0.932 0.931
0.10 0.939 0.939 0.937 0.937 0.933
0.15 0.942 0.940 0.938 0.935 0.934
0.20 0.945 0.939 0.936 0.937 0.933
0.25 0.945 0.941 0.938 0.936 0.934
0.30 0.944 0.941 0.940 0.939 0.931

0.60 0.05 0.939 0.936 0.936 0.933 0.931
0.10 0.944 0.943 0.938 0.937 0.934
0.15 0.943 0.940 0.942 0.938 0.933
0.20 0.946 0.943 0.939 0.935 0.934
0.25 0.947 0.944 0.941 0.938 0.932
0.30 0.944 0.944 0.939 0.938 0.932

2
rρ
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Table 3-5.  Continued 

k
n Δρ2 2 4 6 8 10

600 0.00 0.05 0.932 0.933 0.931 0.932 0.927
0.10 0.932 0.931 0.931 0.932 0.930
0.15 0.933 0.930 0.931 0.930 0.928
0.20 0.929 0.930 0.930 0.926 0.925
0.25 0.922 0.926 0.926 0.923 0.922
0.30 0.924 0.922 0.921 0.918 0.922

0.10 0.05 0.935 0.935 0.932 0.930 0.930
0.10 0.935 0.936 0.934 0.933 0.932
0.15 0.937 0.932 0.934 0.931 0.930
0.20 0.934 0.932 0.931 0.931 0.928
0.25 0.929 0.930 0.927 0.928 0.922
0.30 0.927 0.927 0.927 0.926 0.926

0.20 0.05 0.936 0.935 0.933 0.932 0.933
0.10 0.937 0.938 0.935 0.935 0.935
0.15 0.940 0.935 0.934 0.934 0.932
0.20 0.938 0.936 0.934 0.935 0.932
0.25 0.935 0.931 0.931 0.932 0.928
0.30 0.934 0.935 0.929 0.930 0.929

0.30 0.05 0.938 0.936 0.936 0.934 0.935
0.10 0.940 0.938 0.936 0.935 0.934
0.15 0.940 0.937 0.938 0.935 0.932
0.20 0.938 0.935 0.937 0.936 0.933
0.25 0.939 0.937 0.937 0.936 0.932
0.30 0.938 0.938 0.933 0.934 0.931

0.40 0.05 0.937 0.938 0.936 0.935 0.935
0.10 0.942 0.940 0.940 0.937 0.936
0.15 0.941 0.940 0.939 0.938 0.935
0.20 0.940 0.939 0.938 0.937 0.937
0.25 0.941 0.941 0.939 0.939 0.934
0.30 0.940 0.940 0.939 0.936 0.936

0.50 0.05 0.941 0.941 0.938 0.937 0.936
0.10 0.942 0.943 0.939 0.937 0.938
0.15 0.945 0.941 0.941 0.938 0.939
0.20 0.944 0.941 0.943 0.939 0.938
0.25 0.943 0.944 0.942 0.939 0.937
0.30 0.945 0.944 0.939 0.940 0.936

0.60 0.05 0.944 0.941 0.940 0.939 0.937
0.10 0.945 0.945 0.941 0.942 0.938
0.15 0.943 0.942 0.941 0.942 0.936
0.20 0.944 0.943 0.942 0.943 0.937
0.25 0.947 0.943 0.942 0.941 0.938
0.30 0.946 0.946 0.942 0.939 0.938

2
rρ
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Table 3-5.  Continued 

k
n Δρ2 2 4 6 8 10

800 0.00 0.05 0.936 0.936 0.933 0.936 0.933
0.10 0.937 0.933 0.934 0.933 0.931
0.15 0.933 0.933 0.933 0.932 0.930
0.20 0.932 0.929 0.928 0.928 0.926
0.25 0.926 0.928 0.926 0.924 0.924
0.30 0.923 0.921 0.924 0.921 0.920

0.10 0.05 0.939 0.938 0.934 0.935 0.934
0.10 0.938 0.934 0.938 0.933 0.934
0.15 0.934 0.935 0.934 0.936 0.932
0.20 0.933 0.935 0.931 0.930 0.930
0.25 0.930 0.930 0.930 0.929 0.928
0.30 0.929 0.926 0.928 0.925 0.923

0.20 0.05 0.937 0.937 0.937 0.935 0.937
0.10 0.939 0.940 0.939 0.938 0.934
0.15 0.938 0.938 0.938 0.938 0.935
0.20 0.937 0.935 0.937 0.934 0.933
0.25 0.934 0.935 0.932 0.934 0.933
0.30 0.933 0.932 0.933 0.931 0.930

0.30 0.05 0.941 0.936 0.938 0.938 0.936
0.10 0.942 0.943 0.939 0.935 0.939
0.15 0.941 0.940 0.939 0.938 0.937
0.20 0.941 0.938 0.939 0.937 0.934
0.25 0.938 0.937 0.938 0.937 0.935
0.30 0.938 0.937 0.938 0.936 0.933

0.40 0.05 0.940 0.940 0.941 0.938 0.938
0.10 0.943 0.941 0.941 0.939 0.937
0.15 0.942 0.941 0.942 0.940 0.938
0.20 0.942 0.941 0.940 0.937 0.939
0.25 0.941 0.941 0.938 0.938 0.936
0.30 0.943 0.938 0.938 0.939 0.937

0.50 0.05 0.943 0.942 0.941 0.942 0.938
0.10 0.943 0.940 0.942 0.942 0.939
0.15 0.945 0.942 0.943 0.942 0.940
0.20 0.944 0.943 0.942 0.938 0.940
0.25 0.946 0.944 0.943 0.939 0.941
0.30 0.945 0.943 0.944 0.942 0.941

0.60 0.05 0.943 0.940 0.940 0.943 0.940
0.10 0.946 0.944 0.945 0.942 0.942
0.15 0.946 0.944 0.943 0.941 0.942
0.20 0.945 0.945 0.943 0.943 0.941
0.25 0.943 0.946 0.945 0.942 0.942
0.30 0.948 0.944 0.944 0.941 0.941

2
rρ
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Table 3-5.  Continued 
k

n Δρ2 2 4 6 8 10
1000 0.00 0.05 0.938 0.939 0.936 0.935 0.935

0.10 0.938 0.937 0.937 0.936 0.935
0.15 0.936 0.932 0.932 0.934 0.937
0.20 0.933 0.930 0.931 0.930 0.927
0.25 0.927 0.930 0.927 0.923 0.927
0.30 0.924 0.924 0.922 0.922 0.923

0.10 0.05 0.938 0.938 0.937 0.938 0.937
0.10 0.939 0.936 0.938 0.936 0.934
0.15 0.936 0.939 0.937 0.935 0.935
0.20 0.936 0.934 0.933 0.931 0.935
0.25 0.929 0.930 0.931 0.928 0.929
0.30 0.929 0.928 0.928 0.925 0.927

0.20 0.05 0.940 0.939 0.940 0.938 0.937
0.10 0.939 0.941 0.938 0.938 0.939
0.15 0.939 0.939 0.936 0.938 0.936
0.20 0.935 0.937 0.934 0.934 0.934
0.25 0.936 0.934 0.933 0.934 0.933
0.30 0.934 0.934 0.932 0.934 0.931

0.30 0.05 0.940 0.939 0.940 0.939 0.940
0.10 0.941 0.941 0.941 0.940 0.938
0.15 0.942 0.939 0.941 0.939 0.936
0.20 0.941 0.939 0.938 0.938 0.937
0.25 0.941 0.937 0.936 0.938 0.936
0.30 0.939 0.939 0.938 0.936 0.938

0.40 0.05 0.943 0.940 0.941 0.940 0.938
0.10 0.943 0.943 0.941 0.943 0.942
0.15 0.943 0.941 0.943 0.940 0.940
0.20 0.942 0.941 0.939 0.938 0.937
0.25 0.941 0.939 0.940 0.940 0.941
0.30 0.941 0.942 0.939 0.940 0.941

0.50 0.05 0.943 0.944 0.943 0.940 0.940
0.10 0.946 0.944 0.943 0.943 0.944
0.15 0.942 0.945 0.942 0.941 0.942
0.20 0.943 0.944 0.942 0.942 0.940
0.25 0.943 0.943 0.943 0.941 0.940
0.30 0.946 0.945 0.944 0.941 0.940

0.60 0.05 0.945 0.944 0.944 0.941 0.941
0.10 0.946 0.942 0.944 0.943 0.940
0.15 0.945 0.945 0.945 0.941 0.942
0.20 0.946 0.947 0.945 0.943 0.941
0.25 0.947 0.947 0.944 0.943 0.941
0.30 0.948 0.947 0.946 0.942 0.945

2
rρ
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Table 3-5.  Continued 

k
n Δρ2 2 4 6 8 10

1500 0.00 0.05 0.941 0.940 0.939 0.939 0.938
0.10 0.939 0.937 0.940 0.937 0.936
0.15 0.937 0.935 0.935 0.934 0.935
0.20 0.932 0.933 0.930 0.931 0.932
0.25 0.929 0.927 0.929 0.926 0.928
0.30 0.924 0.925 0.921 0.924 0.922

0.10 0.05 0.943 0.941 0.940 0.940 0.938
0.10 0.941 0.939 0.940 0.940 0.938
0.15 0.937 0.939 0.939 0.935 0.936
0.20 0.934 0.935 0.933 0.933 0.934
0.25 0.933 0.931 0.932 0.931 0.930
0.30 0.931 0.928 0.930 0.926 0.931

0.20 0.05 0.944 0.942 0.944 0.941 0.942
0.10 0.940 0.943 0.940 0.941 0.939
0.15 0.939 0.940 0.940 0.937 0.941
0.20 0.939 0.939 0.935 0.937 0.936
0.25 0.933 0.935 0.937 0.934 0.935
0.30 0.935 0.934 0.936 0.931 0.934

0.30 0.05 0.942 0.942 0.943 0.941 0.944
0.10 0.945 0.944 0.943 0.943 0.942
0.15 0.943 0.940 0.941 0.942 0.939
0.20 0.939 0.941 0.942 0.939 0.937
0.25 0.939 0.939 0.938 0.937 0.936
0.30 0.941 0.940 0.937 0.938 0.938

0.40 0.05 0.945 0.944 0.943 0.943 0.942
0.10 0.943 0.941 0.944 0.942 0.943
0.15 0.944 0.941 0.942 0.940 0.943
0.20 0.942 0.941 0.943 0.940 0.940
0.25 0.942 0.943 0.942 0.941 0.939
0.30 0.942 0.941 0.944 0.942 0.941

0.50 0.05 0.944 0.946 0.945 0.943 0.945
0.10 0.945 0.943 0.941 0.943 0.944
0.15 0.944 0.944 0.945 0.943 0.942
0.20 0.944 0.946 0.943 0.942 0.945
0.25 0.945 0.945 0.943 0.946 0.941
0.30 0.947 0.945 0.943 0.944 0.944

0.60 0.05 0.947 0.947 0.945 0.947 0.946
0.10 0.947 0.946 0.946 0.943 0.943
0.15 0.944 0.946 0.945 0.944 0.945
0.20 0.946 0.945 0.946 0.942 0.944
0.25 0.948 0.944 0.947 0.947 0.944
0.30 0.950 0.948 0.948 0.946 0.943

2
rρ
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Table 3-5.  Continued 
k

n Δρ2 2 4 6 8 10
2000 0.00 0.05 0.944 0.944 0.940 0.940 0.941

0.10 0.940 0.937 0.940 0.939 0.939
0.15 0.936 0.938 0.935 0.936 0.935
0.20 0.933 0.933 0.933 0.931 0.932
0.25 0.928 0.930 0.928 0.931 0.926
0.30 0.924 0.925 0.923 0.921 0.924

0.10 0.05 0.941 0.941 0.942 0.941 0.941
0.10 0.942 0.941 0.942 0.940 0.940
0.15 0.940 0.935 0.938 0.938 0.937
0.20 0.936 0.933 0.934 0.934 0.936
0.25 0.929 0.931 0.932 0.930 0.930
0.30 0.931 0.930 0.929 0.930 0.930

0.20 0.05 0.943 0.944 0.943 0.942 0.943
0.10 0.941 0.940 0.940 0.942 0.942
0.15 0.942 0.940 0.940 0.939 0.940
0.20 0.940 0.937 0.939 0.935 0.936
0.25 0.935 0.936 0.936 0.935 0.935
0.30 0.934 0.935 0.933 0.932 0.933

0.30 0.05 0.943 0.944 0.943 0.944 0.943
0.10 0.942 0.944 0.943 0.943 0.942
0.15 0.942 0.940 0.940 0.940 0.940
0.20 0.943 0.940 0.942 0.940 0.938
0.25 0.941 0.938 0.941 0.938 0.936
0.30 0.939 0.938 0.938 0.939 0.938

0.40 0.05 0.947 0.947 0.946 0.945 0.945
0.10 0.945 0.943 0.942 0.943 0.943
0.15 0.942 0.944 0.943 0.944 0.944
0.20 0.941 0.942 0.941 0.942 0.940
0.25 0.943 0.944 0.942 0.942 0.941
0.30 0.942 0.941 0.941 0.941 0.942

