RELATIONSHIP BETWEEN COLLEGIATE TRACK RUNNERS’ ACHIEVEMENT GOAL ORIENTATIONS AND PERCEPTIONS OF MOTIVATIONAL CLIMATE

By

SEAN P. MCMANUS

A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN EXERCISE AND SPORT SCIENCES

UNIVERSITY OF FLORIDA

2004
TABLE OF CONTENTS

LIST OF TABLES .. iv
ABSTRACT .. v

CHAPTER

1 INTRODUCTION ...1
 Purpose of Study ... 2
 Research Questions ... 2
 Definitions ... 3
 Limitations ... 4
 Assumptions ... 4
 Significance of the Study ... 4

2 REVIEW OF LITERATURE ... 7
 Achievement Goal Theory ... 7
 Task-Orientation .. 8
 Ego-Orientation ... 8
 Achievement Goal Orientation and Competitive Level 10
 Achievement Goal Orientation and Gender ... 10
 Achievement Goal Orientation and Time of Season 11
 Perceived Motivational Climate .. 12
 Relationship of Perceived Motivational Climate and Achievement Goal
 Orientation .. 12

3 METHODS .. 15
 Participants ... 15
 Instruments .. 16
 Procedure ... 17
 Data Analysis .. 18
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Examples of TEOSQ Responses</td>
</tr>
<tr>
<td>2</td>
<td>Examples of PMCSQ Responses</td>
</tr>
<tr>
<td>3</td>
<td>Skewness and Kurtosis Calculations</td>
</tr>
<tr>
<td>4</td>
<td>Results of t-test Examining Task-Orientation</td>
</tr>
<tr>
<td>5</td>
<td>Results of t-test Examining Ego-Orientation</td>
</tr>
<tr>
<td>6</td>
<td>Results of t-test Examining Mastery-Perceptions</td>
</tr>
<tr>
<td>7</td>
<td>Results of t-test Examining Performance-Perceptions</td>
</tr>
<tr>
<td>8</td>
<td>Results of Pearson-Product Correlation Examining Distance Runners</td>
</tr>
<tr>
<td>9</td>
<td>Results of Pearson-Product Correlation Examining Sprinters</td>
</tr>
</tbody>
</table>
The purpose of this study was to investigate the achievement goal orientations and perceptions of motivational climate exhibited by intercollegiate athletes competing in track’s two running disciplines—sprinting and distance running—and then to examine the relationship between the athletes’ goal orientations and perceptions of motivational climate. Previous research in motivation in sport failed to make the distinction between these two different event groups within the sport of track. This failure to recognize track as being composed of two distinctly different event groups may have confounded the results of studies utilizing track athletes in examinations of motivation in sport across age, gender, time of season, and other variables.

Data collection relied upon two questionnaires, the Task and Ego in Sport Questionnaire (TEOSQ) and the Perceived Motivational Climate in Sport Questionnaire (PMCSQ). From these, sprinters and distance runners were assigned group means for task
and ego goal orientations, and for perceptions of mastery- and performance-involved motivational climates. There were 20 subjects in the distance runner group and 19 subjects in the sprinter group. Independent t-tests were utilized to determine differences in these variables between the two groups. Pearson-Product Moment Correlations were used to determine the relationships that existed between goal orientations and perceptions of motivational climate for each group.

Results indicated that differences in goal orientation and perceptions of motivational climate do exist between the two groups. Specifically, distance runners exhibited higher levels of task-orientation and higher perceptions of mastery-involved climates. Sprinters scored higher in perceptions of performance-involved climates.

Examination of the relationship between goal orientation and perceptions of motivational climate indicated positive correlations between task-orientation and perceptions of mastery-involved climates for both groups. Additional positive correlations between ego-orientation and performance-involved climate perceptions existed among distance runners, and between task-orientation and performance-involved climate perceptions among sprinters. A negative correlation between ego-orientation and mastery-involved climate perceptions was identified among the distance runners.

The results of this study suggest the failure to separate track athletes into these two groups in previous studies may have confounded results. Future research on motivation in sport utilizing track athletes must carefully select participants, so as to not confound results.
CHAPTER 1
INTRODUCTION

Understanding the role of motivation has been one of the most popular research topics in both sport psychology and pedagogy. Theoretical frameworks of differing types have emerged in each. Most recently, research focusing on individuals’ self-perceptions and those perceptions’ influence on motivated behavior has contributed greatly to the body of knowledge in sports psychology and pedagogy (Todorovich & Curtner-Smith, 2002).

This study will adopt a theoretical framework originally utilized in the educational domain that has been successfully applied in the sport context (Treasure & Roberts, 1998). In short, achievement goal theory will serve as the framework in which achievement-related cognitions and behaviors are measured. Achievement goal theory, in this study, has two dimensions that act and interact to affect behavior and cognition (Nicholls, 1989). These two dimensions are achievement goal orientation and perceived motivational climate.

Achievement goal theory research conducted in the sports realm has primarily examined achievement motivation and perceived climates within a single sport. These studies have compared same-sport athletes across age, gender, and time of competitive season. To date, studies have not examined the relationship of goal orientations and perceived climates for athletes participating in different sports, events or positions.
Athletes are often placed into sub-groups of the overall team. This separation of athletes may be between offense and defense, endurance and speed, or weight class. Due to this division, it is of interest to gain insight into how the different sub-groups of the same team exhibit achievement goal orientations and perceive their motivational climates. The purpose of the present study is to examine the goal orientations and perceived motivational climates exhibited by intercollegiate athletes participating in track’s two running disciplines—distance running and sprinting.

Purpose of Study

The purpose of this study is to investigate the goal orientation and perception of motivational climate exhibited by intercollegiate athletes participation in track’s two running disciplines—sprinting and distance running—and to examine the relationship between the athletes’ goal orientations and perceptions of motivational climate.