0.50 0.05 0.945 0.948 0.946 0.947 0.944
0.10 0.946 0.945 0.945 0.946 0.944
0.15 0.944 0.945 0.946 0.943 0.942
0.20 0.944 0.944 0.944 0.944 0.942
0.25 0.944 0.944 0.943 0.943 0.942
0.30 0.946 0.946 0.946 0.946 0.943

0.60 0.05 0.946 0.945 0.947 0.945 0.945
0.10 0.948 0.947 0.945 0.945 0.944
0.15 0.946 0.949 0.948 0.943 0.946
0.20 0.948 0.946 0.946 0.946 0.944
0.25 0.948 0.949 0.947 0.946 0.946
0.30 0.949 0.949 0.948 0.946 0.946

2
rρ
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Table 3-6.  Empirical Coverage Probabilities for Nonnormal Predictors and Normal Errors. 
k

n Δρ2 2 4 6 8 10
200 0.00 0.05 0.904 0.904 0.898 0.898 0.892

0.10 0.918 0.914 0.914 0.909 0.906
0.15 0.919 0.918 0.916 0.911 0.909
0.20 0.921 0.917 0.917 0.910 0.907
0.25 0.919 0.917 0.913 0.911 0.908
0.30 0.916 0.912 0.910 0.910 0.902

0.10 0.05 0.910 0.908 0.903 0.897 0.898
0.10 0.919 0.914 0.912 0.910 0.905
0.15 0.921 0.918 0.915 0.911 0.906
0.20 0.919 0.914 0.911 0.911 0.905
0.25 0.918 0.915 0.913 0.906 0.902
0.30 0.912 0.915 0.907 0.903 0.899

0.20 0.05 0.910 0.911 0.907 0.902 0.899
0.10 0.918 0.916 0.914 0.908 0.905
0.15 0.920 0.917 0.913 0.908 0.905
0.20 0.919 0.915 0.911 0.907 0.904
0.25 0.917 0.910 0.909 0.903 0.900
0.30 0.914 0.907 0.904 0.899 0.893

0.30 0.05 0.914 0.910 0.909 0.903 0.901
0.10 0.919 0.916 0.913 0.910 0.906
0.15 0.918 0.915 0.911 0.907 0.903
0.20 0.913 0.911 0.907 0.903 0.900
0.25 0.906 0.904 0.903 0.901 0.893
0.30 0.902 0.901 0.898 0.892 0.886

0.40 0.05 0.918 0.913 0.909 0.905 0.902
0.10 0.917 0.916 0.912 0.910 0.904
0.15 0.914 0.911 0.909 0.903 0.897
0.20 0.910 0.906 0.901 0.893 0.888
0.25 0.901 0.897 0.894 0.890 0.885
0.30 0.894 0.889 0.888 0.879 0.873

0.50 0.05 0.916 0.913 0.909 0.906 0.901
0.10 0.915 0.911 0.907 0.905 0.900
0.15 0.907 0.906 0.900 0.898 0.890
0.20 0.899 0.894 0.891 0.886 0.879
0.25 0.890 0.887 0.881 0.876 0.871
0.30 0.881 0.878 0.875 0.865 0.860

0.60 0.05 0.917 0.913 0.910 0.905 0.900
0.10 0.910 0.907 0.901 0.897 0.893
0.15 0.896 0.896 0.891 0.880 0.879
0.20 0.887 0.882 0.878 0.873 0.864
0.25 0.871 0.870 0.863 0.858 0.853
0.30 0.866 0.860 0.857 0.848 0.841

2
rρ

 
Note:  Bold results are estimated coverage probabilities between .94 and .96; italicized results are estimated  
 coverage probabilities between .925 and .975. 



 

 90

Table 3-6.  Continued 
k

n Δρ2 2 4 6 8 10
400 0.00 0.05 0.924 0.925 0.920 0.922 0.917

0.10 0.930 0.928 0.928 0.928 0.922
0.15 0.926 0.929 0.926 0.924 0.924
0.20 0.927 0.925 0.925 0.924 0.920
0.25 0.922 0.925 0.923 0.919 0.916
0.30 0.919 0.922 0.917 0.914 0.913

0.10 0.05 0.927 0.924 0.922 0.923 0.919
0.10 0.929 0.929 0.928 0.926 0.923
0.15 0.927 0.927 0.926 0.922 0.920
0.20 0.924 0.925 0.922 0.923 0.917
0.25 0.922 0.921 0.917 0.916 0.916
0.30 0.916 0.919 0.917 0.911 0.909

0.20 0.05 0.926 0.928 0.924 0.922 0.919
0.10 0.929 0.926 0.926 0.924 0.922
0.15 0.926 0.927 0.923 0.921 0.921
0.20 0.925 0.922 0.919 0.919 0.916
0.25 0.918 0.916 0.917 0.914 0.914
0.30 0.915 0.914 0.912 0.912 0.908

0.30 0.05 0.928 0.929 0.926 0.924 0.919
0.10 0.929 0.927 0.927 0.924 0.921
0.15 0.924 0.923 0.923 0.920 0.918
0.20 0.917 0.918 0.916 0.912 0.911
0.25 0.912 0.912 0.911 0.905 0.904
0.30 0.906 0.904 0.904 0.902 0.899

0.40 0.05 0.929 0.926 0.925 0.923 0.922
0.10 0.924 0.924 0.924 0.920 0.919
0.15 0.918 0.918 0.915 0.915 0.912
0.20 0.914 0.914 0.909 0.911 0.904
0.25 0.907 0.903 0.901 0.897 0.894
0.30 0.898 0.897 0.896 0.895 0.891

0.50 0.05 0.926 0.926 0.925 0.922 0.922
0.10 0.923 0.920 0.920 0.918 0.914
0.15 0.913 0.908 0.909 0.904 0.903
0.20 0.901 0.903 0.901 0.898 0.892
0.25 0.895 0.891 0.891 0.887 0.884
0.30 0.887 0.886 0.882 0.878 0.873

0.60 0.05 0.926 0.925 0.924 0.920 0.920
0.10 0.915 0.916 0.910 0.909 0.908
0.15 0.901 0.901 0.898 0.895 0.893
0.20 0.891 0.887 0.888 0.881 0.876
0.25 0.877 0.875 0.873 0.870 0.866
0.30 0.870 0.866 0.861 0.859 0.856

2
rρ
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Table 3-6.  Continued 

k

n Δρ2 2 4 6 8 10
600 0.00 0.05 0.931 0.929 0.930 0.928 0.927

0.10 0.934 0.933 0.931 0.930 0.928
0.15 0.934 0.932 0.928 0.929 0.928
0.20 0.932 0.928 0.927 0.928 0.926
0.25 0.927 0.924 0.923 0.922 0.922
0.30 0.922 0.922 0.922 0.919 0.918

0.10 0.05 0.934 0.933 0.928 0.928 0.928
0.10 0.933 0.934 0.931 0.931 0.929
0.15 0.931 0.929 0.928 0.928 0.926
0.20 0.926 0.925 0.927 0.923 0.923
0.25 0.924 0.924 0.921 0.919 0.919
0.30 0.918 0.921 0.916 0.916 0.917

0.20 0.05 0.932 0.932 0.929 0.930 0.929
0.10 0.930 0.934 0.931 0.930 0.930
0.15 0.930 0.930 0.925 0.925 0.923
0.20 0.926 0.927 0.923 0.920 0.919
0.25 0.921 0.919 0.916 0.917 0.917
0.30 0.917 0.915 0.914 0.911 0.912

0.30 0.05 0.932 0.930 0.929 0.930 0.929
0.10 0.931 0.931 0.930 0.927 0.927
0.15 0.927 0.927 0.924 0.920 0.920
0.20 0.919 0.916 0.917 0.917 0.912
0.25 0.915 0.915 0.913 0.913 0.910
0.30 0.909 0.905 0.906 0.908 0.904

0.40 0.05 0.931 0.931 0.931 0.929 0.929
0.10 0.930 0.927 0.926 0.923 0.922
0.15 0.922 0.921 0.923 0.917 0.915
0.20 0.914 0.914 0.911 0.911 0.907
0.25 0.908 0.907 0.906 0.903 0.902
0.30 0.898 0.902 0.895 0.894 0.892

0.50 0.05 0.931 0.933 0.930 0.928 0.926
0.10 0.926 0.921 0.919 0.918 0.919
0.15 0.914 0.914 0.912 0.910 0.907
0.20 0.905 0.904 0.904 0.901 0.897
0.25 0.892 0.893 0.892 0.887 0.890
0.30 0.886 0.885 0.884 0.880 0.878

0.60 0.05 0.930 0.925 0.929 0.927 0.924
0.10 0.918 0.917 0.915 0.913 0.910
0.15 0.902 0.903 0.900 0.900 0.896
0.20 0.887 0.889 0.889 0.885 0.881
0.25 0.880 0.876 0.876 0.875 0.869
0.30 0.868 0.867 0.863 0.863 0.863

2
rρ
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Table 3-6.  Continued 

k

n Δρ2 2 4 6 8 10
800 0.00 0.05 0.937 0.935 0.931 0.934 0.932

0.10 0.936 0.935 0.936 0.934 0.934
0.15 0.933 0.932 0.934 0.930 0.931
0.20 0.930 0.929 0.929 0.929 0.928
0.25 0.925 0.926 0.925 0.925 0.922
0.30 0.924 0.922 0.922 0.923 0.922

0.10 0.05 0.938 0.933 0.934 0.935 0.932
0.10 0.934 0.934 0.934 0.935 0.931
0.15 0.931 0.931 0.932 0.928 0.931
0.20 0.928 0.929 0.926 0.926 0.924
0.25 0.923 0.926 0.926 0.921 0.921
0.30 0.920 0.920 0.921 0.918 0.918

0.20 0.05 0.935 0.937 0.933 0.935 0.932
0.10 0.934 0.933 0.933 0.933 0.931
0.15 0.932 0.928 0.929 0.928 0.927
0.20 0.926 0.924 0.925 0.924 0.922
0.25 0.922 0.920 0.918 0.919 0.916
0.30 0.918 0.914 0.915 0.912 0.914

0.30 0.05 0.936 0.937 0.933 0.931 0.931
0.10 0.931 0.932 0.930 0.929 0.929
0.15 0.927 0.927 0.923 0.923 0.927
0.20 0.920 0.919 0.921 0.917 0.917
0.25 0.916 0.914 0.913 0.913 0.912
0.30 0.909 0.908 0.907 0.907 0.906

0.40 0.05 0.936 0.934 0.935 0.935 0.934
0.10 0.933 0.930 0.930 0.928 0.927
0.15 0.922 0.924 0.921 0.920 0.920
0.20 0.916 0.913 0.910 0.913 0.910
0.25 0.907 0.907 0.906 0.903 0.900
0.30 0.902 0.899 0.899 0.897 0.895

0.50 0.05 0.933 0.934 0.931 0.932 0.928
0.10 0.926 0.925 0.925 0.923 0.922
0.15 0.916 0.912 0.913 0.912 0.911
0.20 0.907 0.906 0.908 0.902 0.898
0.25 0.896 0.893 0.895 0.891 0.889
0.30 0.885 0.885 0.884 0.883 0.881

0.60 0.05 0.932 0.929 0.931 0.927 0.928
0.10 0.918 0.917 0.918 0.915 0.914
0.15 0.901 0.901 0.901 0.903 0.899
0.20 0.893 0.889 0.891 0.887 0.887
0.25 0.879 0.878 0.874 0.873 0.872
0.30 0.869 0.864 0.866 0.866 0.861

2
rρ
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Table 3-6. Continued  

k

n Δρ2 2 4 6 8 10
1000 0.00 0.05 0.936 0.938 0.934 0.935 0.935

0.10 0.938 0.938 0.936 0.935 0.934
0.15 0.933 0.934 0.934 0.934 0.931
0.20 0.931 0.931 0.929 0.929 0.927
0.25 0.927 0.927 0.927 0.928 0.924
0.30 0.923 0.922 0.923 0.925 0.922

0.10 0.05 0.937 0.936 0.936 0.936 0.934
0.10 0.936 0.936 0.935 0.934 0.932
0.15 0.932 0.933 0.931 0.929 0.932
0.20 0.930 0.930 0.927 0.928 0.926
0.25 0.927 0.924 0.925 0.926 0.923
0.30 0.920 0.923 0.915 0.920 0.920

0.20 0.05 0.941 0.937 0.935 0.938 0.935
0.10 0.935 0.935 0.933 0.933 0.932
0.15 0.930 0.931 0.930 0.929 0.931
0.20 0.927 0.928 0.925 0.924 0.921
0.25 0.922 0.921 0.920 0.920 0.919
0.30 0.917 0.916 0.916 0.913 0.910

0.30 0.05 0.938 0.936 0.935 0.937 0.935
0.10 0.933 0.936 0.934 0.932 0.929
0.15 0.928 0.928 0.927 0.927 0.928
0.20 0.923 0.923 0.920 0.917 0.920
0.25 0.917 0.915 0.915 0.914 0.914
0.30 0.911 0.908 0.909 0.907 0.907

0.40 0.05 0.933 0.938 0.934 0.932 0.934
0.10 0.932 0.929 0.928 0.929 0.928
0.15 0.924 0.922 0.920 0.922 0.922
0.20 0.915 0.916 0.913 0.912 0.912
0.25 0.907 0.908 0.906 0.904 0.902
0.30 0.901 0.898 0.900 0.898 0.898

0.50 0.05 0.934 0.936 0.934 0.933 0.933
0.10 0.928 0.927 0.924 0.926 0.925
0.15 0.914 0.914 0.914 0.914 0.915
0.20 0.906 0.903 0.902 0.902 0.902
0.25 0.897 0.894 0.893 0.897 0.894
0.30 0.889 0.887 0.884 0.885 0.882

0.60 0.05 0.932 0.932 0.930 0.931 0.929
0.10 0.922 0.917 0.917 0.918 0.916
0.15 0.904 0.906 0.902 0.902 0.900
0.20 0.892 0.888 0.889 0.885 0.886
0.25 0.880 0.880 0.876 0.874 0.872
0.30 0.867 0.867 0.867 0.866 0.863

2
rρ
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Table 3-6.  Continued 

k

n Δρ2 2 4 6 8 10
1500 0.00 0.05 0.941 0.939 0.939 0.940 0.941

0.10 0.939 0.938 0.938 0.938 0.934
0.15 0.934 0.932 0.937 0.935 0.936
0.20 0.932 0.931 0.929 0.931 0.931
0.25 0.928 0.928 0.927 0.925 0.928
0.30 0.923 0.925 0.923 0.921 0.921

0.10 0.05 0.940 0.940 0.939 0.938 0.938
0.10 0.936 0.937 0.939 0.938 0.934
0.15 0.934 0.934 0.935 0.933 0.930
0.20 0.930 0.928 0.930 0.930 0.929
0.25 0.926 0.925 0.925 0.924 0.924
0.30 0.922 0.921 0.923 0.916 0.917

0.20 0.05 0.941 0.941 0.939 0.938 0.938
0.10 0.937 0.936 0.934 0.935 0.935
0.15 0.932 0.930 0.931 0.930 0.928
0.20 0.928 0.927 0.926 0.925 0.925
0.25 0.922 0.922 0.921 0.919 0.920
0.30 0.918 0.915 0.917 0.918 0.913

0.30 0.05 0.939 0.938 0.938 0.937 0.940
0.10 0.933 0.933 0.935 0.930 0.932
0.15 0.930 0.930 0.929 0.929 0.927
0.20 0.923 0.922 0.920 0.922 0.921
0.25 0.915 0.918 0.914 0.915 0.913
0.30 0.910 0.912 0.910 0.908 0.907

0.40 0.05 0.937 0.938 0.938 0.936 0.934
0.10 0.932 0.932 0.932 0.931 0.929
0.15 0.925 0.923 0.923 0.925 0.919
0.20 0.918 0.913 0.915 0.912 0.913
0.25 0.909 0.908 0.905 0.909 0.908
0.30 0.901 0.901 0.902 0.900 0.898

0.50 0.05 0.935 0.934 0.938 0.935 0.936
0.10 0.927 0.925 0.924 0.925 0.924
0.15 0.919 0.918 0.914 0.916 0.911
0.20 0.906 0.904 0.907 0.903 0.900
0.25 0.896 0.897 0.896 0.898 0.893
0.30 0.890 0.891 0.886 0.888 0.883

0.60 0.05 0.933 0.935 0.932 0.931 0.933
0.10 0.918 0.920 0.917 0.917 0.915
0.15 0.906 0.903 0.903 0.905 0.903
0.20 0.891 0.891 0.889 0.891 0.890
0.25 0.880 0.875 0.878 0.878 0.878
0.30 0.868 0.867 0.867 0.867 0.866

2
rρ
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Table 3-6.  Continued 

k

n Δρ2 2 4 6 8 10
2000 0.00 0.05 0.941 0.941 0.940 0.941 0.939

0.10 0.939 0.938 0.939 0.939 0.939
0.15 0.937 0.935 0.936 0.935 0.935
0.20 0.931 0.929 0.930 0.933 0.930
0.25 0.926 0.927 0.924 0.927 0.928
0.30 0.925 0.925 0.926 0.924 0.922

0.10 0.05 0.941 0.942 0.941 0.939 0.941
0.10 0.942 0.939 0.938 0.937 0.937
0.15 0.936 0.934 0.934 0.936 0.933
0.20 0.931 0.932 0.928 0.931 0.928
0.25 0.926 0.926 0.927 0.925 0.926
0.30 0.922 0.920 0.922 0.920 0.924

0.20 0.05 0.943 0.942 0.940 0.940 0.941
0.10 0.938 0.937 0.937 0.938 0.937
0.15 0.933 0.931 0.931 0.932 0.930
0.20 0.925 0.928 0.927 0.925 0.928
0.25 0.923 0.923 0.921 0.921 0.921
0.30 0.917 0.919 0.917 0.916 0.917

0.30 0.05 0.939 0.938 0.942 0.941 0.938
0.10 0.936 0.934 0.937 0.935 0.934
0.15 0.927 0.928 0.926 0.928 0.928
0.20 0.921 0.920 0.923 0.921 0.924
0.25 0.914 0.917 0.915 0.916 0.914
0.30 0.910 0.907 0.911 0.912 0.908

0.40 0.05 0.941 0.939 0.939 0.937 0.941
0.10 0.931 0.933 0.934 0.929 0.929
0.15 0.924 0.924 0.923 0.923 0.924
0.20 0.915 0.915 0.916 0.916 0.913
0.25 0.908 0.908 0.904 0.905 0.909
0.30 0.904 0.899 0.897 0.899 0.898

0.50 0.05 0.939 0.937 0.938 0.935 0.935
0.10 0.927 0.927 0.925 0.926 0.925
0.15 0.918 0.915 0.915 0.914 0.914
0.20 0.907 0.906 0.905 0.907 0.905
0.25 0.894 0.900 0.897 0.896 0.895
0.30 0.889 0.889 0.888 0.885 0.881

0.60 0.05 0.934 0.933 0.933 0.934 0.930
0.10 0.918 0.920 0.917 0.918 0.916
0.15 0.906 0.906 0.905 0.903 0.903
0.20 0.892 0.890 0.892 0.888 0.890
0.25 0.879 0.879 0.878 0.877 0.875
0.30 0.872 0.870 0.869 0.868 0.866

2
rρ
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Table 3-7.  Empirical Coverage Probabilities for Predictors Nonnormal and Errors Nonnormal. 
k

n Δρ2 2 4 6 8 10
200 0.00 0.05 0.903 0.900 0.897 0.894 0.891

0.10 0.911 0.908 0.905 0.902 0.899
0.15 0.909 0.907 0.904 0.900 0.898
0.20 0.904 0.901 0.898 0.895 0.893
0.25 0.897 0.896 0.893 0.890 0.888
0.30 0.891 0.890 0.888 0.885 0.881

0.10 0.05 0.908 0.904 0.900 0.896 0.892
0.10 0.914 0.911 0.909 0.903 0.901
0.15 0.910 0.908 0.906 0.901 0.898
0.20 0.906 0.904 0.901 0.898 0.892
0.25 0.902 0.899 0.896 0.893 0.888
0.30 0.894 0.893 0.891 0.886 0.882

0.20 0.05 0.910 0.906 0.903 0.901 0.896
0.10 0.915 0.911 0.909 0.906 0.901
0.15 0.912 0.909 0.905 0.901 0.899
0.20 0.906 0.904 0.901 0.897 0.893
0.25 0.901 0.897 0.895 0.893 0.886
0.30 0.896 0.893 0.891 0.887 0.881

0.30 0.05 0.913 0.909 0.906 0.902 0.899
0.10 0.916 0.913 0.908 0.905 0.901
0.15 0.912 0.908 0.905 0.902 0.896
0.20 0.906 0.902 0.900 0.896 0.891
0.25 0.899 0.897 0.893 0.889 0.884
0.30 0.894 0.892 0.888 0.883 0.878

0.40 0.05 0.916 0.913 0.907 0.904 0.900
0.10 0.915 0.913 0.908 0.904 0.901
0.15 0.909 0.906 0.903 0.898 0.895
0.20 0.903 0.899 0.894 0.891 0.885
0.25 0.895 0.892 0.888 0.883 0.877
0.30 0.888 0.886 0.883 0.875 0.868

0.50 0.05 0.916 0.913 0.909 0.904 0.902
0.10 0.912 0.909 0.906 0.901 0.897
0.15 0.905 0.900 0.897 0.894 0.888
0.20 0.896 0.893 0.887 0.882 0.876
0.25 0.888 0.882 0.878 0.873 0.867
0.30 0.879 0.875 0.871 0.865 0.857

0.60 0.05 0.916 0.913 0.910 0.906 0.901
0.10 0.908 0.905 0.902 0.895 0.891
0.15 0.896 0.892 0.889 0.883 0.877
0.20 0.885 0.881 0.875 0.870 0.863
0.25 0.874 0.870 0.864 0.857 0.849
0.30 0.863 0.860 0.856 0.847 0.838

2
rρ

 

Note:  Bold results are estimated coverage probabilities between .94 and .96; italicized results are estimated  
 coverage probabilities between .925 and .975. 
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Table 3-7.  Continued 

k

n Δρ2 2 4 6 8 10
400 0.00 0.05 0.920 0.919 0.919 0.916 0.915

0.10 0.922 0.921 0.920 0.917 0.915
0.15 0.916 0.916 0.915 0.912 0.911
0.20 0.910 0.907 0.907 0.906 0.905
0.25 0.903 0.902 0.901 0.902 0.897
0.30 0.896 0.895 0.894 0.893 0.890

0.10 0.05 0.923 0.923 0.920 0.918 0.916
0.10 0.923 0.922 0.922 0.919 0.917
0.15 0.918 0.917 0.915 0.914 0.912
0.20 0.912 0.910 0.909 0.907 0.906
0.25 0.905 0.904 0.903 0.901 0.900
0.30 0.901 0.899 0.897 0.895 0.893

0.20 0.05 0.926 0.923 0.922 0.920 0.918
0.10 0.924 0.920 0.922 0.919 0.917
0.15 0.919 0.916 0.916 0.913 0.911
0.20 0.911 0.910 0.909 0.907 0.906
0.25 0.905 0.903 0.905 0.901 0.898
0.30 0.900 0.898 0.897 0.896 0.894

0.30 0.05 0.926 0.924 0.923 0.921 0.918
0.10 0.923 0.922 0.920 0.918 0.916
0.15 0.917 0.915 0.914 0.913 0.912
0.20 0.910 0.907 0.907 0.905 0.902
0.25 0.902 0.902 0.901 0.899 0.895
0.30 0.899 0.896 0.893 0.893 0.891

0.40 0.05 0.926 0.924 0.924 0.922 0.918
0.10 0.923 0.919 0.920 0.917 0.916
0.15 0.916 0.913 0.911 0.909 0.907
0.20 0.907 0.905 0.902 0.900 0.898
0.25 0.898 0.898 0.895 0.893 0.888
0.30 0.891 0.889 0.889 0.885 0.883

0.50 0.05 0.927 0.926 0.923 0.920 0.920
0.10 0.921 0.918 0.918 0.913 0.912
0.15 0.910 0.907 0.906 0.903 0.900
0.20 0.900 0.897 0.894 0.893 0.890
0.25 0.890 0.887 0.885 0.882 0.879
0.30 0.880 0.880 0.878 0.875 0.872

0.60 0.05 0.925 0.923 0.921 0.920 0.918
0.10 0.913 0.912 0.910 0.907 0.906
0.15 0.900 0.898 0.895 0.893 0.891
0.20 0.887 0.886 0.883 0.881 0.875
0.25 0.876 0.873 0.871 0.869 0.864
0.30 0.864 0.864 0.862 0.859 0.853

2
rρ
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Table 3-7.  Continued 

k

n Δρ2 2 4 6 8 10
600 0.00 0.05 0.928 0.927 0.926 0.924 0.923

0.10 0.926 0.925 0.923 0.923 0.921
0.15 0.919 0.918 0.918 0.918 0.916
0.20 0.914 0.912 0.911 0.910 0.908
0.25 0.904 0.905 0.903 0.903 0.903
0.30 0.897 0.898 0.897 0.895 0.895

0.10 0.05 0.930 0.928 0.928 0.926 0.925
0.10 0.927 0.926 0.924 0.924 0.922
0.15 0.921 0.918 0.918 0.917 0.917
0.20 0.914 0.913 0.914 0.911 0.909
0.25 0.908 0.905 0.904 0.904 0.902
0.30 0.901 0.900 0.897 0.898 0.896

0.20 0.05 0.930 0.929 0.929 0.927 0.925
0.10 0.927 0.925 0.925 0.924 0.922
0.15 0.921 0.919 0.919 0.917 0.915
0.20 0.913 0.914 0.912 0.911 0.909
0.25 0.906 0.907 0.903 0.903 0.903
0.30 0.901 0.900 0.899 0.898 0.896

0.30 0.05 0.930 0.930 0.930 0.927 0.927
0.10 0.926 0.926 0.924 0.924 0.921
0.15 0.919 0.919 0.918 0.915 0.914
0.20 0.911 0.910 0.909 0.909 0.907
0.25 0.905 0.904 0.903 0.901 0.899
0.30 0.898 0.897 0.897 0.895 0.893

0.40 0.05 0.931 0.930 0.929 0.928 0.927
0.10 0.924 0.925 0.922 0.921 0.920
0.15 0.916 0.915 0.913 0.913 0.910
0.20 0.907 0.907 0.905 0.904 0.903
0.25 0.900 0.898 0.897 0.896 0.895
0.30 0.893 0.892 0.889 0.889 0.886