Research Questions

1. Is there a difference in the goal orientation and perception of motivational climate between sprinters and distance runners competing at the Division I collegiate level? The four subquestions are as follows:

 a. Is there a difference in mean score on the Task and Ego in Sport Questionnaire (TEOSQ) for sprinters and distance runners related to task orientation?

 b. Is there a difference in mean score on the TEOSQ for sprinters and distance runners related to ego orientation?

 c. Is there a difference in mean score on the PMCSQ for sprinters and distance runners related to mastery-involvement?

 d. Is there a difference in mean score on the PMCSQ for sprinters and distance runners related to performance-involvement?

2. What is the relationship between an athlete’s goal orientations and the athlete’s perception of motivational climate? The eight subquestions are as follows:
a. What is the relationship between the sprinters’ scores for task orientation on the TEOSQ and perceived mastery climate on the Perceived Motivational Climate in Sport Questionnaire (PMCSQ)?

b. What is the relationship between the sprinters’ scores for ego orientation on the TEOSQ and perceived performance climate on the PMCSQ?

c. What is the relationship between the sprinters’ scores for task orientation on the TEOSQ and perceived performance climate on the PMCSQ?

d. What is the relationship between the sprinters’ scores for ego orientation on the TEOSQ and perceived mastery climate on the PMCSQ?

e. What is the relationship between the distance runners’ scores for task orientation on the TEOSQ and perceived mastery climate on the PMCSQ?

f. What is the relationship between the distance runners’ scores for ego orientation on the TEOSQ and perceived performance climate on the PMCSQ?

g. What is the relationship between the distance runners’ scores for task orientation on the TEOSQ and perceived performance climate on the PMCSQ?

h. What is the relationship between the distance runners’ scores for ego orientation on the TEOSQ and perceived mastery climate on the PMCSQ?

Definitions

The following definitions were used in this study.

1. **Achievement goal orientation** addresses a pattern of beliefs that leads to different ways of approaching, engaging in, and responding to achievement situations.

2. **Achievement goal theory** is the framework in which achievement-related cognitions and behaviors are measured. Achievement goal orientation and perceived motivational climate fall under the larger umbrella of achievement goal theory.

3. **Dispositional and situational orientations** refer to achievement goal orientations and perceptions of motivational orientations, respectively.

4. **Ego orientation** refers to the belief that ability is measured by how well one does in relation to another person.

5. **Extreme score** describes individuals who score 4.0 or higher or 1.9 or lower on a 5-point Likert scale.
6. **Motivation** is the direction and intensity of an individual’s effort toward a specific task (Weinberg & Gould, 1999).

7. **Motivational climate** is the social climate of achievement settings created by others.

8. **Task orientation** refers to the belief that ability is a self-referenced measurement.

9. **Mastery-involved** describes a climate in which individuals perceive significant others promote hard work and persistence as criteria for success.

10. **Performance-involved** describes a climate in which individuals perceive significant others promote winning as criterion for success.

11. **TEOSQ** is the acronym for Task and Ego Orientation in Sport Questionnaire. The TEOSQ measures task-orientation and ego-orientation.

12. **PMCSQ** is the acronym for the Perceived Motivational Climate in Sport Questionnaire. The PMCSQ measures perception of mastery-involved or performance-involved climate.

13. **Sprinters** are track runners competing at distances 400m and shorter.

14. **Distance runners** are track runners competing at distances 800m and longer.

Limitations

The following limitations apply to this study.

1. Data collection depended on each participant returning two questionnaires each.

2. Data collection was dependent upon participants’ honesty.

Assumptions

The following assumptions were made in this thesis.

1. The participants were candid and truthful.

2. The methodology used in the study was appropriate for the research question.

Significance of the Study

Track and field is a unique sport composed of several different event groups that come together under the larger umbrella of “track and field.” In the field events, there are
throwing events, horizontal and vertical jumps, and the pole vault. On the track, there are
sprinting events and distance events. Prior psychological studies utilizing track and field
athletes as subjects (Fairall & Rodgers, 1997; Goudas, Biddle, Fox, & Underwood, 1995;
Harger & Raglin, 1994; Huddleston, Kamphoff, Suchan, Mack, Bian, Bush, Mintah,
Dutler, & Wee, 2002) have examined a variety of cognitive topics, including anxiety,
goal setting, mood states and motivation. However, these studies failed to identify the
event group to which subjects belonged. This is problematic, as fundamental differences
exist between each group that may alter their psychological profiles. For the scope of this
study, only athlete motivation will be examined and only athletes participating in the two
running disciplines will participate in our investigation. Therefore, the two groups will
collectively be referred to as “track” athletes.

There are considerable differences between the sprint and distance disciplines.
While a sprinter and a distance runner are both track runners, the physical preparation for
each discipline is so vastly different that two athletes on the same team may never even
meet. Sprint training utilizes anaerobic work, weight lifting, and pays strict attention to
running form. Additionally, it is important to practice the use of starting blocks and the
passing of relay batons. The majority, if not entirety, of sprint training is done on the
track. Distance training entails predominantly aerobic development and hill work. Thus,
distance training is done primarily away from the track, in the way of distance running or
longer workouts on grass. The need for different training environments generally results
in a complete separation of sprint and distance athletes. It is unclear whether this
separation of event groups plays a role in how athletes’ goal orientations develop or how
they perceive their motivational climates.
In addition to the differing physical requirements and the separation of training groups, there are characteristics of sprinting and distance running that may promote different motivational climates and/or athlete goal orientations. US television and media coverage generally focus on sprints. For example, the media award the term “World’s Fastest Man” to the winner of the Olympic 100m final, while the winner of the marathon receives no such accolade.