0.50 0.05 0.931 0.929 0.929 0.927 0.926
0.10 0.923 0.920 0.918 0.918 0.916
0.15 0.910 0.909 0.908 0.907 0.903
0.20 0.901 0.899 0.898 0.897 0.895
0.25 0.889 0.891 0.888 0.887 0.884
0.30 0.884 0.882 0.881 0.877 0.876

0.60 0.05 0.928 0.926 0.926 0.925 0.923
0.10 0.914 0.914 0.912 0.911 0.910
0.15 0.901 0.900 0.898 0.896 0.895
0.20 0.889 0.887 0.885 0.883 0.881
0.25 0.876 0.876 0.874 0.872 0.869
0.30 0.868 0.864 0.864 0.860 0.858

2
rρ
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Table 3-7.  Continued 

k

n Δρ2 2 4 6 8 10
800 0.00 0.05 0.932 0.931 0.929 0.930 0.928

0.10 0.928 0.926 0.926 0.926 0.925
0.15 0.922 0.919 0.920 0.919 0.917
0.20 0.913 0.913 0.914 0.911 0.911
0.25 0.906 0.905 0.906 0.905 0.904
0.30 0.897 0.898 0.897 0.897 0.896

0.10 0.05 0.932 0.931 0.931 0.929 0.930
0.10 0.928 0.927 0.927 0.927 0.925
0.15 0.921 0.920 0.922 0.920 0.919
0.20 0.916 0.915 0.914 0.912 0.911
0.25 0.907 0.908 0.905 0.905 0.905
0.30 0.902 0.901 0.900 0.899 0.899

0.20 0.05 0.932 0.932 0.931 0.932 0.930
0.10 0.929 0.928 0.927 0.927 0.926
0.15 0.923 0.921 0.920 0.918 0.918
0.20 0.915 0.913 0.912 0.912 0.911
0.25 0.907 0.908 0.907 0.906 0.905
0.30 0.901 0.901 0.901 0.899 0.897

0.30 0.05 0.933 0.933 0.932 0.930 0.929
0.10 0.928 0.927 0.927 0.926 0.924
0.15 0.921 0.919 0.918 0.918 0.916
0.20 0.912 0.912 0.911 0.909 0.910
0.25 0.905 0.904 0.904 0.903 0.902
0.30 0.899 0.897 0.898 0.897 0.894

0.40 0.05 0.933 0.932 0.932 0.930 0.930
0.10 0.925 0.926 0.924 0.923 0.923
0.15 0.916 0.918 0.914 0.915 0.914
0.20 0.909 0.907 0.907 0.905 0.903
0.25 0.900 0.899 0.898 0.897 0.895
0.30 0.894 0.892 0.889 0.891 0.888

0.50 0.05 0.932 0.931 0.930 0.929 0.928
0.10 0.923 0.922 0.919 0.919 0.919
0.15 0.911 0.911 0.910 0.907 0.907
0.20 0.901 0.901 0.899 0.898 0.897
0.25 0.891 0.890 0.890 0.888 0.887
0.30 0.885 0.884 0.880 0.880 0.878

0.60 0.05 0.930 0.930 0.927 0.927 0.925
0.10 0.916 0.915 0.914 0.914 0.911
0.15 0.901 0.901 0.899 0.898 0.896
0.20 0.889 0.888 0.887 0.885 0.883
0.25 0.878 0.876 0.875 0.873 0.871
0.30 0.869 0.866 0.866 0.863 0.862

2
rρ
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Table 3-7.  Continued 

k

n Δρ2 2 4 6 8 10
800 0.00 0.05 0.932 0.931 0.929 0.930 0.928

0.10 0.928 0.926 0.926 0.926 0.925
0.15 0.922 0.919 0.920 0.919 0.917
0.20 0.913 0.913 0.914 0.911 0.911
0.25 0.906 0.905 0.906 0.905 0.904
0.30 0.897 0.898 0.897 0.897 0.896

0.10 0.05 0.932 0.931 0.931 0.929 0.930
0.10 0.928 0.927 0.927 0.927 0.925
0.15 0.921 0.920 0.922 0.920 0.919
0.20 0.916 0.915 0.914 0.912 0.911
0.25 0.907 0.908 0.905 0.905 0.905
0.30 0.902 0.901 0.900 0.899 0.899

0.20 0.05 0.932 0.932 0.931 0.932 0.930
0.10 0.929 0.928 0.927 0.927 0.926
0.15 0.923 0.921 0.920 0.918 0.918
0.20 0.915 0.913 0.912 0.912 0.911
0.25 0.907 0.908 0.907 0.906 0.905
0.30 0.901 0.901 0.901 0.899 0.897

0.30 0.05 0.933 0.933 0.932 0.930 0.929
0.10 0.928 0.927 0.927 0.926 0.924
0.15 0.921 0.919 0.918 0.918 0.916
0.20 0.912 0.912 0.911 0.909 0.910
0.25 0.905 0.904 0.904 0.903 0.902
0.30 0.899 0.897 0.898 0.897 0.894

0.40 0.05 0.933 0.932 0.932 0.930 0.930
0.10 0.925 0.926 0.924 0.923 0.923
0.15 0.916 0.918 0.914 0.915 0.914
0.20 0.909 0.907 0.907 0.905 0.903
0.25 0.900 0.899 0.898 0.897 0.895
0.30 0.894 0.892 0.889 0.891 0.888

0.50 0.05 0.932 0.931 0.930 0.929 0.928
0.10 0.923 0.922 0.919 0.919 0.919
0.15 0.911 0.911 0.910 0.907 0.907
0.20 0.901 0.901 0.899 0.898 0.897
0.25 0.891 0.890 0.890 0.888 0.887
0.30 0.885 0.884 0.880 0.880 0.878

0.60 0.05 0.930 0.930 0.927 0.927 0.925
0.10 0.916 0.915 0.914 0.914 0.911
0.15 0.901 0.901 0.899 0.898 0.896
0.20 0.889 0.888 0.887 0.885 0.883
0.25 0.878 0.876 0.875 0.873 0.871
0.30 0.869 0.866 0.866 0.863 0.862

2
rρ
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Table 3-7.  Continued 

k

n Δρ2 2 4 6 8 10
1000 0.00 0.05 0.933 0.932 0.931 0.932 0.931

0.10 0.929 0.930 0.927 0.927 0.926
0.15 0.922 0.922 0.921 0.921 0.919
0.20 0.915 0.914 0.913 0.913 0.913
0.25 0.905 0.906 0.906 0.905 0.904
0.30 0.899 0.899 0.900 0.897 0.898

0.10 0.05 0.934 0.935 0.934 0.932 0.931
0.10 0.929 0.930 0.929 0.928 0.926
0.15 0.923 0.922 0.921 0.921 0.920
0.20 0.917 0.915 0.914 0.912 0.912
0.25 0.908 0.908 0.907 0.906 0.906
0.30 0.900 0.901 0.900 0.901 0.901

0.20 0.05 0.935 0.935 0.934 0.933 0.933
0.10 0.929 0.929 0.927 0.928 0.926
0.15 0.922 0.922 0.921 0.920 0.920
0.20 0.915 0.914 0.914 0.913 0.913
0.25 0.908 0.907 0.906 0.906 0.906
0.30 0.901 0.902 0.901 0.901 0.899

0.30 0.05 0.934 0.934 0.933 0.934 0.933
0.10 0.929 0.928 0.928 0.926 0.926
0.15 0.922 0.921 0.919 0.921 0.918
0.20 0.914 0.913 0.912 0.910 0.912
0.25 0.906 0.905 0.905 0.905 0.903
0.30 0.899 0.899 0.897 0.897 0.897

0.40 0.05 0.935 0.934 0.932 0.931 0.931
0.10 0.927 0.927 0.924 0.923 0.924
0.15 0.917 0.916 0.915 0.915 0.915
0.20 0.911 0.907 0.908 0.907 0.906
0.25 0.900 0.901 0.900 0.899 0.896
0.30 0.894 0.893 0.891 0.891 0.891

0.50 0.05 0.933 0.932 0.933 0.931 0.930
0.10 0.924 0.923 0.921 0.921 0.921
0.15 0.911 0.911 0.910 0.910 0.909
0.20 0.900 0.900 0.900 0.900 0.899
0.25 0.893 0.890 0.889 0.889 0.888
0.30 0.883 0.883 0.883 0.881 0.881

0.60 0.05 0.931 0.930 0.929 0.929 0.928
0.10 0.915 0.916 0.915 0.914 0.914
0.15 0.901 0.902 0.900 0.900 0.896
0.20 0.889 0.889 0.887 0.887 0.885
0.25 0.879 0.877 0.875 0.874 0.873
0.30 0.869 0.868 0.865 0.865 0.864

2
rρ
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Table 3-7.  Continued 

k

n Δρ2 2 4 6 8 10
1500 0.00 0.05 0.937 0.935 0.935 0.935 0.935

0.10 0.931 0.931 0.929 0.929 0.928
0.15 0.924 0.922 0.922 0.922 0.921
0.20 0.915 0.914 0.916 0.915 0.914
0.25 0.907 0.908 0.907 0.906 0.907
0.30 0.900 0.898 0.898 0.898 0.898

0.10 0.05 0.938 0.935 0.936 0.936 0.934
0.10 0.932 0.931 0.930 0.930 0.929
0.15 0.923 0.922 0.923 0.922 0.922
0.20 0.915 0.916 0.916 0.915 0.914
0.25 0.909 0.909 0.907 0.908 0.907
0.30 0.902 0.902 0.901 0.901 0.899

0.20 0.05 0.938 0.937 0.936 0.935 0.936
0.10 0.930 0.930 0.929 0.929 0.929
0.15 0.924 0.924 0.923 0.922 0.921
0.20 0.916 0.915 0.915 0.915 0.912
0.25 0.908 0.908 0.909 0.906 0.905
0.30 0.903 0.902 0.901 0.901 0.900

0.30 0.05 0.937 0.936 0.935 0.935 0.934
0.10 0.930 0.929 0.929 0.929 0.928
0.15 0.921 0.921 0.921 0.920 0.919
0.20 0.912 0.914 0.913 0.911 0.913
0.25 0.907 0.907 0.906 0.905 0.904
0.30 0.901 0.899 0.900 0.899 0.898

0.40 0.05 0.937 0.936 0.937 0.935 0.935
0.10 0.927 0.927 0.927 0.926 0.925
0.15 0.919 0.917 0.918 0.917 0.916
0.20 0.912 0.909 0.908 0.908 0.907
0.25 0.902 0.900 0.901 0.901 0.898
0.30 0.896 0.893 0.893 0.891 0.892

0.50 0.05 0.934 0.934 0.934 0.934 0.933
0.10 0.924 0.924 0.923 0.923 0.923
0.15 0.913 0.912 0.911 0.911 0.911
0.20 0.903 0.902 0.902 0.900 0.899
0.25 0.891 0.891 0.891 0.890 0.890
0.30 0.884 0.885 0.883 0.881 0.880

0.60 0.05 0.931 0.931 0.930 0.930 0.931
0.10 0.918 0.917 0.917 0.915 0.914
0.15 0.903 0.901 0.901 0.902 0.902
0.20 0.889 0.888 0.888 0.888 0.885
0.25 0.878 0.877 0.877 0.876 0.873
0.30 0.867 0.866 0.866 0.866 0.864

2
rρ
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Table 3-7.  Continued 

k

n Δρ2 2 4 6 8 10
2000 0.00 0.05 0.938 0.938 0.937 0.938 0.936

0.10 0.931 0.931 0.931 0.930 0.931
0.15 0.924 0.923 0.923 0.923 0.922
0.20 0.916 0.915 0.915 0.914 0.915
0.25 0.908 0.908 0.907 0.908 0.905
0.30 0.900 0.899 0.898 0.900 0.898

0.10 0.05 0.939 0.938 0.937 0.937 0.936
0.10 0.932 0.932 0.931 0.931 0.932
0.15 0.924 0.924 0.922 0.925 0.923
0.20 0.917 0.917 0.915 0.916 0.916
0.25 0.909 0.908 0.908 0.909 0.907
0.30 0.903 0.901 0.902 0.900 0.902

0.20 0.05 0.939 0.939 0.938 0.937 0.936
0.10 0.931 0.931 0.931 0.930 0.930
0.15 0.923 0.923 0.922 0.923 0.921
0.20 0.916 0.915 0.914 0.915 0.916
0.25 0.909 0.909 0.907 0.909 0.909
0.30 0.903 0.902 0.902 0.903 0.902

0.30 0.05 0.936 0.938 0.937 0.936 0.936
0.10 0.930 0.930 0.930 0.929 0.928
0.15 0.923 0.921 0.921 0.920 0.920
0.20 0.913 0.913 0.913 0.914 0.912
0.25 0.906 0.905 0.906 0.905 0.907
0.30 0.901 0.900 0.899 0.899 0.898

0.40 0.05 0.937 0.937 0.937 0.936 0.937
0.10 0.929 0.928 0.927 0.925 0.927
0.15 0.919 0.918 0.917 0.918 0.917
0.20 0.909 0.911 0.908 0.909 0.908
0.25 0.901 0.900 0.901 0.900 0.900
0.30 0.895 0.894 0.894 0.893 0.894

0.50 0.05 0.936 0.936 0.934 0.934 0.934
0.10 0.925 0.925 0.924 0.923 0.923
0.15 0.914 0.913 0.911 0.911 0.911
0.20 0.900 0.902 0.902 0.901 0.900
0.25 0.893 0.892 0.890 0.891 0.891
0.30 0.883 0.885 0.885 0.884 0.883

0.60 0.05 0.933 0.933 0.931 0.931 0.931
0.10 0.920 0.918 0.916 0.915 0.916
0.15 0.901 0.903 0.902 0.902 0.901
0.20 0.890 0.890 0.889 0.887 0.887
0.25 0.877 0.877 0.877 0.876 0.875
0.30 0.868 0.868 0.868 0.868 0.866

2
rρ
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Table 3-8.  Descriptive Statistics for Coverage Probability by Distributional Condition. 