Another potential contributor to any psychological differences that may exist between sprinters and distance runners is the success of US elite athletes over shorter distances. With equal opportunities for distance runners and sprinters to earn medals, Americans have won 67 Olympic medals in the sprint events since 1972, while merely 7 medals have been earned in the distance events. Finally, the large disparity in the margin of time that separates winners from non-winners in sprints and distances may also contribute to differing psychological profiles. A mediocre collegiate sprinter may be one second slower than the Olympic 100m champion. Meanwhile, a mediocre collegiate 10,000m runner may be six minutes slower than the Olympic champion.

This study is significant because it will explain differences that exist in achievement goal orientations and perceptions of motivational climate, and explain how the two relate, for two distinctly different groups of athletes previously considered one sport.
CHAPTER 2
REVIEW OF LITERATURE

The purpose of this literature review is to define and describe achievement goal theory in general, and how it has developed in the sports realm in particular. Achievement goal theory is reviewed with the perspective that individuals participating in sports have varying goal orientations and perceptions of motivational climate. A review of achievement goal theory from this perspective reveals the theoretical perspective and background relative to the present study.

Achievement Goal Orientation

Goal orientation theorists contend feelings of success stem from the attainment of goals. The types of goals athletes describe as valuable are evidence of their goal orientation. Feelings of success are achieved by the interplay of the achievement of goals and the respective value athlete’s place on their attainment (Nicholls, Cheung, Lauer, & Pastashnick, 1989). For example, what is more important to a track runner, winning a race or running the best race possible? How successful would the runner feel winning the race, but not putting forth maximum effort? These feelings of success are dependent on the athlete’s goal orientation.

Research on goal orientation has yielded the existence of two independent conceptual views of success that combine to form an individual’s achievement goal orientation (Duda & Nicholls, 1992). These achievement goal orientations, also known as dispositional goal orientations, are states of task and ego that exist in all individuals.
Task-Orientation

Individuals in achievement settings may perceive or judge their competence or ability to perform a task in a self-referenced manner and maintain their conceptions of ability and effort, at least to some degree, as undifferentiated concepts (Nicholls & Miller, 1984). Those with this undifferentiated conception of ability and effort tend to feel successful when an increase in their effort at a task increases their level of performance. Moreover, individuals with this undifferentiated conception of ability and effort tend to pursue tasks that are more challenging because they perceive tasks that are easy to perform are not likely to improve their skills, performance, or overall ability (Jagacinski & Nicholls, 1987). Individuals with this undifferentiated conception of ability and effort are considered task-oriented because performance of a task is conceived as an end in itself.

Researchers indicate that task-oriented individuals tend to adopt more adaptive behaviors in achievement settings than individuals that do not have a strong task-orientation. Among the adaptive behaviors adopted by individuals with a strong task-orientation are the use of deep learning strategies (Nolen, 1988), increased persistence at a task (Elliot & Dweck, 1988), pride and satisfaction with putting forth effort (Jagacinski & Nicholls, 1987), and a preference for engaging in challenging tasks (Ames & Archer, 1988).

Ego-Orientation

In contrast to a task-oriented individual, individuals that exhibit ego-orientations in an achievement setting become self-consciously concerned about their ability to perform a task. An ego-oriented individual exhibits a differentiated conception of ability
and effort, and they perceive themselves as being less capable if they put forth more effort than someone else to reach the same level of competence at a task (Jagacinski & Nicholls, 1987). According to this view of ego-orientation, individuals will comparatively perceive themselves as being more skillful if they do better at a task with less effort than someone else.

Researchers have indicated that individuals with ego-orientations tend to adopt maladaptive behaviors in achievement settings; however, the findings associated with maladaptive behaviors are less consistent than those associated with adaptive behavior patterns. Some identified maladaptive behaviors of ego-oriented individuals as the use of superficial learning strategies (Nolen, 1988), negative feelings when not successful (Jagacinski & Nicholls, 1987), and the avoidance of challenging tasks (Elliot & Dweck, 1988). Interestingly, others have found some positive aspects associated with an ego-orientation. For example, Midgley, Anderman, and Hicks (1995) found that ego-oriented middle school students’ performance goals were associated with the increases in self-efficacy.

Recently, researchers have suggested that ego-orientation should be separated into two components. This approach partitions ego-orientation into approach and avoidance components (Elliot & Church, 1997; Elliot & Harackiewicz, 1996; Elliot, McGregor, & Gable, 1999). The resulting trichotomous model then includes a task-orientation, an ego-avoidance-orientation, and an ego-approach-orientation. However, regardless of whether the ego-oriented individual pursues success by striving to be superior to another or to avoid being found inferior, the comparative aspect of ego-orientation remains consistent. Future research specifically addressing this trichotomous model may explain differences
among ego-oriented behavioral patterns. Most would still argue, however, that ego-orientation is less desirable than a task-orientation when one is involved in an achievement setting.

No studies comparing the goal orientation of athletes participating in different sports or events have been conducted. There is, however, research that evaluates the goal orientation of athletes playing the same sport, as well as large groups of athletes not separated by sport. These studies compared athletes across competitive levels, gender, and time of season.

Achievement Goal Orientation and Competitive Levels

A study by Carpenter and Yates (1997) compared the goal orientations of amateur and semiprofessional soccer players. The study showed amateur soccer players scored significantly higher on task-orientation than the semiprofessional players. Scores for ego-orientation, while higher for semiprofessionals, were not significantly different.

A multiple-sport study by White and Zellner (1996) looked into goal orientations of male and female athletes participating in a variety of sports at three competitive levels of play: intercollegiate, organized high school and college-aged recreational. The study found that high school athletes were significantly more ego-oriented than the intercollegiate athletes and that college-aged recreational athletes were the highest in task-orientation. In this study participants were not separated by the sports they played.