SD Median Minimum Maximum n  = 600 n  = 2000
0.940 0.0123 0.944 0.856 0.956 0.0 0.0
0.938 0.0120 0.941 0.851 0.953 0.0 0.0
0.937 0.0119 0.941 0.853 0.953 0.0 0.0
0.933 0.0124 0.936 0.855 0.953 6.7 1.4
0.925 0.0155 0.928 0.856 0.951 34.3 25.2
0.931 0.0131 0.934 0.855 0.950 11.0 7.1
0.928 0.0128 0.931 0.845 0.950 12.4 6.2
0.928 0.0127 0.930 0.842 0.949 15.2 7.6
0.923 0.0129 0.925 0.845 0.945 46.2 26.2
0.915 0.0154 0.917 0.850 0.946 72.9 55.7
0.929 0.0138 0.933 0.844 0.949 15.2 10.0
0.926 0.0132 0.929 0.841 0.948 21.4 12.4
0.926 0.0132 0.929 0.843 0.947 23.8 14.3
0.921 0.0133 0.923 0.838 0.948 52.9 33.8
0.913 0.0156 0.915 0.844 0.944 74.3 61.0
0.912 0.0213 0.917 0.796 0.946 62.4 49.1
0.909 0.0208 0.913 0.804 0.945 70.5 58.1
0.909 0.0209 0.913 0.800 0.945 71.9 63.3
0.904 0.0205 0.906 0.804 0.940 81.9 70.0
0.896 0.0215 0.896 0.802 0.939 91.4 83.3
0.883 0.0373 0.891 0.733 0.940 81.4 96.2
0.880 0.0367 0.887 0.729 0.939 99.5 86.2
0.880 0.0369 0.886 0.741 0.938 95.7 85.7
0.875 0.0363 0.879 0.745 0.936 99.0 87.1
0.867 0.0363 0.868 0.738 0.933 100.0 90.0

Range Percent Nonrobust Distributional Condition

Normal 
Normal 

Distribution for X Distribution for e

Pseudo -  t (10) 

Normal 

Normal 

Normal 
Normal 
Pseudo -  t (10) 
Pseudo -  t (10) 
Pseudo -  t (10) 

Normal 
Normal Pseudo -  t (10) 

Pseudo -  t (10) 

Pseudo -  t (10) 

Pseudo -  t (10) 

Pseudo - χ2(10)

Pseudo - χ2(10)

Pseudo - χ2(4)

Pseudo - exponential

Pseudo - exponential

Pseudo -  t (10) 

Pseudo - χ2(10)

Pseudo - χ2(10)

Normal 

Normal 

Pseudo - χ2(4)

Pseudo - χ2(4)

Pseudo - χ2(4)

Pseudo - χ2(4)

Pseudo - χ2(10)
Pseudo - χ2(10)
Pseudo - χ2(10)
Pseudo - χ2(10)
Pseudo - χ2(10)

Pseudo -  t (10) 

Pseudo - exponential
Pseudo - exponential
Pseudo - exponential

Pseudo - χ2(10)

Pseudo - exponential Pseudo - exponential

Pseudo - exponential

Pseudo - exponential

Pseudo - χ2(4)

Pseudo - χ2(4)
Pseudo - χ2(4)
Pseudo - χ2(4)
Pseudo - χ2(4)
Pseudo - exponential

pM
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Table 3-9.  Analysis of Variance, Estimated Mean Square Components, and Percentage of Total   
                  Variance in Coverage Probability Explained by the Study Variables. 

Source of 
Variance 

 
df 
 

 
SS 

Mean 
Square 

 
F 

 
p 

Mean 
Square 

Component 

Percentage  
of 

Total Variance 
 

 

X 

 

4 

 

30.065 

 

7.5162 951467.0 < .0001

 

.0005113 

 

44.51 

X × Δρ2 20 6.408 .3204 40557.4 < .0001 .0001308 11.38 

Δρ2 5 7.117 .1423 180191.0 < .0001 .0001162 10.12 

n 13 7.378 .5675 71840.3 < .0001 .0001081 9.41 

X × 2
rρ  24 5.107 .2128 26938.3 < .0001 .0001013 8.82 

e 4 2.251 .5629 71251.3 < .0001 .0000383 3.33 
2
rρ  6 2.357 .3929 49734.9 < .0001 .0000374 3.26 

X × 2
rρ × Δρ2 120 .984 .0082 1038.4 < .0001 .0000234 2.04 

2
rρ × Δρ2 30 .963 .0321 4062.8 < .0001 .0000183 1.60 

e × 2
rρ  24 .738 .0308 3895.6 < .0001 .0000147 1.28 

n  × Δρ2 65 .649 .0099 1263.4 < .0001 .0000114 .99 

n × k 52 .599 .0115 1459.0 < .0001 .0000110 .95 

e × Δρ2 20 .396 .0198 2505.4 < .0001 .0000081 .70 

k 4 .465 .1162 14712.1 < .0001 .0000079 .69 

e × 2
rρ × Δρ2 120 .259 .0022 273.5 < .0001 .0000062 .54 

 
 
Table 3-10.  Descriptive Statistics for Coverage Probability by Distribution for the Predictors. 

M SD Median Minimum Maximum

0.935 0.014 0.939 0.851 0.956
0.925 0.015 0.928 0.842 0.950
0.923 0.015 0.926 0.838 0.949
0.906 0.022 0.910 0.792 0.946
0.877 0.037 0.883 0.729 0.940

Pseudo - χ2(4)
Pseudo - exponential

Distribution

Range

Normal 
Pseudo -  t (10) 
Pseudo - χ2(10)
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Table 3-11.  Descriptive Statistics for Coverage Probability by Distribution for the Errors. 

M SD Median Minimum Maximum

0.919 0.0297 0.929 0.733 0.956
0.916 0.0293 0.926 0.729 0.953
0.916 0.0294 0.926 0.741 0.953
0.911 0.0292 0.920 0.745 0.953
0.903 0.0302 0.911 0.738 0.951

Pseudo - χ2(10)
Pseudo - χ2(4)
Pseudo - exponential

Range

Distribution

Normal 
Pseudo -  t (10) 

 

 
Table 3-12.  Coverage Probability by Δρ2 and the Distribution for the Predictors. 

Δρ2 Normal Pseudo- t (10) Pseudo-χ2(10) Pseudo-χ2(4) Pseudo-exponential

0.05 0.932 0.929 0.929 0.924 0.915
0.10 0.936 0.930 0.929 0.919 0.901
0.15 0.936 0.927 0.926 0.911 0.885
0.20 0.935 0.924 0.922 0.902 0.868
0.25 0.935 0.921 0.918 0.894 0.853
0.30 0.934 0.917 0.915 0.886 0.840

Distribution for the Predictors (X)

 
 
 
Table 3-13.  Coverage Probability by Δρ2 and the Distribution for the Errors. 

Δρ2 Normal Pseudo- t (10) Pseudo-χ2(10) Pseudo-χ2(4) Pseudo-exponential

0.05 0.928 0.927 0.927 0.925 0.923
0.10 0.927 0.925 0.925 0.922 0.917
0.15 0.922 0.920 0.920 0.915 0.907
0.20 0.917 0.914 0.914 0.908 0.899
0.25 0.912 0.908 0.908 0.901 0.890
0.30 0.907 0.903 0.902 0.895 0.883

Distribution for the Errors (e)
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Table 3-14.   Coverage Probability by 2
rρ and the Distribution for the Predictors. 

ρr
2 Normal Pseudo- t (10) Pseudo-χ2(10) Pseudo-χ2(4) Pseudo-exponential

0.00 0.928 0.922 0.922 0.912 0.896
0.10 0.930 0.925 0.924 0.913 0.895
0.20 0.933 0.926 0.925 0.913 0.891
0.30 0.935 0.927 0.925 0.911 0.885
0.40 0.937 0.927 0.925 0.907 0.875
0.50 0.939 0.925 0.923 0.899 0.860
0.60 0.940 0.922 0.918 0.887 0.837

Distribution for the Predictors (X)

 
 
Table 3-15.  Coverage Probability by 2

rρ and the Distribution for the Errors. 

ρr
2 Normal Pseudo- t (10) Pseudo-χ2(10) Pseudo-χ2(4) Pseudo-exponential

0.00 0.927 0.922 0.921 0.913 0.897
0.10 0.926 0.922 0.922 0.914 0.902
0.20 0.925 0.921 0.921 0.915 0.905
0.30 0.922 0.920 0.919 0.915 0.907
0.40 0.918 0.916 0.916 0.913 0.907
0.50 0.912 0.910 0.910 0.908 0.905
0.60 0.902 0.902 0.901 0.900 0.899

Distribution for the Errors (e)

 
 
Table 3-16.  Coverage Probability by 2

rρ and 2Δρ for X Distributed Multivariate Normal. 

ρr
2 0.05 0.10 0.15 0.20 0.25 0.30

0.00 0.923 0.924 0.920 0.915 0.910 0.904
0.10 0.925 0.925 0.921 0.916 0.911 0.906
0.20 0.926 0.925 0.921 0.916 0.911 0.906
0.30 0.927 0.925 0.920 0.914 0.909 0.904
0.40 0.927 0.924 0.918 0.911 0.905 0.899
0.50 0.927 0.921 0.913 0.905 0.897 0.891
0.60 0.926 0.917 0.905 0.895 0.885 0.877

Δρ2
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Table 3-17.  Coverage Probability by 2
rρ and 2Δρ for X Distributed Pseudo-t10(g = 0, h = .058). 

ρr
2 0.05 0.10 0.15 0.20 0.25 0.30

0.00 0.9248 0.9277 0.9259 0.9226 0.9190 0.9151
0.10 0.9266 0.9292 0.9274 0.9245 0.9213 0.9183
0.20 0.9282 0.9303 0.9282 0.9258 0.9232 0.9201
0.30 0.9293 0.9308 0.9289 0.9259 0.9233 0.9211
0.40 0.9311 0.9313 0.9286 0.9257 0.9226 0.9201
0.50 0.9317 0.9310 0.9276 0.9236 0.9201 0.9168
0.60 0.9324 0.9295 0.9241 0.9194 0.9145 0.9102

Δρ2

 
 
Table 3-18.  Coverage Probability by 2

rρ and 2Δρ for X Distributed 2
10Pseudo-χ  

(g = .301, h = -.017). 

ρr
2 0.05 0.10 0.15 0.20 0.25 0.30

0.00 0.9247 0.9275 0.9252 0.9216 0.9181 0.9138
0.10 0.9265 0.9285 0.9265 0.9232 0.9202 0.9168
0.20 0.9280 0.9294 0.9273 0.9242 0.9211 0.9182
0.30 0.9291 0.9302 0.9277 0.9244 0.9216 0.9184
0.40 0.9303 0.9302 0.9272 0.9237 0.9199 0.9169
0.50 0.9312 0.9299 0.9253 0.9209 0.9162 0.9128
0.60 0.9313 0.9275 0.9213 0.9155 0.9098 0.9053

Δρ2

 
 
 
Table 3-19.  Coverage Probability by 2

rρ and 2Δρ for X Distributed 2
4Pseudo-χ  

(g = .502, h = -.048). 

ρr
2 0.05 0.10 0.15 0.20 0.25 0.30

0.00 0.9219 0.9219 0.9170 0.9109 0.9046 0.8980
0.10 0.9231 0.9224 0.9174 0.9113 0.9049 0.8987
0.20 0.9244 0.9224 0.9168 0.9104 0.9037 0.8976
0.30 0.9248 0.9217 0.9150 0.9075 0.9005 0.8939
0.40 0.9253 0.9198 0.9112 0.9026 0.8938 0.8862
0.50 0.9247 0.9158 0.9046 0.8935 0.8829 0.8737
0.60 0.9225 0.9089 0.8939 0.8788 0.8655 0.8542

Δρ2
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Table 3-20.  Coverage Probability by 2
rρ and 2Δρ for X Distributed Pseudo-exponential 

                   (g = .760, h = -.098). 