Achievement Goal Orientation and Gender

Another factor that may contribute to an athlete’s goal orientation is gender. In examining the goal orientation of participants in a summer basketball camp, Duda and Horn (1993) found no significant gender-related differences in goal orientation.
Duda, Chi, Newton, Walling and Catley (1995) evaluated the goal orientation of members of a college tennis class and revealed a significant difference in task-orientation, with females scoring significantly higher in task-orientation than males. No significant difference was found related to ego-orientation.

In a study by Duda (1989), varsity high school athletes involved in individual and team sports were investigated to detect differences between male and female goal orientations. A significant difference in goal orientations was detected between male and females. No sport-specific comparisons of the goal orientation of the participants were made. Results indicated a significantly higher score for females on task-orientation and a significantly higher ego-orientation score for males.

Li, Harmer and Acock (1996) studied the goal orientations of 467 undergraduate students enrolled in a variety of physical education classes. Examination of means for task- and ego-orientation revealed significant differences only related to ego-orientation with males scoring significantly higher than females. No significant differences were found related to task-orientation.

Achievement Goal Orientation and Time of Season

Another possible influence in the development of goal orientations of athletes is the time of competitive season. That is, will an athlete’s goal orientation change as the athlete progresses through the competitive season? A study by Williams (1998) utilizing adolescent female softball players suggests a correlation exists between an athlete’s goal orientation at the beginning of a competitive season and the end of the season. Despite slight change from early to late season there was a positive correlation ($r = .77$) between
early and late season task-orientation scores. A correlation between early to late season ego-orientation scores also existed ($r = .64$).

Perceived Motivational Climate

While Achievement goal orientation is concerned with dispositional traits, the second dimension of achievement goal theory, perceived motivational climate, is situational. Perceived motivational climate refers to individuals’ perceptions of what a teacher, parent, coach or significant other promotes or expects. Similar to goal orientations, environments may be classified as either task-involved or ego-involved. To avoid confusion, these environments shall be referred to as mastery-involved and performance-involved climates, respectively.

When one perceives an environment as a mastery-involved climate, that individual perceives a climate that facilitates feelings of satisfaction derived from hard work and persistence in the face of difficulty (Ames, 1992; Roberts & Ommundsen, 1996). When individuals feel a teacher or coach promotes maladaptive patterns, a performance-involved perception prevails. Maladaptive patterns in this instance might include demonstration of superiority relative to the skills of teammates or opponents as the criterion for success (Ames, 1992; Roberts & Ommundsen, 1996).

Relationship of Perceived Motivational Climate and Achievement Goal Orientation

There have been several studies examining the relationship of motivational climate and goal orientations of athletes. Duda and Horn (1993), utilizing young athletes participating in a summer basketball camp, examined the relationship between the athlete’s achievement goal orientation and their perception of their parents’ goal orientation. The study revealed a positive correlation between task-orientation scores of
the athlete and the athlete’s perception of the parent’s task-orientation. Similarly, the athlete’s that with high degrees of ego-orientation were likely to believe parents would also exhibit ego-oriented behaviors. The findings of this study indicated that the young athlete’s perceived motivational climate was related to his/her own goal orientation.

Research by Goudas, Biddle, Fox and Underwood (1995) studied how a different facet of motivational climate, style of instruction, affected goal orientation. In this study, twenty-four females participating in a 10-week track class were instructed using two different teaching styles. The first instructional style, directed instruction, involved teachers making decisions and directing students on activity selection and duration. The differentiated style allowed students to choose activities and workout intensity. Students instructed with the differentiated approach were found to be more task-oriented. This study indicates that students in a physical activity setting respond to a motivational climate that is primarily mastery-goal oriented by exhibiting characteristics that are more task-oriented.

An athlete’s perceptions of the athletic climate can be dictated by actions as simple as asking questions (Ames, 1992). The manner in which a coach directs questions can give clear messages of the value they place on aspects of the athletic environment. If coaches ask athletes how they did, rather than if they won, athletes are able to express their own set of values. It was found that the elements of competitive environments, including coaches, that demand adaptive behavior, striving for personal best and skill development, facilitated task-oriented motivation goals among athletes (Ames, 1992).

Research by Ames (1988) found a correlation between motivational climate and demonstrated motivation in the field setting. Those who perceived their motivational
climate as mastery-involved preferred challenging tasks and believed success were
directly related to effort. The study suggested task- and ego-orientation varied with
interpretation of class structure.

Work by Roberts and Ommundsen (1996) investigated 148 students at the
Norwegian University of Sport and Physical Education to determine how athletes’ goal
orientations may impact their perceptions of motivational climate. Results indicated
athletes who are primarily task-oriented perceive their motivational climate as mastery-
involved. Similarly, athletes who are primarily ego-oriented perceive their motivational
climate as performance-involved.

Walling, Duda and Chi (1993) found that athletes’ perceptions of competitive
climate produce degrees of satisfaction with participation levels and levels of
performance worry. The researchers found that athletes who perceived their environment
as mastery-involved demonstrated greater feelings of satisfaction from participation on a
team and lower levels of performance worry. Likewise, athletes that perceived the
environment to be performance-involved demonstrated less satisfaction from
participation on a team and greater levels of performance worry.

Finally, there is evidence through work done by Dweck and Leggett (1988) that
one of the two constructs, if strong enough, may override the other. For example, if a
mastery or performance climate is perceived, but its cues are weak, an individual’s
predisposition towards task or ego should hold sway. However, if the situational cues are
strong in favor of either mastery-involved or performance-involved climates,
dispositional orientations may be overridden (Treasure & Roberts, 1998). For these
reasons, it is important to investigate the relationships that may exist between
achievement goal orientation and perceived motivational climate.
CHAPTER 3
METHOD

Participants

Five coaches of NCAA Division I track programs were contacted by phone for potential participants in this study. They were each contacted with a brief description of the study. The coaches willing to take part informed their athletes about the opportunity to participate in the study. All potential participants must have participated in at least one semester of competition at the university level.