ρr
2 0.05 0.10 0.15 0.20 0.25 0.30

0.00 0.9169 0.9120 0.9026 0.8922 0.8811 0.8703
0.10 0.9179 0.9117 0.9013 0.8901 0.8795 0.8685
0.20 0.9181 0.9099 0.8981 0.8858 0.8737 0.8632
0.30 0.9172 0.9066 0.8925 0.8783 0.8644 0.8518
0.40 0.9157 0.9011 0.8836 0.8661 0.8496 0.8349
0.50 0.9125 0.8918 0.8689 0.8475 0.8278 0.8111
0.60 0.9063 0.8768 0.8469 0.8195 0.7959 0.7771

Δρ2

 
 
 
Table 3-21.  Coverage Probability by Sample Size and Δρ2. 

n 0.05 0.10 0.15 0.20 0.25 0.30
100 0.877 0.890 0.889 0.887 0.883 0.878
200 0.907 0.912 0.909 0.904 0.899 0.894
300 0.918 0.919 0.915 0.909 0.904 0.899
400 0.924 0.923 0.918 0.912 0.907 0.902
500 0.928 0.925 0.920 0.914 0.908 0.903
600 0.930 0.927 0.921 0.915 0.909 0.904
700 0.932 0.928 0.922 0.916 0.910 0.905
800 0.933 0.929 0.923 0.917 0.910 0.905
900 0.934 0.930 0.923 0.917 0.911 0.906
1000 0.935 0.930 0.924 0.917 0.911 0.906
1250 0.936 0.930 0.923 0.916 0.909 0.904
1500 0.937 0.931 0.923 0.916 0.910 0.904
1750 0.938 0.931 0.924 0.917 0.910 0.904
2000 0.938 0.931 0.924 0.917 0.910 0.905

Δρ2
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Table 3-22.  Coverage Probability by Sample Size and Number of Predictors. 
k

n 2 4 6 8 10
100 0.897 0.890 0.883 0.874 0.864
200 0.909 0.906 0.902 0.898 0.893
300 0.913 0.911 0.909 0.906 0.903
400 0.916 0.914 0.912 0.910 0.908
500 0.917 0.916 0.914 0.913 0.911
600 0.918 0.917 0.916 0.914 0.913
700 0.918 0.918 0.917 0.915 0.914
800 0.919 0.918 0.917 0.916 0.915
900 0.919 0.919 0.918 0.917 0.916

1000 0.920 0.919 0.918 0.918 0.917
1250 0.920 0.920 0.919 0.919 0.918
1500 0.921 0.920 0.920 0.919 0.918
1750 0.921 0.921 0.920 0.920 0.919
2000 0.921 0.921 0.920 0.920 0.920  

 
 
Table 3-23.  Analysis of Variance, Estimated Mean Square Components, and Percentage of Total   

        Variance Explained in the Ratio of Mean Estimated Asymptotic Variance to the  
  Empirical  Sampling Variance of ΔR2. 

Source of 
Variance 

 
df 
 

 
SS 

Mean 
Square 

 
F 

 
p 

Mean 
Square 

Component 

Percentage  
of  

Total Variance 
 

 

X 

 

4 

 

640.90 

 

160.22 1094917.0 < .0001

 

.0108996 

 

51.78 

Δρ2 5 271.56 54.31 371145.0 < .0001 .0044336 21.06 

X × Δρ2 20 70.21 3.51 23988.1 < .0001 .0014327 6.81 

X × 2
rρ  24 68.45 2.85 19489.7 < .0001 .0013580 6.45 

e 4 77.48 19.37 132371.0 < .0001 .0013177 6.26 
2
rρ  6 35.40 5.90 40318.4 < .0001 .0005619 2.67 

e × 2
rρ  24 21.42 0.89 6098.1 < .0001 .0004249 2.02 

X × 2
rρ × Δρ2 120 6.42 0.05 365.8 < .0001 .0001525 0.72 
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Figure 3-1.  Mean estimated coverage probability by normality vs. nonnormality in the 

predictors, normality vs. nonnormality in the errors, and sample size. 
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Predictors Distribution:          Error Distribution:
Black  g=0, h=0                     g=0, h=0
Red    g=0, h=.058                g=.760, h=-.098
Green g=.301, h=-.017          g=0, h=.058
Blue    g=.502, h=-.048          g=.301, h=-.017
Purple g=.760, h=-.098          g=.502, h=-.048

 
Figure 3-2.  Empirical  coverage probability as a function of distributional condition and sample 

size. 
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Figure 3-3.  Box plots of the distributions of coverage probability estimates by distribution for 
the predictors (ni = 14,700). 
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Figure 3-4.  Box plots of the distributions of coverage probability estimates by distribution for 
the errors (ni = 14,700).
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Figure 3-5.  Main effect of the squared semipartial correlation coefficient , Δρ2, and the effect of 

the interaction of Δρ2 and X on coverage probability for Δρ2 > 0. 
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Figure 3-6.  Main effect of the squared semipartial correlation coefficient , Δρ2, and the effect of 

the interaction of Δρ2 and e on coverage probability for Δρ2 > 0. 



 

 116

0.00 0.10 0.20 0.30 0.40 0.50 0.60
0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95
C

ov
er

ag
e 

Pr
ob

ab
ili

ty

ρ r
2

 Main effect of ρr
2

Effect of ρr
2 by distribution for X:

 g = 0, h = 0
 g = 0, h = .058
 g = .301, h = -.017
 g = .502, h = .048
 g = .760, h = -.098

 
Figure 3-7.  Effect of the interaction between the size of the squared multiple correlation in the 

reduced model, 2
rρ , and the distribution for the predictors, X, on coverage probability. 
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Figure 3-8.  Interaction between the size of the squared multiple correlation in the reduced 

model, 2
rρ , and the distribution for the errors, e, and its relationship to coverage 

probability. 2
rρ  
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Figure 3-9.  Effect of the 2

rρ × Δρ2 interaction on coverage probability for Δρ2 > 0.
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Figure 3-10.  Effect of the X  × 2

rρ × 2Δρ interaction on coverage probability for Δρ2 > 0.  A) X sampled from a multivariate normal 
population.  B) X sampled from a pseudo-t(10) distribution (g = 0, h = .058).  C) X sampled from a pseudo-χ2(10) 
distribution (g = .301, h = -.017).  D) X sampled from a pseudo-χ2(10) distribution (g = .502, h = -.048).  E) X sampled 
from a pseudo-exponential distribution (g = .760, h = -.098).



 

 119

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

 Δρ2=.05
 Δρ2=.10
 Δρ2=.15
 Δρ2=.20
 Δρ2=.25
 Δρ2=.30

C
ov

er
ag

e 
Pr

ob
ab

ili
ty

Sample Size (N)

 
Figure 3-11.  Interaction between sample size, n, and the population squared semipartial 

correlation, Δρ2, and the impact on coverage probability for Δρ2 > 0.  
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Figure 3-12.  Effect of the interaction between sample size, n , and number of predictors, k, on 

coverage probability. 
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Figure 3-13.  Ratio of mean estimated asymptotic variance to the variance in ΔR2 (MEAV/Var ΔR2) as a function of the distribution 

for the predictors, Δρ2, and 2
rρ .A) X sampled from a multivariate normal population.  B) X sampled from a pseudo-t(10) 

distribution (g = 0, h = .058).  C) X sampled from a pseudo-χ2(10) distribution (g = .301, h = -.017).  D) X sampled from a 
pseudo-χ2(10) distribution (g = .502, h = -.048).  E) X sampled from a pseudo-exponential distribution      (g = .760,           
h = -.098).    
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Figure 3-14.  Relationship between coverage probability and the ratio of mean estimated 

asymptotic variance to the empirical sampling variance of ΔR2 for Δρ2 > 0  

 
Figure 3-15.  Relationship between coverage probability and the ratio of mean estimated 

asymptotic variance to the empirical sampling variance of ΔR2 for Δρ2 > 0 for 
multivariate normal data (g = 0, h = 0). 
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Figure 3-16.  Relationship between coverage probability and the ratio of mean estimated 

asymptotic variance to the empirical sampling variance of ΔR2 for Δρ2 > 0 and X 
distributed pseudo-t10 (g = 0, h = .058). 

 
Figure 3-17.  Relationship between coverage probability and the ratio of mean estimated 

asymptotic variance to the empirical sampling variance of ΔR2 for Δρ2 > 0 and X 
distributed 2

10pseudo-χ  (g = .502, h = -.048). 
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Figure 3-18.  Relationship between coverage probability and the ratio of mean estimated 

asymptotic variance to the empirical sampling variance of ΔR2 for Δρ2 > 0 and X 
distributed 2

4pseudo-χ  (g = .502, h = -.048). 

 
Figure 3-19.  Relationship between coverage probability and the ratio of mean estimated 

asymptotic variance to the empirical sampling variance of ΔR2 for Δρ2 > 0 and X 
distributed pseudo-exponential (g =.760, h = -.098).. 
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CHAPTER 4 
DISCUSSION 

Given the current emphasis on reporting effect sizes and confidence intervals, Alf and 

Graf’s approach to constructing confidence intervals for the squared semipartial correlation is 

appealing in its simplicity.  Confidence limits can be computed using only a hand calculator and 

the computer output from a multiple regression analysis.  Results of this study would caution 

against widespread use because the procedure demonstrated poor control of coverage probability.  

Even when the distributional assumption of multivariate normality holds for the data, the 

asymptotic confidence interval procedure is biased and with sample sizes typically used in 

psychology, the coverage probability for a nominal 95% confidence interval will tend to be less 

than .95.  As shown in this study, when nonnormality is introduced, depending on the degree, 

coverage probability can be dramatically less than .95 even with samples as large as 2000.  This 

is especially true when the predictors included in a multiple regression model do not follow a 

multivariate normal distribution.  When the predictors are nonnormal, the Alf and Graf 

procedure produces a confidence interval that tends to be too liberal.  With extreme 

nonnormality, the interval will be much too narrow and the contribution of a single variable to 

the regression will be minimized.  Since multivariate normality is rarely observed in practice, the 

poor performance of this procedure for use as a measure of effect size accuracy is particularly 

disappointing.  It appears that accuracy is sacrificed for the sake of computational facility. 

One of the goals of this study was to determine if we could identify a minimum, “fail 

safe”, sample size for which the confidence interval offers adequate coverage probability over a 

wide range of distributional conditions and regression model characteristics.  Despite the 

sizeable amount of data simulated and analyzed, we must conclude that a sample size well in 

excess of 2000 would be necessary to demonstrate the robustness of this procedure against 
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nonnormality even if we were willing to adopt a more liberal standard, i.e. > .925.  Increasing the 

sample size to a level that is atypical for research in the behavioral and social sciences (e.g., ≥ 

1000) in an attempt to ensure adequate coverage probability when the distributional assumption 

is violated will not yield the desired result.  In the case of extreme nonnormality in the 

predictors, the extremely slow incremental improvement in coverage probability, as a function of 

sample size, suggests that the procedure is likely to be inaccurate no matter how large a sample is 

used. 

For both normal and nonnormal data, coverage probability is also dependent on the 

population effect sizes for both the squared semipartial correlation coefficient and the squared 

multiple correlation coefficient for the model to which the variable of interest has been added; 

however, the pattern of empirical coverage probabilities over the range of factors manipulated is 

completely different.  In order to illustrate this, Figure 4-1 presents three hypothetical situations:  

(a) a variable with a small population effect size is added to a model that explains none of the 

variance in the criterion, 2 2.05, .00;rΔρ = ρ =  (b) a variable with a medium population effect size 

is added to a model in which the effect size associated with the population squared multiple 

correlation coefficient is already relatively large, 2 2.15, .30;rΔρ = ρ = and (c) a variable with a 

large population effect size is added to a model for which the effect size associated with the 

population squared multiple correlation coefficient is very large.  For each of these situations, 

average coverage probability for each nonnormal distribution is compared to the case where X is 

multivariate normal as a function of sample size.  Coverage probabilities are averaged over the 

distribution for e and the number of predictors, k.  Although estimates are based on only 25 

cases, there is a clear trend.   Not only is coverage probability worse for nonnormal data, but the 

behavior of the confidence interval shows a pattern that is the direct opposite of that observed for 
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normal predictors regardless of the degree of nonnormality.  For normal predictors, coverage 

probability improves as both 2
rρ  and Δρ2 become larger.  This suggests that coverage probability 

is closer to the nominal confidence level for larger effect sizes than it is when the effect size 

associated with an added variable is small.   The reverse is true when there is nonnormality in the 

predictors.  Here, the confidence interval is more accurate for smaller effect sizes and coverage 

probability decreases as the effect size gets larger.  Table 4-1 shows coverage probability is 

clearly unacceptable for a large effect under the most nonnormal conditions investigated.  Due to 

this inadequacy, this procedure for estimating confidence intervals falls far short as a reliable 

measure of importance in reporting research results and its use defeats the purpose of those 

interested in reforming statistical practice. 