Informed consent forms, approved by the University of Florida’s Institutional Review Board for human subjects, were delivered to the coach of each participating team for administration to their athletes. Student-athletes wishing to participate signed and returned the consent forms to their coach. The researcher collected all volunteers’ forms before the administration of any questionnaires.

Athletes completed the Task and Ego in Sport Questionnaire (TEOSQ), the Perceived Motivational Climate in Sport Questionnaire (PMCSQ), and some general biographical information. This biographical information included information about the primary event in which the athlete competes. This will serve to determine whether the athlete is a sprinter or distance runner.

A total of 39 athletes, 20 distance runners and 19 sprinters participated in the study. Of the 20 distance runners, 9 were male and 11 were female. The sprinter group was comprised of 10 males and 9 females.
Instruments

To obtain the dispositional-orientation data, participants filled out the Task and Ego in Sport Questionnaire (TEOSQ). The TEOSQ was created and verified for validity and reliability by Duda and Nicholls (1992). Items on the TEOSQ were prefaced with the heading “I feel really successful in sport when...” Examples of task-oriented and ego-oriented responses appear in Table 1.

Table 1: Examples of TEOSQ Responses

<table>
<thead>
<tr>
<th>Task-oriented Responses</th>
<th>Ego-Oriented Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>I learn a new skill and it makes me want to practice more</td>
<td>I’m the only one who can do the play or skill</td>
</tr>
<tr>
<td>I learn something that is fun to do</td>
<td>I can do better than my friends</td>
</tr>
<tr>
<td>I work really hard</td>
<td>The others can’t do as well as me</td>
</tr>
<tr>
<td>I do my very best</td>
<td>I score the most points</td>
</tr>
</tbody>
</table>

Participants rated items on a 5-point Likert type scale. Each athlete received a score for task and ego. High task was considered any score greater than or equal to 3.00. Low task was considered below 3.00. Extreme task was considered any score greater than or equal to 4.00 or less than 2.00. The same scale was utilized for determination of ego-orientation. A copy of the Task and Ego Orientation in Sport Questionnaire appears in Appendix A.

Perceived motivational climate was assessed through a Perceived Motivational Climate in Sport Questionnaire (PMCSQ). Developed and verified for validity and reliability by Walling, Duda, and Chi (1993), the PMCSQ consists of 11 mastery-
involved and 14 performance-involved items. Statements begin with “On this sports team...” and offer mastery-involved and performance-involved responses. Examples of both mastery-involved and performance-involved statements appear in Table 2.

Table 2: Examples of PMCSQ Responses

<table>
<thead>
<tr>
<th>Mastery-involved Responses</th>
<th>Performance-involved Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trying hard is rewarded</td>
<td>Players feel good when they do better than their teammates</td>
</tr>
<tr>
<td>Coaches make sure players improve on skills they are not good at</td>
<td>Players are punished when they make mistakes</td>
</tr>
<tr>
<td>The focus is to improve each competition</td>
<td>Playing better than teammates is important</td>
</tr>
<tr>
<td>Players are encouraged to work on weaknesses</td>
<td>Coaches favor some players more than others</td>
</tr>
</tbody>
</table>

Answers were ranked on a 5-point Likert type scale, ranging from (1) strongly disagree to (5) strongly agree. All athletes received a score for mastery and performance perceptions. High mastery perceptions were scores of 3.00 and higher. Low mastery scores were scores below 3.00. The same process was used for performance perception. A copy of the Perceived Motivational Climate in Sport Questionnaire appears in Appendix B.

Procedure

After coaches verbally agreed to allow their athletes to participate, and informed athlete consent forms were collected, coaches were sent a packet of information that included a letter of introduction (Appendix C), a script to be read aloud to participants
(Appendix D), the TEOSQ (Appendix A), the PMCSQ (Appendix B), and enough pencils for each member of the team. Coaches were instructed to remind participants that their involvement in the study is voluntary, anonymous, and will not affect their status on the team.

After completion of the questionnaires, the coaches collected all forms, placed them in a self-addressed stamped envelope and returned them to the researcher. Data collection took place in February 2004, during the indoor track season. While research by Williams (1998) suggests goal orientations do not change during the course of the competitive season, there is no research investigating how perceptions of motivational climate may change during the course of a competitive season. Thus, all data was collected within the same two-week period, in the early stages of the season.

Data Analysis

After the researcher received the completed questionnaires, individual and group means were calculated for task-orientation and ego-orientation scores on the TEOSQ and for scores of mastery-involved and performance-involved climate perceptions on the PMCSQ. Before analyzing the data with more powerful parametric statistics, the skewness and kurtosis of the data were checked. This assures normality in distribution and variance, the two assumptions that must be met for use of parametric statistics. As seen in Table 3, the data are of acceptable normal distribution and variance, thus meeting the two assumptions.

Table 3: Skewness and Kurtosis Calculations

<table>
<thead>
<tr>
<th>Skewness</th>
<th>TEOSQ</th>
<th>PMCSQ</th>
<th>All Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.7</td>
<td>-0.4</td>
<td>-0.5</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>0.2</td>
<td>0</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Having met the assumptions of normality and variance, independent t-tests were utilized to determine differences in sprinters’ and distance runners’ goal orientations and perceptions of motivational climate. A total of four independent t-tests were carried out in order to compare sprinter and distance runner task-orientation, ego-orientation, mastery-involved climate perception, and performance-involved climate perception. The level of significance was set at p<.05.

Next, to determine what relationships exist between the athletes’ goal orientations and perceptions of motivational climate, a Pearson Product Moment Coefficient of Correlation was used. This analysis investigated the eight possible relationships of goal-orientation to perceived motivational climate. These eight relationships are previously identified as the subquestions of research question 2. The level of significance was set at p<.05.
CHAPTER 4
RESULTS

The collected data was utilized to answer research questions 1 and 2, posed in Chapter 1. The results of the investigation of sprinters’ and distance runners’ goal orientations, as outlined in research questions 1a and 1b, appear in Tables 4 and 5. Tables 6 and 7 display the results of the comparison of distance runners and sprinters perceptions of motivational climate, as outlined in research questions 1c and 1d. Finally, the relationships between sprinters’ and distance runners’ goal-orientations and perceptions of motivational climate, outlined in research questions 2a-2h, appear in Tables 8 and 9.

Table 4 displays the findings of research question 1a. With a mean task-orientation score of 4.2, distance runners exhibited extreme task-orientation. This was significantly greater than the sprinter group’s score of 3.7. It is important to note that the sprinter group’s score still falls in the high task-orientation range.

Table 4: Results of t-test Examining Task-Orientation

<table>
<thead>
<tr>
<th></th>
<th>Distance Runners</th>
<th>Sprinters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean:</td>
<td>4.2</td>
<td>3.7</td>
</tr>
<tr>
<td>Variance:</td>
<td>.26</td>
<td>.87</td>
</tr>
<tr>
<td>Number of Obs.(n):</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Pooled Variance</td>
<td>.56</td>
<td></td>
</tr>
<tr>
<td>Df:</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>t_{calc}:</td>
<td>2.10</td>
<td></td>
</tr>
<tr>
<td>t_{crit}:</td>
<td>2.03</td>
<td></td>
</tr>
<tr>
<td>Conclusion:</td>
<td>There is a difference with regard to task-orientation</td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Results of t-test Examining Ego-Orientation

<table>
<thead>
<tr>
<th></th>
<th>Distance Runners</th>
<th>Sprinters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean:</td>
<td>2.9</td>
<td>3.0</td>
</tr>
<tr>
<td>Variance:</td>
<td>.95</td>
<td>.53</td>
</tr>
<tr>
<td>Number of Obs.(n):</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Pooled Variance:</td>
<td>.74</td>
<td></td>
</tr>
<tr>
<td>Df:</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>t_{calc}:</td>
<td>-0.36</td>
<td></td>
</tr>
<tr>
<td>t_{crit}:</td>
<td>2.03</td>
<td></td>
</tr>
<tr>
<td>Conclusion:</td>
<td>No difference with regard to ego-orientation</td>
<td></td>
</tr>
</tbody>
</table>

Table 5 displays the findings of research question 1b. With mean ego-orientation scores of 2.9 for distance runners and 3.0 for sprinters, there was no significant difference between the two groups. Though both were close to the median split, distance runners ego-orientation scores fell in the low range, while sprinters were in the high range.

Table 6: Results of t-test Examining Mastery-Perceptions.

<table>
<thead>
<tr>
<th></th>
<th>Distance Runners</th>
<th>Sprinters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean:</td>
<td>3.7</td>
<td>3.0</td>
</tr>
<tr>
<td>Variance:</td>
<td>.38</td>
<td>.48</td>
</tr>
<tr>
<td>Number of Obs.(n):</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Pooled Variance:</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td>Df:</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>t_{calc}:</td>
<td>3.38</td>
<td></td>
</tr>
<tr>
<td>t_{crit}:</td>
<td>2.03</td>
<td></td>
</tr>
<tr>
<td>Conclusion:</td>
<td>There is a difference with regards to mastery-perception</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 displays the findings of research question 1c. Distance runners average mastery-perception scores on the PMCSQ were significantly higher than sprinters. However, with scores of 3.7 and 3.0 respectively, both groups were in the high range for mastery-involved perceptions of motivational climate.

Table 7 displays the results of research question 1d. Distance runners had an average PMCSQ performance-perception score of 2.9. This falls in the low range and is significantly lower than the average score of the sprinter group. The sprinter group’s average performance-perception of 3.5 falls in the high range.

Table 7: Results of t-test Examining Performance-Perceptions.

<table>
<thead>
<tr>
<th></th>
<th>Distance Runners</th>
<th>Sprinters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean:</td>
<td>2.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Variance:</td>
<td>.41</td>
<td>.30</td>
</tr>
<tr>
<td>Number of Obs.(n):</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Pooled Variance</td>
<td>.36</td>
<td></td>
</tr>
<tr>
<td>Df:</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>t<sub>calc</sub>:</td>
<td>-3.16</td>
<td></td>
</tr>
<tr>
<td>t<sub>crit</sub>:</td>
<td>2.03</td>
<td></td>
</tr>
<tr>
<td>Conclusion:</td>
<td>There is a difference with regards to performance-perception.</td>
<td></td>
</tr>
</tbody>
</table>

Table 8 shows the findings of research questions 2a-2d. The distance runners exhibited a significant positive correlation ($r = 0.48$) between task-orientation and the perception of motivational climates as mastery-involved. This group exhibited no significant correlation between task-orientation and performance-involved climate perceptions. The distance runners exhibited a significant negative correlation ($r = -0.50$)
between ego-orientation and perceptions of mastery-involved climates. Finally, a significant correlation \((r = 0.75)\) existed between ego-orientation and performance-involved climate perceptions.