Limitations 

It is obviously not possible to investigate every imaginable type of nonnormality that might 

occur in applied research situations.  This study has investigated a reasonably broad range of 

nonnormal distributions without claiming to have exhausted the possibilities. Some might argue 

that the method of simulating nonnormality is not representative of real world data.  For 

example, it is unlikely that all of the variables in a multiple regression analysis are samples from 

a population that is distributed with the same skewness and kurtosis as the exponential 

distribution and this is where estimated coverage probability deviates markedly from the 

nominal.  However, the premise in simulation studies investigating robustness is that if a 

procedure performs well under extreme conditions, it can be expected to work under most 

conditions likely to be encountered by researchers.  Therefore, adequate coverage probability 

across a wide range of possible conditions should be demonstrated in order to recommend a 

statistical procedure. 
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In this study, coverage probability characteristics were very similar when the data were 

distributed either pseudo-t10 or 2
10pseudo-χ .  Both univariate and multivariate kurtosis measures 

are nearly equal for the two distributions, but pseudo-t10 is symmetrical while 2
10pseudo-χ is 

moderately skewed.  Although this would suggest that skewness has less influence on coverage 

probability than kurtosis, the evidence is based on only one comparison.  In this study, the 

distribution for the predictors, in a sense, serves as a proxy for the degree of multivariate 

nonnormality and the distribution for the errors is a reflection of the additive influence of 

univariate nonnormality.  In the ANOVA and variance components analyses reported, these 

variables were treated as categorical, as were the levels of n, k, Δρ2 and 2
rρ .  Since multivariate 

skewness and kurtosis can be quantified as continuous variables using Mardia’s measures of 

multivariate skewness, b1,k, and multivariate kurtosis, b2,k, and univariate skewness can be 

measured by γ1 and γ2, the impact of skewness and kurtosis on coverage probability could be 

modeled using multiple regression. 

The size of the squared semipartial correlation may have examined too wide a range and 

the values studied were somewhat coarse.  The large values studied, i.e. .25 and .30, where the 

procedure tends to perform especially poorly, correspond to a large effect size and may be 

relatively rare in practice.  At the other extreme, Algina and Moulder reported results for  

Δρ2 < .05 that were similar to the coverage probabilities observed for Δρ2 =.05 with multivariate 

normal data.  Since small to medium effect sizes are much more common than large effect sizes 

in research in the social and behavioral sciences, values for Δρ2 less than .05 and in smaller steps 

between .05 and .15 would have given a more complete picture.  Nonetheless, this would not 

have changed the findings or conclusions of this study. 
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Further Research 

The asymptotic method of constructing confidence intervals assumes symmetry by 

referring to a single normal distribution with two-equal sized tails sliced off.  Our concern in 

using an approximation based on asymptotic theory is whether the distribution of the difference 

in squared correlations approaches normality for a given sample size.  This approach assumes 

that the sampling distribution retains the same shape regardless of the value of the population 

parameter.  However, confidence intervals are not always symmetrical around sample statistics 

and their sampling distributions do not always have the same shape for different values.  If the 

distribution that generates the data is not symmetric, using the asymptotic variance derived under 

the assumption of symmetry typically underestimates the actual asymptotic variance. 

When one set of predictors is a subset of the other, as is true for the case where, 

2 2 2 ,f rR R R− = Δ 2
rR will never be larger than 2

fR and as a result, the sampling distribution of ΔR2 is 

truncated at zero.  Therefore, if the difference between 2 2andf rR R is not significant, the 

approximation will be inappropriate regardless of sample size (Graf & Alf, 1999).  Research 

directed at understanding the distribution of ΔR2, with the goal of developing more appropriate 

methods of approximation, is needed. 

The poor coverage of the asymptotic confidence interval described in this study suggests 

that developing an alternative method for constructing confidence intervals for Δρ2 that has 

adequate probability coverage for practical sample sizes is an important goal.  The effectiveness 

of asymptotically distribution-free and nonparametric methods employing the bootstrap for use 

in constructing a confidence interval for Δρ2 should be explored.  It may be possible to obtain 

much more accurate confidence intervals than were demonstrated in this study, with smaller, 

more realistic sample sizes, using bootstrap methods.   These studies will be demanding given 
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the computational demands of simulations employing resampling techniques, the wide variety of 

nonnormal distributions that could be studied, and the number of potential combinations that 

could be generated for the predictors and the residuals. 

In addition, when one set of variables is not a subset of the other, there are no small sample 

procedures to test the significance of the difference in correlations.  Thus, when we are interested 

in whether a set of predictors performs equally well in two populations, i.e. the difference 

between two independent samples, 2 2
a bR R− , asymptotic confidence interval methods are the only 

procedures available (Graf & Alf, 1999, p. 119).  For the comparison of squared multiple 

correlations from independent samples, Algina and Keselman (1999) found that asymptotic 

confidence intervals were inaccurate when the population multiple correlations were zero or very 

small and in some conditions, were inaccurate when sample sizes and coefficients were unequal.  

The procedure worked reasonably well with equal sample sizes as small as n = 40 and equal 

population multiple correlations that were sufficiently different from zero.  When multiple 

correlation coefficients and sample sizes were unequal, the sample sizes required for control of 

coverage probabilities ranged from 40 to 960 for the smaller sample.  These results, however, 

were obtained by simulating multivariate normal data.  Since the present study showed 

unequivocally that asymptotic confidence interval procedures are inaccurate with nonnormal data 

when the two multiple correlation coefficients compared are estimated from the same sample, an 

important next step is to evaluate coverage probability for the comparison of multiple correlation 

coefficients from independent samples under conditions of nonnormality.  This will be a huge 

undertaking since the range of nonnormal distributions is considerable.  For independent 

samples, this problem is compounded by the necessity of manipulating not only the degree of 

nonnormality in the predictor and error distributions, but simulating a broad range of conditions 
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for two populations instead of one.  The number of possible combinations is extraordinary.  

Further complexity is introduced in that the manipulation of sample size must include conditions 

in which the two samples are equal and unequal. 

Conclusion 

The purpose of this dissertation was to evaluate the accuracy of confidence intervals 

around an effect size measure in multiple regression analysis (ΔR2), based on an asymptotic 

approach to the problem as outlined by Hedges and Olkin (1981), Olkin and Finn (1995), and 

Graf and Alf (1999) when the distributional assumption of multivariate normality does not hold.  

Algina and Moulder (2001) found, and this study confirms, that even with multivariate normal 

data asymptotic confidence intervals were generally inaccurate except when sample sizes were 

large, i.e. n ≥ 600.  There are many considerations that influence sample size decisions, including 

power and accuracy. With the current emphasis on reporting effect sizes, it is recommended that 

researchers plan studies with sufficient sample size so that effect sizes are estimated with 

adequate accuracy and hypotheses are tested with sufficient power.  A researcher interested in 

setting confidence intervals for Δρ2 to estimate the importance of individual variables to the 

regression will find it challenging to design a study with a large enough sample to ensure 

accuracy even in the unlikely event that multivariate normal data is anticipated.   

It might be tempting for researchers to continue to use the asymptotic method for 

constructing confidence intervals in situations where there is the expectation that the data is 

approximately multivariate normal.  This should be discouraged.  Although it is highly 

recommended that one should always carefully inspect one’s data, there are very few tests for 

examining multivariate normality.  Graphical methods are not reliable for evaluating the degree 

of nonnormality present in multivariate data.  The graphical test, similar to the Q-Q plot 
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discussed for the univariate case, is a plot of the ordered squared Mahalanobis distance against 

the χ2 distribution with k degrees of freedom.  The analytical tests simply assess the multivariate 

measures of skewness and kurtosis and the distribution of these test statistics is not known.  In 

addition, indices of skew and kurtosis can be deceptive because these estimates are likely to have 

very large standard errors unless the sample size is very large (Algina, Keselman, & Penfield, 

2005).   

Our conclusion is that use of Alf and Graf’s method for constructing confidence intervals 

for the squared semipartial correlation coefficient should be abandoned.  Rather, we should turn 

our efforts toward the search for a confidence interval that has good coverage probability for 

sample sizes typical of research in the behavioral and social sciences, over a wide range of 

distributions and values for 2
rρ , 2

fρ , and k. 
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Table 4-1.  Coverage Probability as a Function of n, Selected Values for 2 2and ,rρ Δρ  and Distribution for the Predictors. 

Predictor 
Distribution 100 200 300 400 500 600 700 800 900 1000 1250 1500 1750 2000

Normal .00 .05 .864 .904 .916 .927 .932 .932 .937 .938 .938 .939 .940 .944 .945 .944
.30 .15 .913 .932 .937 .940 .941 .945 .944 .946 .944 .945 .948 .948 .949 .948
.60 .30 .915 .932 .937 .941 .939 .945 .945 .947 .946 .947 .947 .950 .948 .949

Pseudo-t (10) .00 .05 .866 .899 .915 .922 .926 .929 .931 .934 .934 .934 .937 .940 .939 .941
.30 .15 .900 .919 .926 .928 .931 .931 .932 .933 .934 .934 .934 .934 .935 .936
.60 .30 .882 .900 .906 .908 .911 .912 .913 .914 .915 .914 .917 .915 .917 .918

Pseudo-χ2(10)  .00 .05 .865 .900 .914 .921 .926 .929 .932 .934 .934 .935 .938 .938 .940 .941
.30 .15 .899 .918 .924 .927 .929 .931 .931 .932 .931 .933 .934 .934 .934 .933
.60 .30 .875 .896 .902 .905 .905 .908 .909 .909 .909 .911 .911 .911 .911 .912

Pseudo-χ2(4) .00 .05 .862 .897 .911 .919 .923 .926 .928 .930 .934 .933 .934 .936 .937 .938
.30 .15 .889 .904 .912 .915 .916 .917 .919 .919 .920 .921 .921 .921 .920 .920
.60 .30 .829 .845 .851 .853 .855 .857 .858 .858 .859 .858 .858 .858 .860 .860

Pseudo-exponential .00 .05 .854 .893 .907 .913 .918 .921 .924 .925 .927 .928 .930 .931 .932 .933
.30 .15 .862 .882 .888 .893 .893 .894 .896 .896 .896 .899 .899 .899 .900 .900
.60 .30 .761 773 .776 .777 .778 .777 .779 .779 .779 .780 .781 .778 .780 .782

Sample Size (n )

2
rρ

2Δρ

 
Note:  Bold results are estimated coverage probabilities between .94 and .96; italicized results are estimated coverage probabilities between .925 and .975. 
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     A              B  
Figure 4-1.  Coverage probability as a function of sample size and several combinations of 2 2and rρ Δρ for predictors sampled from a 

normal distribution and (A) pseudo-t10; (B) pseudo- 2 2
10 4;  (C) pseudo- ;χ χ and (D) pseudo-exponential distributions. 
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APPENDIX A 
PROGRAM FOR COMPUTING MARDIA’S MULTIVARIATE MEASURES OF SKEWNESS 

AND KURTOSIS IN SAS 

/*This program was used to compute values for Mardia's multivariate indices  
of skewness and kurtosis for the four nonnormal distributions investigated in 
this study.*/ 
 
data; 
g=.00; 
h=.058; 
*g=.301; 
*h=-.017; 
*g=.502; 
*h=-.048; 
*g=.760; 
*h=-.098; 
 
if g^=0 then do; 
  popmu=(exp(g**2/(2*(1-h)))-1)/(g*(sqrt(1-h))); 
   num1=exp(2*g**2/(1-2*h)); 
   num2=2*exp(g**2/(2*(1-2*h))); 
   den=g**2*(sqrt(1-2*h)); 
   popvar=(-1)*popmu**2+ 
       (num1-num2+1)/den;; 
end; 
 
if g=0 then do; 
   popmu=0; 
   popvar=1/((1-2*h)**(3/2)); 
end; 
 
do i =1 to 1000000; 
tempx1=rannor(0); 
tempy1=rannor(0); 
tempx2=rannor(0); 
tempy2=rannor(0); 
tempx3=rannor(0); 
tempy3=rannor(0); 
tempx4=rannor(0); 
tempy4=rannor(0); 
tempx5=rannor(0); 
tempy5=rannor(0); 
tempx6=rannor(0); 
tempy6=rannor(0); 
tempx7=rannor(0); 
tempy7=rannor(0); 
tempx8=rannor(0); 
tempy8=rannor(0); 
tempx9=rannor(0); 
tempy9=rannor(0); 
tempx10=rannor(0); 
tempy10=rannor(0); 
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if g=0 then do; 
zx1=(tempx1*exp(h*tempx1**2/2)-popmu)/sqrt(popvar); 
zy1=(tempy1*exp(h*tempy1**2/2)-popmu)/sqrt(popvar); 
zx2=(tempx2*exp(h*tempx2**2/2)-popmu)/sqrt(popvar); 
zy2=(tempy2*exp(h*tempy2**2/2)-popmu)/sqrt(popvar); 
zx3=(tempx3*exp(h*tempx3**2/2)-popmu)/sqrt(popvar); 
zy3=(tempy3*exp(h*tempy3**2/2)-popmu)/sqrt(popvar); 
zx4=(tempx4*exp(h*tempx4**2/2)-popmu)/sqrt(popvar); 
zy4=(tempy4*exp(h*tempy4**2/2)-popmu)/sqrt(popvar); 
zx5=(tempx5*exp(h*tempx5**2/2)-popmu)/sqrt(popvar); 
zy5=(tempy5*exp(h*tempy5**2/2)-popmu)/sqrt(popvar); 
zx6=(tempx6*exp(h*tempx6**2/2)-popmu)/sqrt(popvar); 
zy6=(tempy6*exp(h*tempy6**2/2)-popmu)/sqrt(popvar); 
zx7=(tempx7*exp(h*tempx7**2/2)-popmu)/sqrt(popvar); 
zy7=(tempy7*exp(h*tempy7**2/2)-popmu)/sqrt(popvar); 
zx8=(tempx8*exp(h*tempx8**2/2)-popmu)/sqrt(popvar); 
zy8=(tempy8*exp(h*tempy8**2/2)-popmu)/sqrt(popvar); 
zx9=(tempx9*exp(h*tempx9**2/2)-popmu)/sqrt(popvar); 
zy9=(tempy9*exp(h*tempy9**2/2)-popmu)/sqrt(popvar); 
zx10=(tempx10*exp(h*tempx10**2/2)-popmu)/sqrt(popvar); 
zy10=(tempy10*exp(h*tempy10**2/2)-popmu)/sqrt(popvar); 
end; 
 