Table 8: Results of Pearson-Product Correlation Examining Distance Runners

<table>
<thead>
<tr>
<th></th>
<th>Mastery-involved perception</th>
<th>Performance-involved perception</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task-orientation</td>
<td>0.48*</td>
<td>-0.14</td>
</tr>
<tr>
<td>Ego-orientation</td>
<td>-0.50*</td>
<td>0.75*</td>
</tr>
</tbody>
</table>

*significant finding

Table 9 shows the results of research questions 2e-2h. The sprinters exhibited significant positive correlation between task-orientation and mastery-involved climate perceptions \((r = 0.46)\). This group also exhibited a significant positive correlation between task-orientation and perceptions of performance-involved motivational climates \((r = 0.65)\). The sprinters did not exhibit a significant correlation between ego-orientation with either mastery-involved or performance-involved climate perceptions.

Table 9: Results of Pearson-Product Correlation Examining Sprinters

<table>
<thead>
<tr>
<th></th>
<th>Mastery-involved perception</th>
<th>Performance-involved perception</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task-orientation</td>
<td>0.46*</td>
<td>0.65*</td>
</tr>
<tr>
<td>Ego-orientation</td>
<td>0.27</td>
<td>0.33</td>
</tr>
</tbody>
</table>

*significant finding

Discussion

Goal orientation is the set of personal goals that relate to beliefs about success and failure. An athlete’s perception of motivational climate is the degree to which an athlete perceives a sporting climate to be either mastery-involved or performance-involved. It
was the purpose of this study to analyze both the goal orientation and perceptions of motivational climate of track athletes representing varsity programs at Division I universities. After describing the two groups of athletes, sprinters and distance runners, and analyzing their differences related to goal orientation and perceptions of motivational climate, the relationship between goal orientation and perceived motivational climate within the two groups of athletes was examined.

The results of this study indicate that there are differences in goal orientation between distance runners and sprinters. While no difference emerged related to ego-orientation, the distance runners displayed higher levels of task-orientation than sprinters. The sprinters’ task-orientation scores were in the defined “high” range, while the distance runners were in the “extreme high” range. Both groups’ ego-orientation scores were around the median of the ego-orientation scale.

Analyses of perceptions of motivational climate indicate that differences exist between sprinters and distance runners with respect to both mastery-involved and performance-involved perceptions. While both groups were in the “high” range, distance runners’ mastery-involved perceptions were greater than their sprinting counterparts. The two groups also displayed differences in performance-involved climate perceptions, with distance runners’ marks falling in the “low” range and sprinters marks falling in the “high” range.

Previous research indicates a relationship exists between an athlete’s goal-orientation and motivational climate. Goudas, Biddle, Fox, and Underwood (1995) found that a mastery-involved motivational climate created by an instructor was significantly associated with the fostering of task-involved goal orientations. This trend appears in the
current study as well, as both sprinters and distance runners displayed positive correlations between task-orientation and mastery-involved climate perceptions.

Distance runners showed a negative correlation between ego-orientation and mastery-involved climate perceptions. On the other hand, this group displayed a positive correlation between ego-orientation and performance-involved climate perceptions.

Finally, the distance runners showed an insignificant negative correlation between task-orientation and performance-involved climate perceptions. While the final finding is insignificant, it suggests a trend may exist between task-orientation and performance-involved climate perceptions. Intuitively, task-orientation and performance-perception would correlate negatively, as was the case in the current study. However, until future research on the subject is conducted, no conclusion can be drawn.

The relationships between sprinters’ goal orientations and perceptions of motivational climate were not as clear as the distance runners’. No correlation existed between ego-orientation with either climate perception. Further, while task-orientation was positively correlated with mastery-involved perceptions of climate, it was more strongly positively correlated with performance-involved climate perceptions. This final finding is unexpected. A possible explanation could be the participants possessed an inherently strong task orientation that prevailed despite the strong perception of a performance-involved motivational climate. Further investigation of this finding is required to advance this theory beyond speculation. The findings of this study should be a useful tool for all track and field coaches. It will allow them to better understand what drives their athletes, and to create a training environment and motivational climate that best suits their team.
Future Research

The results of this study indicate that there are differences in goal orientation and perceptions of motivational climate between sprinters and distance runners. Thus, it is important for future research on motivation in sport to carefully assign participants to the correct group and not lump all track athletes together. Previous research utilizing track athletes failed to make this distinction between sprinter and distance runner. As a result, research utilizing track athletes may require re-evaluation. Further, work should be done to identify motivational differences between other sports as well.

Future research examining the relationships between goal-orientation and perceptions of motivational climate should attempt to expand on the findings of Goudas, Biddle, Fox, and Underwood (1995). Specifically, with a relationship between goal-orientation and perceived motivational climate established, is it possible to determine a causal relationship between the two? Does either goal-orientation or perceived motivational climate operate as a predictor of the other? Also of importance is determining how inherent goal-orientations determine which sport or event group an individual chooses to participate in.

Future research may also examine how achievement goal orientation and perceived motivational climate affect perceptions of success. If one construct is low and the other high, how will an individual perceive causes of success? In this potential research stream, goal orientations and perceptions of motivational climate would operate as the independent variables and perceptions of success would serve as the dependent variable.
Finally, additional research on track athletes’ goal orientations and perceptions of motivational climate should increase the number of participants to bolster the power of the findings, and expand to include the jumping and throwing field event groups.
APPENDIX A
TASK AND EGO ORIENTATION IN SPORT QUESTIONNAIRE

DIRECTIONS: Give your reaction to the following statements in regards how you usually or generally feel about the sport of snow skiing as if YOU were the athlete. You are asked to rank your reaction by indicating

1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree

I feel most successful in track when…

<table>
<thead>
<tr>
<th>Statement</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I’m the only one who can do the play or skill.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. I learn a new skill and it makes me want to practice more.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. I can do better than my friends.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. The others can’t do as well as me.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. I learn something that is fun to do.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Others mess up and I don’t.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. I learn a new skill by trying hard.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. I work really hard.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. I score the most points/goals/hits, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Something I learn makes me want to go and practice more.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. I’m the best.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. A skill I learn really feels right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. I do my very best.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B
PERCEIVED MOTIVATIONAL CLIMATE IN SPORT QUESTIONNAIRE

DIRECTIONS: Give your reaction to the following statements in regards to how you usually or generally feel about the team you are on. You are asked to rank your reaction by indicating

1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree

On this team...

<table>
<thead>
<tr>
<th>Statement</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Players feel good when they do better than their teammates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trying hard is rewarded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Players are punished when they make a mistake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coaches make sure players improve on skills they're not good at</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The focus is to improve each game</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Players are taken out of the game for mistakes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Playing better than teammates is important</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coaches give most of their attention to the "stars"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doing better than others is important</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Players work hard because they want to learn more about the activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coaches favor some players more than others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Players are encourage to outplay their teammates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Players are encourage to work on their weaknesses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everyone wants to be the high scorer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everyone feels that they have an important role on the team</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coaches want us to try new skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Players like playing when the teams are evenly matched</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only the top players "get noticed" by the coaches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most of the players get to play in the game</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Players are afraid to make mistakes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only a few players can be the stars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dear Coach,

I would like to thank you for your assistance in the completion of this project. I know that practice time is precious and I will try to make this activity brief.

The Task Ego Orientation in Sport Questionnaire (TEOSQ) is designed to quantify the degree of involvement of Task and Ego in the Goal Orientation of athletes. The Perceived Motivational Climate in Sport Questionnaire (PMCSQ) is designed to quantify the athlete's perception of what is important on the team. It is the intent of this research to better define the types of athletes participating in the sport track and field. By defining the athlete we may be able to better define aspects of the sport itself.

Enclosed you will find questionnaires, pencils, instructions to be read prior to giving the questionnaire, and an envelope to return the completed questionnaires. It's important that the athletes understand that their participation in the study is both voluntary and anonymous.

The questionnaires should be administered at the beginning of a normal practice. Once the participants have been given the questionnaires, please read them the instructions, and give them time to complete the questionnaires.

Ten minutes should be a sufficient amount of time for most of them to complete the questionnaires.

If you have any questions in regards to the study please contact my advisor or me at:

Sean McManus- (352) 895-6896 or via e-mail at smcmanus@alumni.nd.edu

Dr. John Todorovich- (352) 392-0584 or via e-mail at jtodorov@hhp.ufl.edu

Again, I would like to express my gratitude to you for your participation in the study, which is part of my work towards a master’s degree at the University of Florida. If you're interested in the results I will be glad to send you a copy. It is my belief that the better we understand our athletes the better we function as coaches. I hope that the results of this study will assist in the furthering of our understanding of the athletes we work with.

Sincerely,

Sean P. McManus
APPENDIX D
SCRIPT TO BE READ TO PARTICIPANTS

Motivation and the Sport of Track and Field

Instructions for the administration of the TEOSQ and PMCSQ

Have participants seated in chairs or on the floor. Pencils are included for the marking of the questionnaire. The questionnaire should be administered at the beginning normal practice when ever possible. Participants should work alone and be quiet until all participants have completed the questionnaire.

Please read the following statement prior to allowing the participants to begin.

The questionnaires I am giving you are part of a masters research project for the University of Florida. The graduate student doing the research is also a coach and is interested in the psychology of success. Your participation is completely voluntary and anonymous. I will not look at your completed questionnaire. If you decide not to participate, your decision will not in any way affect your standing with the team. The following statement is from the coach doing the research.

I would like to thank you for giving your time to voluntarily participate in my study. I am attempting to analyze athlete goal orientation and perception of the motivational climate on the team he/she is participating on. Participants in this study are track athletes participating at the NCAA Div I level. The questionnaires that you are about to complete will assist in the comparison of these athletes.

Your participation in the study will be kept anonymous and I ask that you not sign the questionnaires. By completing the questionnaires you give implied consent to the use of the data generated by your responses to the statements.

Questionnaire 1: Ego and Task Orientation in Sport Questionnaire

Goal orientation is the value that you place on aspects of the competitive environment. The questionnaire asks you to respond to 13 statements about your feelings of success. You will give your reaction to the statements in regards to the sport of track and field.

Respond to the statement “I feel most successful in track and field when…” by circling one of the numbers to the right of the statement that most represents the way you usually or generally feel about the sport of track.

1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree
After completing the questionnaire give it to the coach administering the questionnaire and please remain quiet until all your teammates have completed the questionnaire before beginning the second questionnaire.

Questionnaire 2: Perceived Motivational Climate in Sport Questionnaire

Motivational Climate is the way we perceive coaches’ values with respect to sport participation. The questionnaire asks you to respond to 21 statements about your perception of the motivational climate on your team. You will give your reaction to the statements in regards the team you are currently on.

Respond to the statement “On this team…” by circling one of the numbers to the right of the statement that most represents the way you usually or generally feel about the team you are on.

1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree

After completing the questionnaire give it to the coach administering the questionnaire and please remain quiet until all your teammates have completed the questionnaire.
REFERENCE LIST

BIOGRAPHICAL SKETCH

Sean McManus is a 2001 graduate of the University of Notre Dame, where he received a Bachelor of Science degree in civil engineering. Sean also competed for the university’s intercollegiate track team. It was during these years of competition with the track team that he first noticed potential differences in motivation between sprinters and distance runners.

Having decided upon a career change, from engineering to coaching track, Sean entered the University of Florida’s Master of Science program in health science education. It was during these educational pursuits that he became familiar with studies examining motivation in sport and the principles of achievement goal theory.

Through this study and others Sean hopes to explore motivational differences between sprinters and distance runners, and to use the findings in practice as a coach. Understanding what drives an athlete to compete and persevere through adversity is a valuable tool in getting the athlete’s absolute best effort.