if g^=0 then do; 
zx1=((1/g)*(exp(g*tempx1)-1)*exp(h*tempx1**2/2)-popmu)/sqrt(popvar); 
zy1=((1/g)*(exp(g*tempy1)-1)*exp(h*tempy1**2/2)-popmu)/sqrt(popvar); 
zx2=((1/g)*(exp(g*tempx2)-1)*exp(h*tempx2**2/2)-popmu)/sqrt(popvar); 
zy2=((1/g)*(exp(g*tempy2)-1)*exp(h*tempy2**2/2)-popmu)/sqrt(popvar); 
zx3=((1/g)*(exp(g*tempx3)-1)*exp(h*tempx3**2/2)-popmu)/sqrt(popvar); 
zy3=((1/g)*(exp(g*tempy3)-1)*exp(h*tempy3**2/2)-popmu)/sqrt(popvar); 
zx4=((1/g)*(exp(g*tempx4)-1)*exp(h*tempx4**2/2)-popmu)/sqrt(popvar); 
zy4=((1/g)*(exp(g*tempy4)-1)*exp(h*tempy4**2/2)-popmu)/sqrt(popvar); 
zx5=((1/g)*(exp(g*tempx5)-1)*exp(h*tempx5**2/2)-popmu)/sqrt(popvar); 
zy5=((1/g)*(exp(g*tempy5)-1)*exp(h*tempy5**2/2)-popmu)/sqrt(popvar); 
zx6=((1/g)*(exp(g*tempx6)-1)*exp(h*tempx6**2/2)-popmu)/sqrt(popvar); 
zy6=((1/g)*(exp(g*tempy6)-1)*exp(h*tempy6**2/2)-popmu)/sqrt(popvar); 
zx7=((1/g)*(exp(g*tempx7)-1)*exp(h*tempx7**2/2)-popmu)/sqrt(popvar); 
zy7=((1/g)*(exp(g*tempy7)-1)*exp(h*tempy7**2/2)-popmu)/sqrt(popvar); 
zx8=((1/g)*(exp(g*tempx8)-1)*exp(h*tempx8**2/2)-popmu)/sqrt(popvar); 
zy8=((1/g)*(exp(g*tempy8)-1)*exp(h*tempy8**2/2)-popmu)/sqrt(popvar); 
zx9=((1/g)*(exp(g*tempx9)-1)*exp(h*tempx9**2/2)-popmu)/sqrt(popvar); 
zy9=((1/g)*(exp(g*tempy9)-1)*exp(h*tempy9**2/2)-popmu)/sqrt(popvar); 
zx10=((1/g)*(exp(g*tempx10)-1)*exp(h*tempx10**2/2)-popmu)/sqrt(popvar); 
zy10=((1/g)*(exp(g*tempy10)-1)*exp(h*tempy10**2/2)-popmu)/sqrt(popvar); 
end; 
 
b12=(zx1*zy1+zx2*zy2)**3; 
b22=(zx1**2+zx2**2)**2; 
b14=(zx1*zy1+zx2*zy2+zx3*zy3+zx4*zy4)**3; 
b24=(zx1**2+zx2**2+zx3**2+zx4**2)**2; 
b16=(zx1*zy1+zx2*zy2+zx3*zy3+zx4*zy4+zx5*zy5+zx6*zy6)**3; 
b26=(zx1**2+zx2**2+zx3**2+zx4**2+zx5**2+zx6**2)**2; 
b18=(zx1*zy1+zx2*zy2+zx3*zy3+zx4*zy4+zx5*zy5+zx6*zy6+zx7*zy7+zx8*zy8)**3; 
b28=(zx1**2+zx2**2+zx3**2+zx4**2+zx5**2+zx6**2+zx7**2+zx8**2)**2; 
b110=(zx1*zy1+zx2*zy2+zx3*zy3+zx4*zy4+zx5*zy5+zx6*zy6+zx7*zy7 
      +zx8*zy8+zx9*zy9+zx10*zy10)**3; 
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b210=(zx1**2+zx2**2+zx3**2+zx4**2+zx5**2+zx6**2+zx7**2+zx8**2 
   +zx9**2+zx10**2)**2; 
uniskew=(zx1*zx2)**3; 
unikurt=zx1**4; 
output; 
end; 
keep b12 b22 b14 b24 b16 b26 b18 b28 b110 b210 uniskew unikurt; 
proc means; 
var b12 b22 b14 b24 b16 b26 b18 b28 b110 b210 uniskew unikurt; 
run;  
quit; 
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APPENDIX B 
DATA SIMULATION SAS PROGRAM  

/*This program was used to simulate data for the conditions under study, 
construct a 95% confidence interval for the squared semipartial correlation 
according to the formulas presented by Alf and Graf, and compute the coverage 
probability.*/ 
 
proc iml; 
filename output 'C:\Dissertation\nx1nne4.dat'; 
start1=0; 
reps = 10000; 
n=nrow(x); 
p=ncol(x); 
 
do i=1 to 5;    /*Predictor distributions*/ 
 if i=1 then do;   /*Normal distribution*/   
  g=0;     
  h=0; 
 end; 
 if i=2 then do;   /*t-distribution with 10 df*/ 
  g = 0; 
  h = .058;    
 end; 
 if i=3 then do;   /*Chi-sq with 10 df*/ 
  g=.301; 
  h=-.017; 
 end; 
 if i=4 then do;   /*Chi-sq with 4 df*/ 
  g=.502; 
  h=-.048; 
 end; 

if i=5 then do;   /*Exponential distribution*/ 
  g =.760; 
  h=-.098; 
 end; 
  
do j=1 to 5;    /*Distributions for errors*/ 

if j=1 then do;   /*Normal distribution*/   
  ge=0;     
  he=0; 
 end; 
 if j=2 then do;   /*t-distribution with 10 df*/ 
  ge = 0; 
  he = .058;    
 end; 
 if j=3 then do;   /*Chi-sq with 10 df*/ 
  ge=.301; 
  he=-.017; 
 end; 
 if j=4 then do;   /*Chi-sq with 4 df*/ 
  ge=.502; 
  he=-.048; 
 end; 
 if j=5 then do;   /*Exponential*/ 
  ge =.760; 
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  he=-.098; 
 end; 
  

do n = 100 to 1000 by 100;     /*Sample size*/  
  do k = 2 to 10 by 2;     /*Predictors*/ 

do rho2r = .00 to .60 by .10;  /*R-sq for reduced   
      model*/ 

do rho2f = rho2r to (rho2r + .30) by .05; /*R-sq for full model*/ 
 do rep = 1 to reps;     /*Replications*/ 
 start1=start1+1; 
 counter1=0; 
 counter2=0; 
 counter3=0; 
 rhor = root(rho2r);  
 rhof = root(rho2f); 
 rho2inc = rho2f-rho2r;  
 
/*Calculate vector of regression coefficients transform to uncorrelated    
  Predictors*/  
        
   B=j(k,1,0);        
   B[k-1,1]=rhor;      
   B[k,1]=rho2inc##.5; 
       
/*Generates a matrix of predictor variables with mean=0 and variance = 1*/ 
 
   z=rannor(repeat(0,n,k));      
   if g^=0 then do; /*uses g and h generator to transform x*/ 
   x=((exp(g#z)-j(n,p,1))/g)#exp(h#z##2/2); 
     popmu=(exp(g##2/(2#(1-h)))-1)/(g#(sqrt(1-h))); 
      num1=exp(2#g##2/(1-2#h)); 
     num2=2#exp(g##2/(2#(1-2#h))); 
      den=g##2#(sqrt(1-2#h)); 
      popvar=(-1)#popmu##2+(num1-num2+1)/den; 

xx=(x-popmu)/popvar##.5; 
   end; 

if g=0 then do; 
    popmu=0; 

popvar=1/((1-2#h)##(3/2)); 
x=z#exp(h#z##2/2); 
xx=(x-popmu)/popvar##.5; 

     end; 
 
/*Generate a vector of errors with mean = 0 and variance = 1-rho2f*/ 
 
    temp=j(n,1,0); 
    ze = rannor(temp); 
    if ge^=0 then do;  
    e = ((exp(ge#ze)-j(n,1,1))/ge)#exp(he#ze##2/2); 
            popmue =(exp(ge##2/(2#(1-he)))-1)/(ge#(sqrt 
                              (1-he))); 
       num1e=exp(2#ge##2/(1-2#he)); 
      num2e=2#exp(ge##2/(2#(1-2#he))); 
       dene=ge##2#(sqrt(1-2#he)); 
       popvare=(-1)#popmue##2+(num1e-num2e+1)/dene; 
    ee = ((e-popmue)/popvare##.5)#((1-rho2f)##.5);  
    end; 
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      if ge=0 then do; 
         popmue=0; 
         popvare=1/((1-2#he)##(3/2)); 
      e=ze#exp(he#ze##2/2); 
      ee = ((e-popmue)/popvare##.5)#((1-rho2f)##.5); 
      end; 
 
/*Calculate y according to the model*/ 
 

y = (xx*B) + ee;      
 YX=y||xx;  /*YX is the matrix with all variables*/ 

sum=YX[+,];  
     

/*Calculate covariance and correlation matrices based on YX*/ 
 

YXPYX=YX`*YX-SUM`*SUM/N; 
S=DIAG(1/SQRT(VECDIAG(YXPYX))); 
R=S*YXPYX*S; 
R2 = R[2:p+1,2:p+1];  
    

/*Calculate the remaining R matrices*/ 
 

R3 = R[1:k,1:k]; 
R4 = R[k:p,2:k]; 
R2F=1-((det(R))/(det(R2)));     
R2R=1-((det(R3))/(det(R4))); 
R2INC=R2F-R2R; 
RR = R2R##.5; 
RF = R2F##.5; 
RFR = RR/RF; 
if RF = 0 then do; 
print RF; 
RFR=0; 
end; 
 

/*Alf and Graf variance formula for case 2 where one set of predictors is a 
subset of another*/ 

V=(4#R2F#(1-R2F)##2/n) + (4#R2R#(1-R2R)##2/n) 
(8#RF#RR#(.5#(2#RFR-(RF#RR))*(1-R2F-R2R-(RFR##2)) 
+ (RFR##3))/n); 
if V < 0 then do; 
print R2F R2R; 
V = 0; 
end; 

LCL=R2INC-(1.96*(V##.5)); 
UCL=R2INC+(1.96*(V##.5)); 
if LCL<=rho2inc & UCL>=rho2inc then 
counter1=counter1+1; 
if LCL>rho2inc then counter2=counter2+1; 
if UCL<rho2inc then counter3=counter3+1;   

file output; 
put n 4.0 +2 k 2.0 +2 rho2r 4.2 +2 rho2f 4.2 +2 rho2inc 4.2 +2 
R2R 6.4 +2 R2F 6.4 +2 R2INC 6.4 +2 LCL 8.6 +2 UCL 8.6 +2 counter1 5.0 +2  
counter2 5.0 +2 counter3; 
 
 end; *for reps; 
            end;  *end for rho2f;    
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     end; *end for rho2r; 
   end;  *end for k; 
 end; *end for n; 
    end; *for k; 
  end; *for i; 
closefile output; 
quit; 
 
/*Calculate coverage probability*/ 
 
data; 
infile 'C:\Dissertation\nx1nne4.dat'; 
input n 4.0 +2 k 2.0 +2 rho2r 4.2 +2 rho2f 4.2 + 2 rho2inc 4.2 +2  

R2R 6.4 +2 R2F 6.4 +2 R2INC 6.4 + 2 LCL 8.6 +2 UCL 8.6 +2 counter1 5.0 
+2 counter2 5.0 +2 counter3; 

proc sort; 
by k n rho2r rho2inc; 
proc means noprint n mean std maxdec=4; 
by k n rho2r rho2inc; 
var counter1 counter2 counter3; 
output mean=covprob below above out = res14; 
proc print noobs data = res14; 
var k n rho2r rho2inc covprob below above; 
run; 
 
/*Calculate mean estimated asymptotic variance and sampling variance of ΔR2*/ 
 
data varratio; 
infile 'c:\Dissertation\nx1nne4.dat'; 
input n k rho2r rho2f rho2inc R2R R2F R2INC; 
RF=sqrt(R2F); 
RR=sqrt(R2R); 
RFR=RR/RF; 
if RF = 0 then RFR = 0; 
EAV=(4*R2F*(1-R2F)**2/N) + (4*R2R*(1-R2R)**2/N) -  
(8*RF*RR*(.5*(2*RFR-(RF*RR))*(1-R2F-R2R-(RFR**2)) + (RFR**3))/N); 
proc means noprint n mean var maxdec=4; 
by n k rho2r rho2inc; 
var R2INC EAV; 
output mean=MR2INC MEAV var=VR2INC VEAV out=res14; 
run; 
 
data varratio2; 
set res14; 
ratio = MEAV/VR2INC; 
proc print noobs data=varratio2; 
var n k rho2r rho2inc MR2INC VR2INC MEAV RATIO; 
run;
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